CS 6120/CS 4120: Natural Language Processing

Instructor: Prof. Lu Wang
College of Computer and Information Science
Northeastern University
Webpage: www.ccs.neu.edu/home/luwang
Updated Office Hours

• Prof. Lu Wang, **Fridays** 3pm - 4pm, or by appointment, Rm 911, 177 Huntington Ave.

• TA Ruiyang Xu (email: xu.r@husky.neu.edu), **Mondays** 4pm-5pm, or by appointment, 132H Nightingale

• TA Nikhil Badugu (email: badugu.n@husky.neu.edu), **Wednesdays** 3:30pm-4:30pm, or by appointment, 132H Nightingale

• TA Parmeet Singh Saluja (email: saluja.pa@husky.neu.edu), **Thursdays** 5pm-6pm, or by appointment, 132H Nightingale

• Course Website:

Outline

• Probabilistic language model and n-grams
• Estimating n-gram probabilities
• Language model evaluation and perplexity
• Generalization and zeros
• Smoothing: add-one
• Interpolation, backoff, and web-scale LMs
• Smoothing: Kneser-Ney Smoothing

[Modified from Dan Jurafsky’s slides]
Probabilistic Language Models

• Assign a probability to a sentence
 • Machine Translation:
 • $P(\text{high winds tonight}) > P(\text{large winds tonight})$
 • Spell Correction
 • The office is about fifteen \textit{minuets} from my house
 • $P(\text{about fifteen minutes from}) > P(\text{about fifteen minuets from})$
 • Speech Recognition
 • $P(\text{I saw a van}) >> P(\text{eyes awe of an})$
 • Text Generation in general:
 • Summarization, question-answering ...
Probabilistic Language Modeling

• Goal: compute the probability of a sentence or sequence of words:
 \[P(W) = P(w_1, w_2, w_3, w_4, w_5 \ldots w_n) \]

• Related task: probability of an upcoming word:
 \[P(w_5 | w_1, w_2, w_3, w_4) \]

• A model that computes either of these:
 \[P(W) \quad \text{or} \quad P(w_n | w_1, w_2 \ldots w_{n-1}) \]
 is called a language model.

• Better: the grammar

• But language model (or LM) is standard
How to compute \(P(W) \)

- How to compute this joint probability:

 \[P(\text{its, water, is, so, transparent, that}) \]
How to compute $P(W)$

• How to compute this joint probability:

 • $P(its, \text{ water, is, so, transparent, that})$

• Intuition: let’s rely on the Chain Rule of Probability
Quick Review: Probability

• Recall the definition of conditional probabilities
 \[p(B|A) = \frac{P(A,B)}{P(A)} \quad \text{Rewriting:} \quad P(A,B) = P(A)P(B|A) \]

• More variables:
 \[P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C) \]

• The Chain Rule in General
 \[P(x_1,x_2,x_3,\ldots,x_n) = P(x_1)P(x_2|x_1)P(x_3|x_1,x_2)\ldots P(x_n|x_1,\ldots,x_{n-1}) \]
The Chain Rule applied to compute joint probability of words in sentence

\[P(w_1w_2\ldots w_n) = \prod_i P(w_i \mid w_1w_2\ldots w_{i-1}) \]
The Chain Rule applied to compute joint probability of words in sentence

\[P(w_1w_2\ldots w_n) = \prod_{i} P(w_i | w_1w_2\ldots w_{i-1}) \]

\[P(“its water is so transparent”) = P(its) \times P(water | its) \times P(is | its water) \times P(so | its water is) \times P(transparent | its water is so) \]
How to estimate these probabilities

• Could we just count and divide?

\[P(\text{the l its water is so transparent that}) = \frac{\text{Count}(\text{its water is so transparent that the})}{\text{Count}(\text{its water is so transparent that})} \]
How to estimate these probabilities

• Could we just count and divide?

\[P(\text{the | its water is so transparent that}) = \frac{\text{Count(its water is so transparent that the)}}{\text{Count(its water is so transparent that)}} \]

• No! Too many possible sentences!
• We’ll never see enough data for estimating these
Markov Assumption

• Simplifying assumption:

\[P(\text{the | its water is so transparent that}) \approx P(\text{the | that}) \]

• Or maybe

\[P(\text{the | its water is so transparent that}) \approx P(\text{the | transparent that}) \]
Markov Assumption

\[
P(w_1w_2\ldots w_n) \approx \prod_i P(w_i \mid w_{i-k}\ldots w_{i-1})
\]

• In other words, we approximate each component in the product

\[
P(w_i \mid w_1w_2\ldots w_{i-1}) \approx P(w_i \mid w_{i-k}\ldots w_{i-1})
\]
Simplest case: Unigram model

\[P(w_1 w_2 \ldots w_n) \approx \prod_i P(w_i) \]

Some automatically generated sentences from a unigram model

fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the
Bigram model

Condition on the previous word:

\[P(w_i | w_1 w_2 \ldots w_{i-1}) \approx P(w_i | w_{i-1}) \]

texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november
N-gram models

• We can extend to trigrams, 4-grams, 5-grams
N-gram models

• We can extend to trigrams, 4-grams, 5-grams
• In general this is an insufficient model of language
 • because language has long-distance dependencies:
 “The computer(s) which I had just put into the machine room on the fifth floor is (are) crashing.”
• But we can often get away with N-gram models
Today’s Outline

• Probabilistic language model and n-grams
• Estimating n-gram probabilities
• Language model evaluation and perplexity
• Generalization and zeros
• Smoothing: add-one
• Interpolation, backoff, and web-scale LMs
• Smoothing: Kneser-Ney Smoothing
Estimating bigram probabilities

• The Maximum Likelihood Estimate for bigram probability

\[
P(w_i \mid w_{i-1}) = \frac{\text{count}(w_{i-1}, w_i)}{\text{count}(w_{i-1})}
\]

\[
P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}
\]
An example

\[
P(w_i | w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}
\]

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>
An example

\[P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})} \]

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

\[
\begin{align*}
P(\text{I} \mid <\text{s}>) &= \frac{2}{3} = .67 \\
P(\text{Sam} \mid <\text{s}>) &= \frac{1}{3} = .33 \\
P(\text{am} \mid \text{I}) &= \frac{2}{3} = .67 \\
P(\text{I} \mid <\text{s}>) &= \frac{1}{2} = 0.5 \\
P(\text{Sam} \mid \text{am}) &= \frac{1}{2} = .5 \\
P(\text{do} \mid \text{I}) &= \frac{1}{3} = .33
\end{align*}
\]
More examples:
Berkeley Restaurant Project sentences

- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i’m looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i’m looking for a good place to eat breakfast
- when is caffe venezia open during the day
Raw bigram counts

- Out of 9222 sentences

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>5</td>
<td>827</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>want</td>
<td>2</td>
<td>0</td>
<td>608</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>to</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>686</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>211</td>
</tr>
<tr>
<td>eat</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>16</td>
<td>2</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>chinese</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>82</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>food</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lunch</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>spend</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Raw bigram probabilities

- Normalize by unigrams:

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>2533</td>
<td>927</td>
<td>2417</td>
<td>746</td>
<td>158</td>
<td>1093</td>
<td>341</td>
<td>278</td>
</tr>
</tbody>
</table>

- Result:

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>0.002</td>
<td>0.33</td>
<td>0</td>
<td>0.0036</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00079</td>
</tr>
<tr>
<td>want</td>
<td>0.0022</td>
<td>0</td>
<td>0.66</td>
<td>0.0011</td>
<td>0.0065</td>
<td>0.0065</td>
<td>0.0054</td>
<td>0.0011</td>
</tr>
<tr>
<td>to</td>
<td>0.00083</td>
<td>0</td>
<td>0.0017</td>
<td>0.28</td>
<td>0.00083</td>
<td>0.52</td>
<td>0.0025</td>
<td>0.087</td>
</tr>
<tr>
<td>eat</td>
<td>0</td>
<td>0</td>
<td>0.0027</td>
<td>0</td>
<td>0.021</td>
<td>0</td>
<td>0.056</td>
<td>0</td>
</tr>
<tr>
<td>chinese</td>
<td>0.0063</td>
<td>0</td>
<td>0</td>
<td>0.014</td>
<td>0.00092</td>
<td>0.0027</td>
<td>0.0063</td>
<td>0</td>
</tr>
<tr>
<td>food</td>
<td>0.014</td>
<td>0</td>
<td>0.014</td>
<td>0</td>
<td>0.0037</td>
<td>0.0029</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lunch</td>
<td>0.0059</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>spend</td>
<td>0.0036</td>
<td>0</td>
<td>0.0036</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bigram estimates of sentence probabilities

\[P(<s> \text{ I want english food </s>}) = \]
\[P(\text{I}|<s>) \]
\[\times P(\text{want}|\text{I}) \]
\[\times P(\text{english}|\text{want}) \]
\[\times P(\text{food}|\text{english}) \]
\[\times P(</s>|\text{food}) \]
\[= .000031 \]
Knowledge

- \(P(\text{english} | \text{want}) = 0.0011 \)
- \(P(\text{chinese} | \text{want}) = 0.0065 \)
- \(P(\text{to} | \text{want}) = 0.66 \)
- \(P(\text{eat} \mid \text{to}) = 0.28 \)
- \(P(\text{food} \mid \text{to}) = 0 \)
- \(P(\text{want} \mid \text{spend}) = 0 \)
- \(P(i \mid <s>) = 0.25 \)
Practical Issues

• We do everything in log space
 • Avoid underflow
 • (also adding is faster than multiplying)

\[
\log(p_1 \times p_2 \times p_3 \times p_4) = \log p_1 + \log p_2 + \log p_3 + \log p_4
\]
Language Modeling Toolkits

• SRILM
 • http://www.speech.sri.com/projects/srilm/
Google N-Gram Release, August 2006

All Our N-gram are Belong to You

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a variety of R&D projects,

...

That’s why we decided to share this enormous dataset with everyone. We processed 1,024,908,267,229 words of running text and are publishing the counts for all 1,176,470,663 five-word sequences that appear at least 40 times. There are 13,588,391 unique words, after discarding words that appear less than 200 times.
Google N-Gram Release

• serve as the incoming 92
• serve as the incubator 99
• serve as the independent 794
• serve as the index 223
• serve as the indication 72
• serve as the indicator 120
• serve as the indicators 45
• serve as the indispensnable 111
• serve as the indispensible 40
• serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
Today’s Outline

• Probabilistic language model and n-grams
• Estimating n-gram probabilities
• Language model evaluation and perplexity
• Generalization and zeros
• Smoothing: add-one
• Interpolation, backoff, and web-scale LMs
• Smoothing: Kneser-Ney Smoothing
Evaluation: How good is our model?
Evaluation: How good is our model?

- Does our language model prefer good sentences to bad ones?
 - Assign higher probability to “real” or “frequently observed” sentences
 - Than “ungrammatical” or “rarely observed” sentences?
Evaluation: How good is our model?

• Does our language model prefer good sentences to bad ones?
 • Assign higher probability to “real” or “frequently observed” sentences
 • Than “ungrammatical” or “rarely observed” sentences?

• We train parameters of our model on a training set.

• We test the model’s performance on data we haven’t seen.
 • A test set is an unseen dataset that is different from our training set, totally unused.
 • An evaluation metric tells us how well our model does on the test set.
Training on the test set

• We can’t allow test sentences into the training set
• We will assign it an artificially high probability when we set it in the test set
• “Training on the test set”
• Bad science!
• And violates the honor code
Extrinsic evaluation of N-gram models

• Best evaluation for comparing models A and B
 • Put each model in a task
 • spelling corrector, speech recognizer, MT system
 • Run the task, get an accuracy for A and for B
 • How many misspelled words corrected properly
 • How many words translated correctly
 • Compare accuracy for A and B
Difficulty of extrinsic evaluation of N-gram models

• Extrinsic evaluation
 • Time-consuming; can take days or weeks

• So
 • Sometimes use intrinsic evaluation: perplexity
Difficulty of extrinsic evaluation of N-gram models

• Extrinsic evaluation
 • Time-consuming; can take days or weeks

• So
 • Sometimes use intrinsic evaluation: perplexity
 • Bad approximation
 • unless the test data looks just like the training data
 • So generally only useful in pilot experiments
 • But is helpful to think about.
Intuition of Perplexity

• The Shannon Game:
 • How well can we predict the next word?

 I always order pizza with cheese and ____

 The 33rd President of the US was ____

 I saw a ____

• Unigrams are terrible at this game. (Why?)

• A better model of a text
 • is one which assigns a higher probability to the word that actually occurs
Intuition of Perplexity

• The Shannon Game:
 • How well can we predict the next word?

 I always order pizza with cheese and ____

 The 33rd President of the US was ____

 I saw a ____

 • Unigrams are terrible at this game. (Why?)

• A better model of a text
 • is one which assigns a higher probability to the word that actually occurs

{mushrooms 0.1
pepperoni 0.1
anchovies 0.01
....
fried rice 0.0001
....
and 1e-100}
Perplexity

The best language model is one that best predicts an unseen test set

- Gives the highest $P(\text{sentence})$

Perplexity is the inverse probability of the test set, normalized by the number of words:

$$PP(W) = P(w_1w_2...w_N)^{-\frac{1}{N}}$$

$$= \sqrt[N]{\frac{1}{P(w_1w_2...w_N)}}$$
Perplexity

The best language model is one that best predicts an unseen test set

- Gives the highest $P(\text{sentence})$

Perplexity is the inverse probability of the test set, normalized by the number of words:

$$PP(W) = P(w_1w_2...w_N)^{-\frac{1}{N}}$$

Chain rule:

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1...w_{i-1})}}$$

For bigrams:

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}$$
Perplexity

The best language model is one that best predicts an unseen test set

- Gives the highest $P(\text{sentence})$

Perplexity is the inverse probability of the test set, normalized by the number of words:

$$PP(W) = P(w_1w_2...w_N)^{-\frac{1}{N}}$$

$$= \frac{1}{N \sqrt[1/N]{P(w_1w_2...w_N)}}$$

Chain rule:

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1...w_{i-1})}}$$

For bigrams:

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}$$

Minimizing perplexity is the same as maximizing probability
Perplexity as branching factor

• Let’s suppose a sentence consisting of random digits
• What is the perplexity of this sentence according to a model that assign P=1/10 to each digit?
Perplexity as branching factor

• Let’s suppose a sentence consisting of random digits
• What is the perplexity of this sentence according to a model that assign $P=1/10$ to each digit?

$$PP(W) = P(w_1w_2\ldots w_N)^{-\frac{1}{N}}$$

$$= \left(\frac{1}{10}\right)^{-\frac{1}{N}}$$

$$= \frac{1}{10^{-1}}$$

$$= \frac{1}{10}$$

$$= 10$$
Lower perplexity = better model

• Training 38 million words, test 1.5 million words, WSJ

<table>
<thead>
<tr>
<th>N-gram Order</th>
<th>Unigram</th>
<th>Bigram</th>
<th>Trigram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perplexity</td>
<td>962</td>
<td>170</td>
<td>109</td>
</tr>
</tbody>
</table>
Today’s Outline

• Probabilistic language model and n-grams
• Estimating n-gram probabilities
• Language model evaluation and perplexity
• Generalization and zeros
• Smoothing: add-one
• Interpolation, backoff, and web-scale LMs
• Smoothing: Kneser-Ney Smoothing
The perils of overfitting

• N-grams only work well for word prediction if the test corpus looks like the training corpus
 • In real life, it often doesn’t
• We need to train robust models that generalize!
The perils of overfitting

• N-grams only work well for word prediction if the test corpus looks like the training corpus
 • In real life, it often doesn’t
 • We need to train robust models that generalize!
• One kind of generalization: Zeros!
 • Things that don’t ever occur in the training set
 • But occur in the test set
Zeros

In training set, we see
... denied the allegations
... denied the reports
... denied the claims
... denied the request

But in test set,
... denied the offer
... denied the loan

$P(\text{“offer”} \mid \text{denied the}) = 0$
Zero probability bigrams

• Bigrams with zero probability
 • mean that we will assign 0 probability to the test set!
• And hence we cannot compute perplexity (can’t divide by 0)!
Today’s Outline

• Probabilistic language model and n-grams
• Estimating n-gram probabilities
• Language model evaluation and perplexity
• Generalization and zeros
• Smoothing: add-one
• Interpolation, backoff, and web-scale LMs
• Smoothing: Kneser-Ney Smoothing
The intuition of smoothing (from Dan Klein)

• When we have sparse statistics:
 \[P(w \mid \text{denied the}) \]
 3 allegations
 2 reports
 1 claims
 1 request
 7 total

• Steal probability mass to generalize better
 \[P(w \mid \text{denied the}) \]
 2.5 allegations
 1.5 reports
 0.5 claims
 0.5 request
 2 other
 7 total
Add-one estimation

• Also called Laplace smoothing
• Pretend we saw each word one more time than we did
• Just add one to all the counts! *(Instead of taking away counts)*

• MLE estimate:

\[
P_{MLE}(w_i | w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}
\]

• Add-1 estimate:

\[
P_{Add-1}(w_i | w_{i-1}) = \frac{c(w_{i-1}, w_i) + 1}{c(w_{i-1}) + V}
\]

\(V\) is the size of vocabulary
Add-one estimation

• Also called Laplace smoothing
• Pretend we saw each word one more time than we did
• Just add one to all the counts! (*Instead of taking away counts*)

• MLE estimate:

\[
P_{MLE}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}
\]

• Add-1 estimate:

\[
P_{Add-1}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + 1}{c(w_{i-1}) + V}
\]

*Why add V?
<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>6</td>
<td>828</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>want</td>
<td>3</td>
<td>1</td>
<td>609</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>to</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>687</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>212</td>
</tr>
<tr>
<td>eat</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>17</td>
<td>3</td>
<td>43</td>
<td>1</td>
</tr>
<tr>
<td>chinese</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>83</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>food</td>
<td>16</td>
<td>1</td>
<td>16</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>lunch</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>spend</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Laplace-smoothed bigrams

\[P^*(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n) + 1}{C(w_{n-1}) + V} \]

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>0.0015</td>
<td>0.21</td>
<td>0.00025</td>
<td>0.0025</td>
<td>0.00025</td>
<td>0.00025</td>
<td>0.00025</td>
<td>0.00075</td>
</tr>
<tr>
<td>want</td>
<td>0.0013</td>
<td>0.00042</td>
<td>0.26</td>
<td>0.00084</td>
<td>0.0029</td>
<td>0.0029</td>
<td>0.0025</td>
<td>0.00084</td>
</tr>
<tr>
<td>to</td>
<td>0.00078</td>
<td>0.00026</td>
<td>0.0013</td>
<td>0.18</td>
<td>0.00078</td>
<td>0.00026</td>
<td>0.0018</td>
<td>0.055</td>
</tr>
<tr>
<td>eat</td>
<td>0.00046</td>
<td>0.00046</td>
<td>0.0014</td>
<td>0.00046</td>
<td>0.0078</td>
<td>0.0014</td>
<td>0.02</td>
<td>0.00046</td>
</tr>
<tr>
<td>chinese</td>
<td>0.0012</td>
<td>0.00062</td>
<td>0.00062</td>
<td>0.00062</td>
<td>0.00062</td>
<td>0.052</td>
<td>0.0012</td>
<td>0.00062</td>
</tr>
<tr>
<td>food</td>
<td>0.0063</td>
<td>0.00039</td>
<td>0.0063</td>
<td>0.00039</td>
<td>0.00079</td>
<td>0.002</td>
<td>0.00039</td>
<td>0.00039</td>
</tr>
<tr>
<td>lunch</td>
<td>0.0017</td>
<td>0.00056</td>
<td>0.00056</td>
<td>0.00056</td>
<td>0.00056</td>
<td>0.0011</td>
<td>0.00056</td>
<td>0.00056</td>
</tr>
<tr>
<td>spend</td>
<td>0.0012</td>
<td>0.00058</td>
<td>0.0012</td>
<td>0.00058</td>
<td>0.00058</td>
<td>0.00058</td>
<td>0.00058</td>
<td>0.00058</td>
</tr>
</tbody>
</table>
Add-1 estimation is a blunt instrument

• So add-1 isn’t used for N-grams:
 • We’ll see better methods
 • (nowadays, neural LM becomes popular, will discuss later)
• But add-1 is used to smooth other NLP models
 • For text classification (coming soon!)
 • In domains where the number of zeros isn’t so huge.
• Add-1 can be extended to add-\(k\) (\(k\) can be any positive real number)
Today’s Outline

• Probabilistic language model and n-grams
• Estimating n-gram probabilities
• Language model evaluation and perplexity
• Generalization and zeros
• Smoothing: add-one
• Interpolation, backoff, and web-scale LMs
• Smoothing: Kneser-Ney Smoothing
Backoff and Interpolation

• Sometimes it helps to use less context
 • Condition on less context for contexts you haven’t learned much about
• Backoff:
 • use trigram if you have good evidence
 • otherwise bigram
 • otherwise unigram
• Interpolation:
 • mix unigram, bigram, trigram

• In general, interpolation works better
Linear Interpolation

• Simple interpolation

\[
\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1}) + \lambda_2 P(w_n|w_{n-1}) + \lambda_3 P(w_n)
\]

\[\sum_{i} \lambda_i = 1\]
How to set the lambdas?

• Use a **held-out** corpus

| Training Data | Held-Out Data | Test Data |

• Choose λs to maximize the probability of held-out data:
 • Fix the N-gram probabilities (on the training data)
 • Then search for λs that give largest probability to held-out set:

\[
\log P(w_1...w_n \mid M(\lambda_1...\lambda_k)) = \sum_i \log P_M(\lambda_1...\lambda_k)(w_i \mid w_{i-1})
\]
A Common Method – Grid Search

• Take a list of possible values, e.g. [0.1, 0.2, ..., 0.9]
• Try all combinations
Linear Interpolation

- Simple interpolation
 \[
 \hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1}) + \lambda_2 P(w_n|w_{n-1}) + \lambda_3 P(w_n)
 \]
 \[
 \sum_i \lambda_i = 1
 \]

- Lambdas conditional on context:
 \[
 \hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1 (w_{n-2}^{n-1}) P(w_n|w_{n-2}w_{n-1}) + \lambda_2 (w_{n-2}^{n-1}) P(w_n|w_{n-1}) + \lambda_3 (w_{n-2}^{n-1}) P(w_n)
 \]
Linear Interpolation

• Simple interpolation

\[
P_{\text{simp}}(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1}) + \lambda_2 P(w_n|w_{n-1}) + \lambda_3 P(w_n)
\]

\[
\sum_i \lambda_i = 1
\]

• Lambdas conditional on context:

\[
P_{\text{cond}}(w_n|w_{n-2}w_{n-1}) = \lambda_1 (w^n_{n-1}) P(w_n|w_{n-2}w_{n-1}) + \lambda_2 (w^n_{n-2}) P(w_n|w_{n-1}) + \lambda_3 (w^n_{n-2}) P(w_n)
\]

How to estimate?
Unknown words: Open versus closed vocabulary tasks

• If we know all the words in advanced
 • Vocabulary V is fixed
 • Closed vocabulary task

• Often we don’t know this
 • **Out Of Vocabulary** = OOV words
 • Open vocabulary task
Unknown words: Open versus closed vocabulary tasks

• If we know all the words in advanced
 • Vocabulary V is fixed
 • Closed vocabulary task

• Often we don’t know this
 • Out Of Vocabulary = OOV words
 • Open vocabulary task

• Instead: create an unknown word token <UNK>
 • Training of <UNK> probabilities
 • Create a fixed lexicon L of size V (e.g. selecting high frequency words)
 • At text normalization phase, any training word not in L changed to <UNK>
 • Now we train its probabilities like a normal word
 • At test time
 • If text input: Use UNK probabilities for any word not in training
Smoothing for Web-scale N-grams

• “Stupid backoff” (Brants et al. 2007)
• No discounting, just use relative frequencies

\[
S(w_i | w_{i-k+1}) = \begin{cases}
\frac{\text{count}(w_{i-k+1})}{\text{count}(w_{i-k+1})} & \text{if } \text{count}(w_{i-k+1}) > 0 \\
0.4S(w_i | w_{i-k+2}) & \text{otherwise}
\end{cases}
\]

\[
S(w_i) = \frac{\text{count}(w_i)}{N} \quad \text{Until unigram probability}
\]
Today’s Outline

• Probabilistic language model and n-grams
• Estimating n-gram probabilities
• Language model evaluation and perplexity
• Generalization and zeros
• Smoothing: add-one
• Interpolation, backoff, and web-scale LMs
• Smoothing: Kneser-Ney Smoothing
Absolute discounting: just subtract a little from each count

• Suppose we wanted to subtract a little from a count of 4 to save probability mass for the zeros

• How much to subtract?

• Church and Gale (1991)’s clever idea

• Divide up 22 million words of AP Newswire
 • Training and held-out set
 • for each bigram in the training set
 • see the actual count in the held-out set!

<table>
<thead>
<tr>
<th>Bigram count in training</th>
<th>Bigram count in heldout set</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.0000270</td>
</tr>
<tr>
<td>1</td>
<td>0.448</td>
</tr>
<tr>
<td>2</td>
<td>1.25</td>
</tr>
<tr>
<td>3</td>
<td>2.24</td>
</tr>
<tr>
<td>4</td>
<td>3.23</td>
</tr>
<tr>
<td>5</td>
<td>4.21</td>
</tr>
<tr>
<td>6</td>
<td>5.23</td>
</tr>
<tr>
<td>7</td>
<td>6.21</td>
</tr>
<tr>
<td>8</td>
<td>7.21</td>
</tr>
<tr>
<td>9</td>
<td>8.26</td>
</tr>
</tbody>
</table>

• It sure looks like $c^* = (c - .75)$
Absolute Discounting Interpolation

• Save ourselves some time and just subtract 0.75 (or some d)!

\[
P_{\text{AbsoluteDiscounting}}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) - d}{c(w_{i-1})} + \lambda(w_{i-1})P(w_i)
\]

• But should we really just use the regular unigram \(P(w)\)?
Better estimate for probabilities of lower-order unigrams!

• Shannon game: *I can’t see without my reading_________*?
 • “Francisco” is more common than “glasses”
 • ... but “Francisco” always follows “San”

The unigram is useful exactly when we haven’t seen this bigram!

Instead of \(P(w) \): “How likely is \(w \)”

\(P_{\text{continuation}}(w) \): “How likely is \(w \) to appear as a \textbf{novel} continuation?

• For each word, count the number of \textbf{unique} bigrams it completes
• Every unique bigram was a novel continuation the first time it was seen

\[
P_{\text{CONTINUATION}}(w) \propto \left| \{w_{i-1} : c(w_{i-1}, w) > 0\} \right| \quad \text{Unique bigrams \(w \) is in}
\]
Kneser-Ney Smoothing II

• How many times does w appear as a novel continuation (unique bigrams):

$$P_{\text{CONTINUATION}}(w) \propto \left| \{ w_{i-1} : c(w_{i-1}, w) > 0 \} \right|$$

• Normalized by the total number of word bigram types

$$P_{\text{CONTINUATION}}(w) = \frac{ \left| \{ w_{i-1} : c(w_{i-1}, w) > 0 \} \right|}{ \left| \{ (w_{j-1}, w_j) : c(w_{j-1}, w_j) > 0 \} \right|}$$

All unique bigrams in the corpus
Kneser-Ney Smoothing III

• Alternative metaphor: The number of # of unique words seen to precede \(w \)

\[
| \{ w_{i-1} : c(w_{i-1}, w) > 0 \} |
\]

• normalized by the # of words preceding all words:

\[
P_{\text{continuation}}(w) = \frac{| \{ w_{i-1} : c(w_{i-1}, w) > 0 \} |}{\sum_{w'} | \{ w'_{i-1} : c(w'_{i-1}, w') > 0 \} |}
\]

• A frequent word (Francisco) occurring in only one context (San) will have a low continuation probability
Kneser-Ney Smoothing IV

\[P_{KN}(w_i | w_{i-1}) = \frac{\max(c(w_{i-1}, w_i) - d, 0)}{c(w_{i-1})} + \lambda(w_{i-1})P_{CONTINUATION}(w_i) \]

\[\lambda \text{ is a normalizing constant; the probability mass we've discounted} \]

\[\lambda(w_{i-1}) = \frac{d}{c(w_{i-1})} \left| \{ w : c(w_{i-1}, w) > 0 \} \right| \]

The number of word types that can follow \(w_{i-1} \)

= # of word types we discounted

= # of times we applied normalized discount
Language Modeling

• Probabilistic language model and n-grams
• Estimating n-gram probabilities
• Language model evaluation and perplexity
• Generalization and zeros
• Smoothing: add-one
• Interpolation, backoff, and web-scale LMs
• Smoothing: Kneser-Ney Smoothing
Homework

• Reading J&M ch1 and ch4.1-4.9
• Start thinking about course project and find a team
• Project proposal due Feb 6th
• The format of the proposal will be posted on Piazza