The grammar

S \rightarrow \text{NP} \text{VP} 0.9
S \rightarrow \text{VP} 0.1
\text{NP} \rightarrow \text{VP} 0.5
\text{VP} \rightarrow \text{V} 0.1
\text{VP} \rightarrow \text{V} \text{NP} 0.3
\text{VP} \rightarrow \text{VP} \text{NP} 0.1
\text{VP} \rightarrow \text{NP} \text{PP} 1.0
\text{NP} \rightarrow \text{NP} \text{VP} 0.1
\text{NP} \rightarrow \text{NP} \text{PP} 0.2
\text{NP} \rightarrow \text{N} 0.7
\text{PP} \rightarrow \text{P} \text{NP} 1.0

N \rightarrow \text{people} 0.5
N \rightarrow \text{fish} 0.2
N \rightarrow \text{rods} 0.1
V \rightarrow \text{people} 0.1
V \rightarrow \text{fish} 0.6
V \rightarrow \text{tanks} 0.3
P \rightarrow \text{with} 1.0

Instructor: Prof. Lu Wang
Northeastern University
Webpage: www.ccs.neu.edu/home/luwang
Where to learn the probabilities: Treebanks

• **English Penn Treebank**: Standard corpus for testing syntactic parsing consists of 1.2 M words of text from the Wall Street Journal (WSJ).
 - Typical to train on about 40,000 parsed sentences and test on an additional standard disjoint test set of 2,416 sentences.
• **Chinese Penn Treebank**: 100K words from the Xinhua news service.
• **Other corpora existing in many languages**, see the Wikipedia article “Treebank”

Computing Evaluation Metrics

Correct Tree T

```
S (0:11), NP (0:2), VP (2:5), VP (3:9), PP (3:9), PP (6:10), NP (7:10)
```

Candidate Tree P

```
S (0:11), NP (0:2), VP (2:5), VP (3:9), PP (3:9), PP (6:10), NP (7:10)
```

Re: 10/12 = 83.3% Precision: 10/12 = 83.3% F: 83.3%

Evaluating constituency parsing

Gold standard brackets:
S (0:11), NP (0:2), VP (2:5), VP (3:9), NP (3:9), PP (6:10), NP (7:10)

Candidate brackets:
S (0:11), NP (0:2), VP (2:5), VP (3:9), NP (3:9), PP (6:10), NP (7:10)

Labeled Precision 3/7 = 42.9% Labeled Recall 3/6 = 50.0% POS Tagging Accuracy 11/11 = 100.0%
How good are PCFGs?

- Penn WSJ parsing accuracy: about 73% LP/LR F1 with feature-based models (state-of-the-art neural model is 91-92% F1)
- Robust
 - Usually admit everything, but with low probability
- Partial solution for grammar ambiguity
 - A PCFG gives some idea of the plausibility of a parse

(Head) Lexicalization of PCFGs

- The head word of a phrase gives a good representation of the phrase's structure and meaning (head words are decided by rules)
- Puts the properties of words back into a PCFG

Head Words

- Syntactic phrases usually have a word in them that is most "central" to the phrase.
- Linguists have defined the concept of a lexical head of a phrase.
- Simple rules can identify the head of any phrase by percolating head words up the parse tree.
 - Head of a VP is the main verb
 - Head of an NP is the main noun
 - Head of a PP is the preposition
 - Head of a sentence is the head of its VP
Lexicalization of PCFGs

- Word-to-word affinities are useful for certain ambiguities
- PP attachment is now (partly) captured in a local PCFG rule.

Lexicalized parsing was seen as the parsing breakthrough of the late 1990s

- Eugene Charniak, 2000 JHU workshop: "To do better, it is necessary to condition probabilities on the actual words of the sentence. This makes the probabilities much tighter:
 - \(p(VP \rightarrow V \ NP \ NP) = 0.00151\)
 - \(p(VP \rightarrow V \ NP \ NP | \text{said}) = 0.00011\)
 - \(p(VP \rightarrow V \ NP \ NP | \text{gave}) = 0.01980\)

- Michael Collins, 2003 COLT tutorial: "Lexicalized Probabilistic Context-Free Grammars ... perform vastly better than PCFGs (88% vs. 73% accuracy)"

Lexicalization models argument selection by sharpening rule expansion probabilities

The probability of different verbal complement frames (i.e., "subcategorizations") depends on the verb:

Human Parsing

- Computational parsers can be used to predict human reading time as measured by tracking the time taken to read each word in a sentence.
- Psycholinguistic studies show that words that are more probable given the preceding lexical and syntactic context are read faster.
 - John put the dog in the pen with a lock.
 - John put the dog in the pen with a bone in the car.
 - John liked the dog in the pen with a bone.
- Modeling these effects requires an incremental statistical parser that incorporates one word at a time into a continuously growing parse tree.

Garden Path Sentences

- People are confused by sentences that seem to have a particular syntactic structure but then suddenly violate this structure, so the listener is "lead down the garden path".
 - The horse raced past the barn fell.
 - vs. The horse raced past the barn broke his leg.
 - The complex houses married students.
 - The old man the sea.
 - While Anna dressed the baby spit up on the bed.
- Incremental computational parsers can try to predict and explain the problems encountered parsing such sentences.

Center Embedding

- Nested expressions are hard for humans to process beyond 1 or 2 levels of nesting.
 - The rat the cat chased died.
 - The rat the cat the dog bit chased died.
 - The rat the cat the dog the boy owned bit chased died.
- Requires remembering and popping incomplete constituents from a stack and strains human short-term memory.
- Equivalent "tail embedded" (tail recursive) versions are easier to understand since no stack is required.
 - The boy owned a dog that bit a cat that chased a rat that died.
Dependency syntax postulates that syntactic structure consists of lexical items linked by binary asymmetric relations ("arrows") called dependencies.

The arrows are commonly typed with the name of grammatical relations (subject, prepositional object, apposition, etc.).

Bills on ports and immigration were submitted by Senator Brownback, Republican of Kansas.

Relation between phrase structure and dependency structure

- A dependency grammar has a notion of a head. Officially, CFGs don’t.
- But modern linguistic theory and all modern statistical parsers (Charniak, Collins, Stanford, ...) do, via handwritten phrasal “head rules”:
 - The head of a Noun Phrase is a noun/number/adj/….
 - The head of a Verb Phrase is a verb/modal/….
- The head rules can be used to extract a dependency parse from a CFG parse.

Methods of Dependency Parsing

1. Dynamic programming (like in the CKY algorithm)
 You can do it similarly to lexicalized PCFG parsing; an O(n^3) algorithm
 Eisner (1996) gives a clever algorithm that reduces the complexity to O(n^{3/2}), by producing parse items with heads at the ends rather than in the middle.
2. Graph algorithms
 You create a Maximum Spanning Tree for a sentence
 McDonald et al.’s (2005) MSTParser scores dependencies independently using a ML classifier (he uses MIRA, for online learning, but it could be MaxEnt)
3. Constraint Satisfaction
 Edges are eliminated that don’t satisfy hard constraints. Karlsson (1990), etc.
4. “Deterministic parsing”
 Greedy choice of attachments guided by machine learning classifiers
 MaltParser (Nivre et al. 2008) – discussed in the next segment