Outline
- Vector Semantics
 - Sparse representation
 - Pointwise Mutual Information (PMI)
 - Dense representation
 - Singular Value Decomposition (SVD)
 - Brown Clusters
 - Neural Language Model

Sparse versus dense vectors
- PPMI vectors are
 - long (length $|V| = 20,000$ to $50,000$)
 - sparse (most elements are zero)

Sparse versus dense vectors
- PPMI vectors are
 - long (length $|V| = 20,000$ to $50,000$)
 - sparse (most elements are zero)
- Alternative: learn vectors which are
 - short (length 200-1000)
 - dense (most elements are non-zero)

Sparse versus dense vectors
- Why dense vectors?
 - Short vectors may be easier to use as features in machine learning (less weights to tune)
 - Dense vectors may generalize better than storing explicit counts
 - They may do better at capturing synonymy:
 - car and automobile are synonyms; but are represented as distinct dimensions; this fails to capture similarity between a word with car as a neighbor and a word with automobile as a neighbor

Three methods for getting short dense vectors
- Singular Value Decomposition (SVD)
- Brown clustering
- “Neural Language Model” — inspired by predictive models
Singular Value Decomposition (SVD)

Rank of a Matrix

• What is the rank of a matrix A?

• Number of linearly independent columns of A

\[
A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -3 & 1 \end{bmatrix}
\]

• Rank is 2
• We can rewrite A as two "basis" vectors: $[1 \ 2 \ 1]$ $[-2 \ -3 \ 1]$

Rank as "Dimensionality"

• Rewrite the coordinates in a more efficient way!

 • Old basis vectors: $[1 \ 0 \ 0]$, $[0 \ 1 \ 0]$, $[0 \ 0 \ 1]$

 • New basis vectors: $[1 \ 2 \ 1]$, $[-2 \ -3 \ 1]$
Intuition of Dimensionality Reduction

- Approximate an N-dimensional dataset using fewer dimensions
- By first rotating the axes into a new space
- In which the highest order dimension captures the most variance in the original dataset
- And the next dimension captures the next most variance, etc.

Sample Dimensionality Reduction

Approximate an N-dimensional dataset using fewer dimensions

Sample Dimensionality Reduction

Any rectangular $w \times c$ matrix X equals the product of 3 matrices:
- W: rows corresponding to original but m columns represents a dimension in a new latent space, such that
 - m column vectors are orthogonal to each other
 - Columns are ordered by the amount of variance in the dataset each new dimension accounts for

Singular Value Decomposition

Singular Value Decomposition

Any rectangular $w \times c$ matrix X equals the product of 3 matrices:
- W: rows corresponding to original but m columns represents a dimension in a new latent space, such that
 - m column vectors are orthogonal to each other
 - Columns are ordered by the amount of variance in the dataset each new dimension accounts for
- S: diagonal $m \times m$ matrix of singular values expressing the importance of each dimension.

Singular Value Decomposition

Singular Value Decomposition

(assuming the matrix has rank m)

Landauer and Dumais 1997
Singular Value Decomposition

Any rectangular \(w \times c \) matrix \(X \) equals the product of 3 matrices:

\[
X = W \cdot S \cdot C
\]

\(W \): rows to original but \(m \) columns represents a dimension in a new latent space, such that

- \(m \) column vectors are orthogonal to each other
- Columns are ordered by the amount of variance in the dataset each new dimension accounts for

\(S \): diagonal \(m \times m \) matrix of **singular values**

Expressing the importance of each dimension.

\(C \): columns to original but \(m \) rows to singular values

SVD applied to term-document matrix:

Latent Semantic Analysis

Deerwester et al (1988)

- If instead of keeping all \(m \) dimensions, we just keep the top \(k \) singular values.
- Each row of \(W \) (keeping \(k \) columns of the original \(W \)):
 - A \(k \)-dimensional vector
 - Representing word \(w \)

SVD on Term-Document Matrix: Example

- The matrix \(X \)

\[
\begin{array}{cccccc}
\text{ship} & 1 & 0 & 1 & 0 & 0 \\
\text{boat} & 0 & 1 & 0 & 0 & 0 \\
\text{ocean} & 1 & 1 & 0 & 0 & 0 \\
\text{wood} & 1 & 0 & 0 & 1 & 1 \\
\text{tree} & 0 & 0 & 0 & 1 & 0 \\
\end{array}
\]

Matrix W

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
\text{ship} & -0.44 & -0.30 & 0.57 & 0.00 & 0.25 \\
\text{boat} & -0.13 & -0.33 & -0.59 & 0.00 & 0.73 \\
\text{ocean} & -0.48 & -0.51 & -0.57 & 0.00 & 0.51 \\
\text{wood} & -0.70 & 0.35 & 0.13 & -0.58 & 0.16 \\
\text{tree} & 0.26 & 0.65 & -0.41 & 0.58 & -0.10 \\
\end{array}
\]

Matrix S

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 & 5 \\
\text{ship} & 0.16 & 0.00 & 0.00 & 0.00 & 0.00 \\
\text{boat} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\text{ocean} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\text{wood} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\text{tree} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\end{array}
\]

Matrix C

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
\text{ship} & 0.75 & -0.39 & -0.25 & -0.45 & -0.35 \\
\text{boat} & -0.29 & -0.53 & -0.10 & -0.20 & 0.41 \\
\text{ocean} & 0.58 & 0.89 & 0.01 & -0.05 & -0.58 \\
\text{wood} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\text{tree} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\end{array}
\]

Existing tools from Python, MATLAB, R, etc, for SVD
Reduce dimension: The Matrix W

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ship</td>
<td>-0.44</td>
<td>-0.30</td>
<td>0.57</td>
<td>0.58</td>
<td>0.25</td>
</tr>
<tr>
<td>boat</td>
<td>-0.13</td>
<td>-0.33</td>
<td>-0.59</td>
<td>0.00</td>
<td>0.73</td>
</tr>
<tr>
<td>ocean</td>
<td>-0.48</td>
<td>-0.51</td>
<td>-0.37</td>
<td>0.00</td>
<td>-0.61</td>
</tr>
<tr>
<td>wood</td>
<td>-0.70</td>
<td>0.35</td>
<td>0.15</td>
<td>-0.58</td>
<td>0.16</td>
</tr>
<tr>
<td>tree</td>
<td>-0.26</td>
<td>0.65</td>
<td>-0.41</td>
<td>0.58</td>
<td>-0.09</td>
</tr>
</tbody>
</table>

Similarity between ship and boat vs ship and wood?

Reduce dimension: The Matrix S

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ship</td>
<td>2.16</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>boat</td>
<td>0.00</td>
<td>1.59</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>ocean</td>
<td>0.00</td>
<td>1.28</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>wood</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tree</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Reduce dimension: The Matrix C

<table>
<thead>
<tr>
<th></th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
<th>d_6</th>
<th>d_7</th>
<th>d_8</th>
<th>d_9</th>
<th>d_{10}</th>
<th>d_{11}</th>
<th>d_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ship</td>
<td>-0.75</td>
<td>-0.28</td>
<td>-0.20</td>
<td>-0.45</td>
<td>-0.33</td>
<td>-0.12</td>
<td>-0.29</td>
<td>-0.53</td>
<td>-0.19</td>
<td>0.63</td>
<td>0.22</td>
<td>0.41</td>
</tr>
<tr>
<td>boat</td>
<td>-0.53</td>
<td>-0.19</td>
<td>0.63</td>
<td>0.22</td>
<td>0.41</td>
<td>0.00</td>
<td>0.58</td>
<td>0.00</td>
<td>-0.58</td>
<td>0.58</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>ocean</td>
<td>-0.53</td>
<td>-0.29</td>
<td>0.63</td>
<td>0.19</td>
<td>0.41</td>
<td>0.22</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>wood</td>
<td>-0.75</td>
<td>-0.28</td>
<td>-0.20</td>
<td>-0.45</td>
<td>-0.33</td>
<td>-0.12</td>
<td>-0.29</td>
<td>-0.53</td>
<td>-0.19</td>
<td>0.63</td>
<td>0.22</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Reduce dimension: The Matrix W

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ship</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>boat</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ocean</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>wood</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>tree</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Similarity between ship and boat vs ship and wood?

Reduce dimension: The Matrix W

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ship</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>boat</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ocean</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>wood</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>tree</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
More details

- 300 dimensions are commonly used
- The cells are commonly weighted by a product of two weights (TF-IDF)
 - Local weight: term frequency (or log version)
 - Global weight: idf

Singular Value Decomposition (SVD) is a method for finding the most important singular values, leads to a reduced dataset. S is a diagonal matrix whose entries are the singular values in the original dataset each accounts for. SVD factors a matrix X into a product of three matrices, W, V, and C. Taking only the top k dimensions after SVD applied to co-occurrence matrix X:

Let’s return to PPMI word-word matrices

- Can we apply to SVD to them?

Truncated SVD on term-term matrix

$X | V \times | V | = W \begin{bmatrix} \sigma_1 & 0 & 0 & \cdots & 0 \\ 0 & \sigma_2 & 0 & \cdots & 0 \\ 0 & 0 & \sigma_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \sigma_\nu \end{bmatrix} C_{k \times |V|}$

(assuming the matrix has rank $|V|$, may not be true)

Truncated SVD produces embeddings

- Each row of W matrix is a k-dimensional representation of each word w
- K might range from 50 to 1000
- Generally we keep the top k dimensions, but some experiments suggest that getting rid of the top 1 dimension or even the top 50 dimensions is helpful (Lapesa and Evert 2014).
Embeddings versus sparse vectors

• Dense SVD embeddings sometimes work better than sparse PPMI matrices at tasks like word similarity
 • Denoising: low-order dimensions may represent unimportant information
 • Truncation may help the models generalize better to unseen data.
 • Having a smaller number of dimensions may make it easier for classifiers to properly weight the dimensions for the task.
 • Dense models may do better at capturing higher order co-occurrence.