Neural language models

- Skip-grams
- Continuous Bag of Words (CBOW)
- More details can be found at https://cs224d.stanford.edu/lecture_notes/notes1.pdf

Prediction-based models: An alternative way to get dense vectors

- Skip-gram (Mikolov et al. 2013a), CBOW (Mikolov et al. 2013b)
- Learn embeddings as part of the process of word prediction
- Train a neural network to predict neighboring words
- Advantages:
 - Fast, easy to train (much faster than SVD)
 - Available online in the word2vec package
 - Including sets of pretrained embeddings!

Word2vec

- Popular embedding method
- Very fast to train
- Code available on the web
- Idea: predict rather than count

Word2vec

- Given a sentence:
 - lemon, a tablespoon of apricot jam, a pinch ...
- Instead of counting how often each word occurs near “apricot”
- Train a classifier on a binary prediction task:
 - Is word w likely to show up near “apricot”?
- We don’t actually care about this task
 - But we’ll take the learned weights (will be discussed later) as the word embeddings

Brilliant insight: Use running text as implicitly supervised training data!

- A word near apricot
 - Acts as gold ‘correct answer’ to the question
 - “Is word w likely to show up near apricot?”
 - No need for hand-labeled supervision
- The idea comes from neural language modeling
 - Bengio et al. (2003)
 - Collobert et al. (2011)
Word2Vec: **Skip-Gram Task**

- Now we have positive samples.
- Where do the "negative samples" come from?

Word2Vec: **Skip-Gram Task**

- Word2vec provides a variety of options. Let's do
 - "skip-gram with negative sampling" (SGNS)

Skip-gram algorithm

1. Treat the target word and a neighboring context word as positive examples.
2. Randomly sample other words in the lexicon to get negative samples
3. Use logistic regression (will discuss formulation later) to train a classifier to distinguish those two cases
4. Use the weights as the embeddings

Skip-gram Training Data

- Training sentence:
 ... lemon, a tablespoon of apricot jam a pinch ...
 \[c_1 \quad c_2 \quad \text{target} \quad c_3 \quad c_4 \]

 Assume context words are those in +/- 2 word window

Skip-gram Goal

- Given a tuple \((t,c)\) = target, context
 - \((apricot, jam)\)
 - \((apricot, aardvark)\)
- Return probability that \(c\) is a real context word (or not):
 - \(P(+) | t,c\) -> positive
 - \(P(-) | t,c\) = 1\(\rightarrow P(+) | t,c\) -> negative
How to compute $p(\omega | t, c)$?

Intuition:
- Words are likely to appear near similar words
- Model similarity with dot product!
- Similarity $(t, c) \propto t \cdot c$

Problem:
- Dot product is not a probability!
 - (Neither is cosine)

Turning dot product into a probability

The sigmoid lies between 0 and 1:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

For all the context words:

- Assume all context words are independent

- Training sentence:
 - ... lemon, a tablespoon of apricot jam a pinch ...
 - $c_1 c_2 t c_3 c_4$

- Training data: input/output pairs centering on **apricot**
- Assume a +/- 2 word window

Turning dot product into a probability

$$P(+ | t, c) = \frac{1}{1 + e^{-t \cdot c}}$$

$$P(- | t, c) = 1 - P(+ | t, c)$$

$$= \frac{e^{t \cdot c}}{1 + e^{t \cdot c}}$$

Skip-gram Training Data

- Training sentence:
 - ... lemon, a tablespoon of apricot jam a pinch ...
 - $c_1 c_2 t c_3 c_4$

- Training data: input/output pairs centering on **apricot**
- Assume a +/- 2 word window

Skip-gram Training Data

- Training sentence:
 - ... lemon, a tablespoon of apricot jam a pinch ...
 - $c_1 c_2 t c_3 c_4$

- Training data: input/output pairs centering on **apricot**
- Assume a +/- 2 word window

For the context words c_1, c_2, c_3, c_4

$$P(+ | t, c_k) = \prod_{i=1}^{k} \frac{1}{1 + e^{-t \cdot c_i}}$$

$$\log P(+ | t, c_k) = \sum_{i=1}^{k} \log \frac{1}{1 + e^{-t \cdot c_i}}$$

positive examples $+$

<table>
<thead>
<tr>
<th>t</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>apricot</td>
<td>tablespoon</td>
</tr>
</tbody>
</table>
Skip-gram Training Data

- Training sentence: ... lemon, a tablespoon of apricot jam, a pinch ...

positive examples +
- apricot
tablespoon
apricot preserves
apricot or

• For each positive example, we’ll create k negative examples.
• Using noise words
• Any random word that isn’t t

Choosing noise words

- Could pick w according to its unigram frequency P(w)
- More common to chosen then according to p_u(w)

\[P_u(w) = \frac{\text{count}(w)^\alpha}{\sum_{w'} \text{count}(w')} \]

\(\alpha = 0.75 \) works well because it gives rare noise words slightly higher probability.
- To show this, imagine two events \(p(a) = .99 \) and \(p(b) = .01 \):

\[P_u(a) = \frac{99^7}{99^7 + 99} = .97 \]
\[P_u(b) = \frac{0.01^7}{99^7 + 0.01} = .03 \]

Learning the classifier (W and C)

- Iterative process on training data
- Then adjust the word weights to
 - make the positive pairs more likely
 - and the negative pairs less likely

Setup

- Let’s represent words as vectors of some length (say 300), randomly initialized.
- So we start with 300 * V random parameters
- Over the entire training set, we’d like to adjust those word vectors such that we
 - Maximize the similarity of the target word, context word pairs \((t, c)\) drawn from the positive data
 - Minimize the similarity of the \((t, c)\) pairs drawn from the negative data
Formally

- We want to maximize the following objective
 \[\sum_{(t,c) \in +} \log P(t|c) + \sum_{(t,c) \in -} \log P(-t|c) \]
- Maximize the + label for the pairs from the positive training data, and the - label for the pairs sample from the negative data.

Focusing on one target word t:

\[
L(\theta) = \log P(+|r,c) + \sum_{i=1}^{k} \log P(-|t,n) = \log \sigma(c \cdot t) + \sum_{i=1}^{k} \log \sigma(-n_i \cdot t)
\]

Train using gradient descent (not required)

- Idea: gradually changing W and C
- Finally learns two separate embedding matrices W and C
- Can use W and throw away C, or merge them

Summary: How to learn skip-gram embeddings

- Start with V random 300-dimensional vectors as initial embeddings
- Use logistic regression, the second most basic classifier used in machine learning after naive bayes
- Take a corpus and take pairs of words that co-occur as positive examples
- Take pairs of words that don’t co-occur as negative examples
- Train the classifier to distinguish these by slowly adjusting all the embeddings to improve the classifier performance
- Throw away the classifier code and keep the embeddings.

(Dense) Word embeddings you can download!

- **Word2vec** [Mikolov et al.]
 https://code.google.com/archive/p/word2vec/
- **Fasttext** http://www.fasttext.cc/
- **Glove** [Pennington, Socher, Manning]
 http://nlp.stanford.edu/projects/glove/
Evaluating embeddings

- Compare to human scores on word similarity-type tasks:
 - WordSim-353 (Finkelstein et al., 2002)
 - Stanford Contextual Word Similarity (SCWS) dataset (Huang et al., 2012)

- TOEFL dataset:
 - Levied is closest in meaning to:
 - imposed, believed, requested, correlated

Properties of embeddings

- Nearest words to some embeddings (Mikolov et al. 2013)

<table>
<thead>
<tr>
<th>Target</th>
<th>Redmond</th>
<th>Hogwarts</th>
<th>president</th>
<th>velvet</th>
<th>man</th>
<th>woman</th>
<th>London</th>
<th>queen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunnydale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evernight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dumbledore</td>
<td>Dumbledore</td>
<td>Halfblood</td>
<td>Halfblood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malfoy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>halfblood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Similarity depends on window size C

- $C = 2$: The nearest words to Hogwarts:
 - Sunnydale
 - Evernight
- $C = 5$: The nearest words to Hogwarts:
 - Dumbledore
 - Malfoy
 - halfblood

Analogy: Embeddings capture relational meaning!

$$\text{vector('king')} - \text{vector('man')} + \text{vector('woman')} \approx \text{vector('queen')}$$

$$\text{vector('Paris')} - \text{vector('France')} + \text{vector('Italy')} \approx \text{vector('Rome')}$$
Embeddings can help study word history!

Train embeddings on old books to study changes in word meaning!!

Diachronic word embeddings for studying language change!

Visualization changes

Project 300 dimensions down into 2

The evolution of sentiment words

Negative words change faster than positive words

Embeddings reflect cultural bias

Ask “Paris : France :: Tokyo : x”
 x = Japan
Ask “father : doctor :: mother : x”
 x = nurse
Ask “man : computer programmer :: woman : x”
 x = homemaker

Embeddings and bias
Embeddings reflect cultural bias

- Implicit Association test (Greenwald et al 1998):
 - How associated are concepts (flowers, insects) & attributes (pleasantness, unpleasantness)?
 - Studied by measuring timing latencies for categorization.
- Psychological findings on US participants:
 - African-American names are associated with unpleasant words (more than European-American names)
 - Male names associated more with math, female names with arts
 - Old people’s names with unpleasant words, young people with pleasant words.

Embeddings as a window onto history

The cosine similarity of embeddings for decade X for occupations or adjectives (e.g., teacher or smart) to male vs female names
- Find its correlation with the actual percentage of women teachers in decade X

Embeddings reflect ethnic stereotypes over time

- Princeton trilogy experiments
- Attitudes toward ethnic groups (1933, 1951, 1969) scores for adjectives
 - Industrious, superstitious, nationalistic, etc.
- Cosine of Chinese name embeddings with those adjective embeddings correlates with human ratings.

History of biased framings of women

- Embeddings for competence adjectives are biased toward men
 - Smart, wise, brilliant, intelligent, resourceful, thoughtful, logical, etc.
- This bias is slowly decreasing

Change in linguistic framing 1910-1990

Change in association of Chinese names with adjectives framed as ‘othering’ (barbaric, monstrous, biased)
Changes in framing: adjectives associated with Chinese

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Irresponsible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emirous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barbaric</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggressive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transparent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monstrous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cruel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greedy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bizarre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irresponsible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emirous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barbaric</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggressive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transparent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monstrous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cruel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greedy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bizarre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Directions

- Debiasing algorithms for embeddings
- Use embeddings as a historical tool to study bias