CS 6120/CS 4120: Natural Language Processing

Instructor: Prof. Lu Wang
College of Computer and Information Science
Northeastern University
Webpage: www.ccs.neu.edu/home/luwang
Outline

• Word Senses and Word Relations
• Word Similarity
• Word Sense Disambiguation
Terminology: lemma and wordform

- A **lemma** or **citation form**
 - Same stem, part of speech, rough semantics

- A **wordform**
 - The inflected word as it appears in text

<table>
<thead>
<tr>
<th>Wordform</th>
<th>Lemma</th>
</tr>
</thead>
<tbody>
<tr>
<td>banks</td>
<td>bank</td>
</tr>
<tr>
<td>sung</td>
<td>sing</td>
</tr>
<tr>
<td>duermes</td>
<td>dormir</td>
</tr>
</tbody>
</table>
Lemmas have senses

• One lemma “bank” can have many meanings:

 Sense 1: • ...a \textit{bank}_1 can hold the investments in a custodial account...
 • “...as agriculture burgeons on the east \textit{bank}_2 the river will shrink even more”

 Sense 2:

• **Sense (or word sense)**
 • A discrete representation of an aspect of a word’s meaning.

• The lemma \textit{bank} here has two senses
Homonymy

Homonyms: words that share a form (spell or sound alike) but have unrelated, distinct meanings:

- bank_1: financial institution, bank_2: sloping land
- bat_1: club for hitting a ball, bat_2: nocturnal flying mammal

1. Homographs (bank/bank, bat/bat)

2. Homophones:
 1. Write and right
 2. Piece and peace
Homonymy causes problems for NLP applications

• Information retrieval
 • “bat care”

• Machine Translation
 • bat: murciélago (animal) or bate (for baseball)

• Text-to-Speech
 • bass (stringed instrument) vs. bass (fish)
• 1. The **bank** was constructed in 1875 out of local red brick.
• 2. I withdrew the money from the **bank**
Polysemy

• 1. The bank was constructed in 1875 out of local red brick.
• 2. I withdrew the money from the bank

Are those the same sense?
 • Sense 1: “The building belonging to a financial institution”
 • Sense 2: “A financial institution”

A polysemous word has related meanings
 • Most non-rare words have multiple meanings
Metonymy or Systematic Polysemy: A systematic relationship between senses

- Lots of types of polysemy are systematic
 - School, university, hospital
 - All can mean the institution or the building.
- A systematic relationship:
 - Building ↔ Organization
- Other such kinds of systematic polysemy:
 - **Author** *(Jane Austen wrote Emma)*
 - ↔ **Works of Author** *(I love Jane Austen)*
 - **Tree** *(Plums have beautiful blossoms)*
 - ↔ **Fruit** *(I ate a preserved plum)*
How do we know when a word has more than one sense?

• The “zeugma” test: Two senses of *serve*?
 • Which flights *serve* breakfast?
 • Does Lufthansa *serve* Philadelphia?
 • Does Lufthansa serve breakfast and San Jose?

• Since this conjunction sounds weird,
 • we say that these are **two different senses of “serve”**
Synonyms

• Words that have the same meaning in some or all contexts.
 • filbert / hazelnut
 • couch / sofa
 • big / large
 • automobile / car
 • vomit / throw up
 • Water / H₂O

• Two words are synonyms if they can be substituted for each other in all situations (strict/perfect definition).
Synonyms

• But there are few (or no) examples of perfect synonymy.
 • Even if many aspects of meaning are identical
 • Still may not preserve the acceptability based on notions of politeness, slang, register, genre, etc.

• Example:
 • Water/H$_2$O
 • Big/large
 • Brave/courageous
Synonymy is a relation between senses rather than words

• Consider the words *big* and *large*

• Are they synonyms?
 • How *big* is that plane?
 • Would I be flying on a *large* or small plane?

• How about here:
 • Miss Nelson became a kind of *big* sister to Benjamin.
 • Miss Nelson became a kind of *large* sister to Benjamin.

• Why?
 • *big* has a sense that means being older, or grown up
 • *large* lacks this sense
Antonyms

• Senses that are opposites with respect to one feature of meaning
• Otherwise, they are very similar!
 - dark/light short/long fast/slow rise/fall
 - hot/cold up/down in/out

• More formally: antonyms can
 • define a binary opposition or be at opposite ends of a scale
 • long/short, fast/slow
 • Be **reversives**:
 • rise/fall, up/down
Hyponymy and Hypernymy

- One sense is a **hyponym** of another if the first sense is more specific, denoting a subclass of the other
 - *car* is a hyponym of *vehicle*
 - *mango* is a hyponym of *fruit*
- Conversely **hypernym/superordinate** ("hyper is super")
 - *vehicle* is a hypernym of *car*
 - *fruit* is a hypernym of *mango*

<table>
<thead>
<tr>
<th>Superordinate/hypernym</th>
<th>vehicle</th>
<th>fruit</th>
<th>furniture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subordinate/hyponym</td>
<td>car</td>
<td>mango</td>
<td>chair</td>
</tr>
</tbody>
</table>
Hyponymy more formally

• Extensional:
 • The class denoted by the superordinate extensionally includes the class denoted by the hyponym

• Entailment:
 • A sense A is a hyponym of sense B if *being an A* entails *being a B*

• Hyponymy is usually transitive
 • (A hypo B and B hypo C entails A hypo C)

• Another name: the **IS-A hierarchy**
 • A IS-A B (or A ISA B)
 • B subsumes A

<table>
<thead>
<tr>
<th>Superordinate/hypernym</th>
<th>vehicle</th>
<th>fruit</th>
<th>furniture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subordinate/hyponym</td>
<td>car</td>
<td>mango</td>
<td>chair</td>
</tr>
</tbody>
</table>
Hyponymy more formally

• Extensional:
 • The class denoted by the superordinate extensionally includes the class denoted by the hyponym

• Entailment:
 • A sense A is a hyponym of sense B if *being an A* entails *being a B*

• Hyponymy is usually transitive
 • (A hypo B and B hypo C entails A hypo C)

• Another name: the **IS-A hierarchy**
 • A IS-A B (or A ISA B)
 • B **subsumes** A

<table>
<thead>
<tr>
<th>Superordinate/hypernym</th>
<th>Subordinate/hyponym</th>
</tr>
</thead>
<tbody>
<tr>
<td>vehicle</td>
<td>car</td>
</tr>
<tr>
<td>fruit</td>
<td>mango</td>
</tr>
<tr>
<td>furniture</td>
<td>chair</td>
</tr>
</tbody>
</table>
Hyponyms and Instances

• WordNet (introduced later) has both classes and instances.

• An instance is an individual, a proper noun that is a unique entity
 • San Francisco is an instance of city

• But city is a class
 • city is a hyponym of municipality...location...
Meronymy

• The part-whole relation
 • A leg is part of a chair; a wheel is part of a car.

• Wheel is a meronym of car, and car is a holonym of wheel.
WordNet 3.0

- A hierarchically organized lexical database
- On-line thesaurus + aspects of a dictionary

<table>
<thead>
<tr>
<th>Category</th>
<th>Unique Strings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noun</td>
<td>117,798</td>
</tr>
<tr>
<td>Verb</td>
<td>11,529</td>
</tr>
<tr>
<td>Adjective</td>
<td>22,479</td>
</tr>
<tr>
<td>Adverb</td>
<td>4,481</td>
</tr>
</tbody>
</table>
EuroWordNet

- WordNets for
 - Dutch
 - Italian
 - Spanish
 - German
 - French
 - Czech
 - Estonian
Senses of “bass” in Wordnet

Noun

- **S: (n) bass** (the lowest part of the musical range)
- **S: (n) bass, bass part** (the lowest part in polyphonic music)
- **S: (n) bass, basso** (an adult male singer with the lowest voice)
- **S: (n) sea bass, bass** (the lean flesh of a saltwater fish of the family Serranidae)
- **S: (n) freshwater bass, bass** (any of various North American freshwater fish with lean flesh (especially of the genus Micropterus))
- **S: (n) bass, bass voice, basso** (the lowest adult male singing voice)
- **S: (n) bass** (the member with the lowest range of a family of musical instruments)
- **S: (n) bass** (nontechnical name for any of numerous edible marine and freshwater spiny–finned fishes)

Adjective

- **S: (adj) bass, deep** (having or denoting a low vocal or instrumental range) “a deep voice”; "a bass voice is lower than a baritone voice"; "a bass clarinet"
How is “sense” defined in WordNet?

• **The synset (synonym set)**, the set of near-synonyms, instantiates a sense or concept, with a **gloss**

• Example: **chump** as a noun with the **gloss**:
 “a person who is gullible and easy to take advantage of”

• This sense of “chump” is shared by 9 words:
 chump\(^1\), fool\(^2\), gull\(^1\), mark\(^9\), patsy\(^1\), fall guy\(^1\),
 sucker\(^1\), soft touch\(^1\), mug\(^2\)

• Each of these senses have this same gloss
 • (Not **every** sense; sense 2 of gull is the aquatic bird)
WordNet Hypernym Hierarchy for “bass”

- \textbf{S: (n) bass}, \textit{basso} (an adult male singer with the lowest voice)
 - \textit{direct hypernym} / \textit{inherited hypernym} / \textit{sister term}
 - \textbf{S: (n) singer}, vocalister, vocaliser (a person who sings)
 - \textbf{S: (n) musician}, instrumentalist, player (someone who plays a musical instrument (as a profession))
 - \textbf{S: (n) performer}, performing artist (an entertainer who performs a dramatic or musical work for an audience)
 - \textbf{S: (n) entertainer} (a person who tries to please or amuse)
 - \textbf{S: (n) person}, individual, someone, somebody, mortal, soul (a human being) "there was too much for one person to do"
 - \textbf{S: (n) organism}, being (a living thing that has (or can develop) the ability to act or function independently)
 - \textbf{S: (n) living thing}, animate thing (a living (or once living) entity)
 - \textbf{S: (n) whole}, unit (an assemblage of parts that is regarded as a single entity) "how big is that part compared to the whole?"; "the team is a unit"
 - \textbf{S: (n) object}, physical object (a tangible and visible entity; an entity that can cast a shadow) "it was full of rackets, balls and other objects"
 - \textbf{S: (n) physical entity} (an entity that has physical existence)
 - \textbf{S: (n) entity} (that which is perceived or known or inferred to have its own distinct existence (living or nonliving))
WordNet Noun Relations

<table>
<thead>
<tr>
<th>Relation</th>
<th>Also Called</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypernym</td>
<td>Superordinate</td>
<td>From concepts to superordinates</td>
<td>breakfast⁴ → meal¹</td>
</tr>
<tr>
<td>Hyponym</td>
<td>Subordinate</td>
<td>From concepts to subtypes</td>
<td>meal¹ → lunch¹</td>
</tr>
<tr>
<td>Instance Hypernym</td>
<td>Instance</td>
<td>From instances to their concepts</td>
<td>Austen¹ → author¹</td>
</tr>
<tr>
<td>Instance Hyponym</td>
<td>Has-Instance</td>
<td>From concepts to concept instances</td>
<td>composer¹ → Bach¹</td>
</tr>
<tr>
<td>Member Meronym</td>
<td>Has-Member</td>
<td>From groups to their members</td>
<td>faculty² → professor¹</td>
</tr>
<tr>
<td>Member Holonym</td>
<td>Member-Of</td>
<td>From members to their groups</td>
<td>copilot¹ → crew¹</td>
</tr>
<tr>
<td>Part Meronym</td>
<td>Has-Part</td>
<td>From wholes to parts</td>
<td>table² → leg³</td>
</tr>
<tr>
<td>Part Holonym</td>
<td>Part-Of</td>
<td>From parts to wholes</td>
<td>course⁷ → meal¹</td>
</tr>
<tr>
<td>Substance Meronym</td>
<td></td>
<td>From substances to their subparts</td>
<td>water¹ → oxygen¹</td>
</tr>
<tr>
<td>Substance Holonym</td>
<td></td>
<td>From parts of substances to wholes</td>
<td>gin¹ → martini¹</td>
</tr>
<tr>
<td>Antonym</td>
<td></td>
<td>Semantic opposition between lemmas</td>
<td>leader¹ ↔ follower¹</td>
</tr>
<tr>
<td>Derivationally</td>
<td></td>
<td>Lemmas w/same morphological root</td>
<td>destruction¹ ↔ destroy¹</td>
</tr>
<tr>
<td>Related Form</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WordNet Verb Relations

<table>
<thead>
<tr>
<th>Relation</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypernym</td>
<td>From events to superordinate events</td>
<td>fly<sup>9</sup> → travel<sup>5</sup></td>
</tr>
<tr>
<td>Troponym</td>
<td>From events to subordinate event</td>
<td>walk<sup>1</sup> → stroll<sup>1</sup></td>
</tr>
<tr>
<td></td>
<td>(often via specific manner)</td>
<td></td>
</tr>
<tr>
<td>Entails</td>
<td>From verbs (events) to the verbs (events) they entail</td>
<td>snore<sup>1</sup> → sleep<sup>1</sup></td>
</tr>
<tr>
<td>Antonym</td>
<td>Semantic opposition between lemmas</td>
<td>increase<sup>1</sup> ↔ decrease<sup>1</sup></td>
</tr>
<tr>
<td>Derivationally</td>
<td>Lemmas with same morphological root</td>
<td>destroy<sup>1</sup> ↔ destruction<sup>1</sup></td>
</tr>
<tr>
<td>Related Form</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WordNet: Viewed as a graph

We note that each word sense univocally identifies a single synset. For instance, given the corresponding synset \{car_1_n, auto_1_n, automobile_1_n, machine_4_n, motorcar_1_n\} is univocally determined. In Figure 3 we report an excerpt of the WordNet semantic network containing the \textit{car} _1_n synset. For each synset, WordNet provides the following information:

- A gloss, that is, a textual definition of the synset possibly with a set of usage examples (e.g., the gloss of \textit{car} _1_n is “a 4-wheeled motor vehicle; usually propelled by an internal combustion engine; ‘he needs a car to get to work’”).

Among the lexical relations we have the following:

- Antonymy: \(X\) is an antonym of \(Y\) if it expresses the opposite concept (e.g., good_1_a is the antonym of bad_1_a). Antonymy holds for all parts of speech.

- Pertainymy: \(X\) is an adjective which can be defined as “of or pertaining to” a noun or, rarely, another adjective (e.g., dental_1_a pertains to tooth_1_n).

- Nominalization: a noun \(X\) nominalizes a verb \(Y\) (e.g., service_2_n nominalizes the verb serve_4_v).

Among the semantic relations we have the following:

- Hypernymy (also called kind-of or is-a): \(Y\) is a hypernym of \(X\) if every \(X\) is a (kind of) \(Y\) (e.g., motor vehicle_1_n is a hypernym of car_1_n). Hypernymy holds between pairs of nominal or verbal synsets.

WordNet 3.0

• Where it is:
 • http://wordnetweb.princeton.edu/perl/webwn

• Libraries
 • Python: WordNet from NLTK
 • http://www.nltk.org/Home
 • Java:
 • JWNL, extJWNL on sourceforge
Outline

• Word Senses and Word Relations
• Word Similarity
• Word Sense Disambiguation
Why word similarity

• A practical component in lots of NLP tasks
 • Question answering
 • Natural language generation
 • Automatic essay grading
 • Plagiarism detection

• A theoretical component in many linguistic and cognitive tasks
 • Historical semantics
 • Models of human word learning
 • Morphology and grammar induction
Word Similarity

• **Synonymy**: a binary relation
 • Two words are either synonymous or not

• **Similarity** (or **distance**): a looser metric (more useful in practice!)
 • Two words are more similar if they share more features of meaning

• Similarity is properly a relation between **senses**
 • Bank\(^1\) is similar to fund\(^3\)
 • Bank\(^2\) is similar to slope\(^5\)

• But we’ll compute similarity over both words and senses
WordNet: Viewed as a graph

We note that each word sense univocally identifies a single synset. For instance, given car the corresponding synset \{car, auto, automobile, machine, motorcar\} is univocally determined. In Figure 3 we report an excerpt of the WordNet semantic network containing the car synset. For each synset, WordNet provides the following information:

- A gloss, that is, a textual definition of the synset possibly with a set of usage examples (e.g., the gloss of car is "a 4-wheeled motor vehicle; usually propelled by an internal combustion engine; 'he needs a car to get to work' ").

- Lexical and semantic relations, which connect pairs of word senses and synsets, respectively: while semantic relations apply to synsets in their entirety (i.e., to all members of a synset), lexical relations connect word senses included in the respective synsets. Among the latter we have the following:
 - Antonymy: X is an antonym of Y if it expresses the opposite concept (e.g., good is the antonym of bad). Antonymy holds for all parts of speech.
 - Pertainymy: X is an adjective which can be defined as "of or pertaining to" a noun (or, rarely, another adjective) (e.g., dental pertains to tooth).
 - Nominalization: a noun X nominalizes a verb Y (e.g., service nominalizes the verb serve).

Among the semantic relations we have the following:

- Hypernymy (also called kind-of or is-a): Y is a hypernym of X if every X is a (kind of) Y (e.g., motor vehicle is a hypernym of car).

Two classes of similarity algorithms

• Thesaurus-based algorithms
 • Are words “nearby” in hypernym hierarchy?
 • Do words have similar glosses (definitions)?

• Distributional algorithms
 • Do words have similar distributional contexts?
Path-based similarity

- Two concepts (senses/synsets) are similar if they are near each other in the thesaurus hierarchy
 - have a short path between them
 - concepts have path 1 to themselves
Refinements to path-based similarity

- \(\text{pathlen}(c_1, c_2) = 1 + \text{number of edges in the shortest path in the hypernym graph between sense nodes } c_1 \text{ and } c_2 \)
- ranges from 0 to 1 (identity)

- \(\text{simpath}(c_1, c_2) = \frac{1}{\text{pathlen}(c_1, c_2)} \)

- \(\text{wordsim}(w_1, w_2) = \max_{c_1 \in \text{senses}(w_1), c_2 \in \text{senses}(w_2)} \text{sim}(c_1, c_2) \)
Example: path-based similarity
\[\text{simpath}(c_1, c_2) = \frac{1}{\text{pathlen}(c_1, c_2)} \]

\[\text{simpath}(\text{nickel}, \text{coin}) = \frac{1}{2} = 0.5 \]
\[\text{simpath}(\text{fund}, \text{budget}) = \frac{1}{2} = 0.5 \]
\[\text{simpath}(\text{nickel}, \text{currency}) = \frac{1}{4} = 0.25 \]
\[\text{simpath}(\text{nickel}, \text{money}) = \frac{1}{6} = 0.17 \]
\[\text{simpath}(\text{nickel}, \text{standard}) = \frac{1}{6} = 0.17 \]
Problem with basic path-based similarity

• Assumes each link represents a uniform distance
 • But *nickel* to *money* seems to us to be closer than *nickel* to *standard*
 • Nodes high in the hierarchy are very abstract

• We instead want a metric that
 • Represents the cost of each edge independently
 • Words connected only through abstract nodes
 • are less similar
Information content similarity metrics

Let’s define $P(c)$ as:

- The probability that a randomly selected word in a corpus is an instance of concept c
- Formally: there is a distinct random variable, ranging over words, associated with each concept in the hierarchy
 - for a given concept, each observed noun is either
 - a member of that concept with probability $P(c)$
 - not a member of that concept with probability $1 - P(c)$
- All words are members of the root node (Entity)
 - $P(\text{root}) = 1$ (in practice, it may not be 1)
- The lower a node in hierarchy, the lower its probability

Resnik 1995
Information content similarity

• Train by counting in a corpus
 • Each instance of hill counts toward frequency of natural elevation, geological formation, entity, etc
 • Let words(c) be the set of all words/phrases that are children of node c
 • words(“geo-formation”) = {hill, ridge, grotto, coast, cave, shore, natural elevation}
 • words(“natural elevation”) = {hill, ridge}

\[
P(c) = \frac{\sum \text{count}(w)}{N}
\]
Information content similarity

• WordNet hierarchy augmented with probabilities $P(c)$

entity 0.395

inanimate-object 0.167

natural-object 0.0163

geological-formation 0.00176

0.000113 natural-elevation shore 0.0000836

0.0000189 hill coast 0.0000216
Information content: definitions

• Information content:
 \[IC(c) = -\log P(c) \]

• Most informative subsumer (Lowest common subsumer)
 \[LCS(c_1, c_2) = \]
 The most informative (lowest) node in the hierarchy subsuming both \(c_1 \) and \(c_2 \)
Using information content for similarity: the Resnik method

• The similarity between two words is related to their common information
• The more two words have in common, the more similar they are
• Resnik: measure common information as:
 - The information content of the most informative (lowest) subsumer (MIS/LCS) of the two nodes
• \(\text{sim}_{\text{resnik}}(c_1, c_2) = -\log P(\text{LCS}(c_1, c_2)) \)
Dekang Lin method

Dekang Lin. 1998. An Information-Theoretic Definition of Similarity. ICML

• Intuition: Similarity between A and B is not just what they have in common
• The more **differences** between A and B, the less similar they are:
 • Commonality: the more A and B have in common, the more similar they are
 • Difference: the more differences between A and B, the less similar
Dekang Lin similarity theorem

• The similarity between A and B is measured by the ratio between the amount of information needed to state the commonality of A and B and the information needed to fully describe what A and B are

\[
sim_{Lin}(A, B) \propto \frac{IC(\text{common}(A, B))}{IC(\text{description}(A, B))}
\]

• Lin (altering Resnik) defines IC(common(A,B)) as 2 x information of the LCS

\[
sim_{Lin}(c_1, c_2) = \frac{2 \log P(\text{LCS}(c_1, c_2))}{\log P(c_1) + \log P(c_2)}
\]
Lin similarity function

\[sim_{Lin}(A, B) = \frac{2 \log P(LCS(c_1, c_2))}{\log P(c_1) + \log P(c_2)} \]

\[sim_{Lin}(\text{hill, coast}) = \frac{2 \log P(\text{geological-formation})}{\log P(\text{hill}) + \log P(\text{coast})} \]

\[= \frac{2 \ln 0.00176}{\ln 0.0000189 + \ln 0.0000216} \]

\[= .59 \]
Libraries for computing thesaurus-based similarity

• NLTK

• WordNet::Similarity
 • http://wn-similarity.sourceforge.net/
 • Web-based interface:
 • http://marimba.d.umn.edu/cgi-bin/similarity/similarity.cgi
Evaluating similarity

• Extrinsic (task-based, end-to-end) Evaluation:
 • Question answering
 • Spell checking
 • Essay grading
 • Word sense disambiguation

• Intrinsic Evaluation:
 • Correlation between algorithm and human word similarity ratings
 • Wordsim353: 353 noun pairs rated 0-10. \(sim(\text{plane,car})=5.77 \)
 • Taking multiple-choice vocabulary tests
 • \texttt{Levied} is closest in meaning to:
 \texttt{imposed, believed, requested, correlated}
Outline

- Word Senses and Word Relations
- Word Similarity
- Word Sense Disambiguation
Lexical Ambiguity

• Most words in natural languages have multiple possible meanings.
 • “pen” (noun)
 • The dog is in the pen.
 • The ink is in the pen.
 • “take” (verb)
 • Take one pill every morning.
 • Take the first right past the stoplight.
Lexical Ambiguity

• Most words in natural languages have multiple possible meanings.
 • “pen” (noun)
 • The dog is in the pen.
 • The ink is in the pen.
 • “take” (verb)
 • Take one pill every morning.
 • Take the first right past the stoplight.

• Syntax helps distinguish meanings for different parts of speech of an ambiguous word.
 • “conduct” (noun or verb)
 • John’s conduct in class is unacceptable.
 • John will conduct the orchestra on Thursday.
Motivation for Word Sense Disambiguation (WSD)

• Many tasks in natural language processing require disambiguation of ambiguous words.
 • Question Answering
 • Information Retrieval
 • Machine Translation
 • Text Mining
 • Phone Help Systems
Senses Based on Needs of Translation

• Only distinguish senses that are translated to different words in some other language.
 • play: tocar vs. jugar
 • know: conocer vs. saber
 • be: ser vs. estar
 • leave: salir vs dejar
 • take: llevar vs. tomar vs. sacar

• May still require overly fine-grained senses
 • river in French is either:
 • fleuve: flows into the ocean
 • rivièrè: does not flow into the ocean
Word Sense Disambiguation (WSD)

• Given
 • A word in context (*The dog is in the pen*)
 • A fixed inventory of potential word senses (*pen*$_1$, *pen*$_2$)
 • Decide which sense of the word this is

• What set of senses?
 • In general: the senses in a thesaurus like WordNet
 • English-to-Spanish MT: set of Spanish translations
 • Speech Synthesis: homographs like *bass* and *bow*
Two variants of WSD task

• Lexical Sample task
 • Small pre-selected set of target words (*line*, *plant*)
 • And inventory of senses for each word
 • Supervised machine learning: train a classifier for each word

• All-words task
 • Every word in an entire text
 • A lexicon with senses for each word
 • Data sparseness: can’t train word-specific classifiers
WSD Methods

- Supervised Machine Learning
- Thesaurus/Dictionary Methods
- Semi-Supervised Learning
Supervised Machine Learning Approaches

• Supervised machine learning approach:
 • a training corpus of words tagged in context with their sense
 • used to train a classifier that can tag words in new text

• Summary of what we need:
 • the tag set ("sense inventory")
 • the training corpus
 • A set of features extracted from the training corpus
 • A classifier
 Supervised WSD 1: WSD Tags

• What’s a tag?
 A dictionary sense?

• For example, for WordNet an instance of “bass” in a text has 8 possible tags or labels (bass1 through bass8, as noun).
8 senses of “bass” in WordNet

1. bass - (the lowest part of the musical range)
2. bass, bass part - (the lowest part in polyphonic music)
3. bass, basso - (an adult male singer with the lowest voice)
4. sea bass, bass - (flesh of lean-fleshed saltwater fish of the family Serranidae)
5. freshwater bass, bass - (any of various North American lean-fleshed freshwater fishes especially of the genus Micropterus)
6. bass, bass voice, basso - (the lowest adult male singing voice)
7. bass - (the member with the lowest range of a family of musical instruments)
8. bass - (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)
Supervised WSD 2: Get a corpus

• Lexical sample task:
 • Line-hard-serve corpus - 4000 examples of each
 • Interest corpus - 2369 sense-tagged examples

• All words:
 • **Semantic concordance**: a corpus in which each open-class word is labeled with a sense from a specific dictionary/thesaurus.
 • SemCor: 234,000 words from Brown Corpus, manually tagged with WordNet senses
 • SENSEVAL-3 competition corpora - 2081 tagged word tokens
Supervised WSD 3: Extract feature vectors
Feature vectors

• A simple representation for each observation
 (each instance of a target word)
 • **Vectors** of sets of feature/value pairs
 • Represented as an ordered list of values
 • These vectors represent, e.g., context---the window of words around the target
Lexical Ambiguity

• Most words in natural languages have multiple possible meanings.
 • “pen” (noun)
 • The dog is in the pen.
 • The ink is in the pen.
 • “take” (verb)
 • Take one pill every morning.
 • Take the first right past the stoplight.
Two kinds of features in the vectors

• Collocational features and bag-of-words features
 • Collocational
 • Features about words at specific positions near target word
 • Often limited to just word identity and POS
 • Bag-of-words
 • Features about words that occur anywhere in the window (regardless of position)
 • Typically limited to frequency counts
Examples

• Example text (WSJ):
 An electric guitar and bass player stand off to one side not really part of the scene

• Assume a window of +/- 2 from the target
Examples

• Example text (WSJ)
 An electric guitar and bass player stand off to one side not really part of the scene,
• Assume a window of +/- 2 from the target
Collocational features

• Position-specific information about the words and collocations in window

\[
[w_{i-2}, \text{POS}_{i-2}, w_{i-1}, \text{POS}_{i-1}, w_{i+1}, \text{POS}_{i+1}, w_{i+2}, \text{POS}_{i+2}, w_{i-2}^{i-1}, w_{i+1}^{i+1}]
\]

[guitar, NN, and, CC, player, NN, stand, VB, and guitar, player stand]

• word 1,2,3 grams in window of ±3 is common
Bag-of-words features

• “an unordered set of words” – position ignored
• Counts of words occur within the window.
• First choose a vocabulary
• Then count how often each of those terms occurs in a given window
 • sometimes just a binary “indicator” 1 or 0
Co-Occurrence Example

• Assume we’ve settled on a possible vocabulary of 12 words in “bass” sentences:

[fishing, big, sound, player, fly, rod, pound, double, runs, playing, guitar, band]

• The vector for:
 guitar and bass player stand
 [0,0,0,1,0,0,0,0,0,1,0]
Syntactic Relations
(Ambiguous Verbs)

• For an ambiguous verb, it is very useful to know its direct object.
 • 1-“played the game”
 • 2-“played the guitar”
 • 3-“played the risky and long-lasting card game”
 • 4-“played the beautiful and expensive guitar”
 • 5-“played the big brass tuba at the football game”
 • 6-“played the game listening to the drums and the tubas”

• May also be useful to know its subject:
 • “The game was played while the band played.”
 • “The game that included a drum and a tuba was played on Friday.”
Syntactic Relations (Ambiguous Nouns)

• For an ambiguous noun, it is useful to know what verb it is an object of:
 • “played the piano and the horn”
 • “wounded by the rhinoceros’ horn”

• May also be useful to know what verb it is the subject of:
 • “the bank near the river loaned him $100”
 • “the bank is eroding and the bank has given the city the money to repair it”
Syntactic Relations
(Ambiguous Adjectives)

• For an ambiguous adjective, it useful to know the noun it is modifying.
 • “a brilliant young man”
 • “a brilliant yellow light”
 • “a wooden writing desk”
 • “a wooden acting performance”
Classification: definition

• Input:
 • a word w and some features f
 • a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$

• Output: a predicted class $c \in C$
Classification Methods: Supervised Machine Learning

• Input:
 • a word w in a text window d (which we’ll call a “document”)
 • a fixed set of classes $C = \{c_1, c_2, \ldots, c_J\}$
 • A training set of m hand-labeled text windows again called “documents” $(d_1, y_1), \ldots, (d_m, y_m)$, y_m is in C

• Output:
 • a learned classifier $\gamma: d \rightarrow c$
Classification Methods: Supervised Machine Learning

• Any kind of classifier
 • Naive Bayes
 • Logistic regression
 • Neural Networks
 • Support-vector machines
 • k-Nearest Neighbors

• …
Applying Naive Bayes to WSD

- $P(c)$ is the prior probability of that sense
 - Counting in a labeled training set.
- $P(w | c)$ conditional probability of a word given a particular sense
 - $P(w | c) = \frac{\text{count}(w,c)}{\text{count}(c)}$
- We get both of these from a tagged corpus like SemCor
Choosing a class:

\[P(f \mid d5) \propto \frac{3}{4} \times \frac{2}{14} \times \frac{1}{14} \approx 0.00003 \]

\[P(g \mid d5) \propto \frac{1}{4} \times \frac{2}{9} \times \frac{2}{9} \times \frac{2}{9} \approx 0.0006 \]

Prior values:

\[P(f) = \frac{3}{4} \]

\[P(g) = \frac{1}{4} \]

Vocabulary set:

\[V = \{ \text{fish, smoked, line, haul, guitar, jazz} \} \]

Conditional Probabilities:

\[P(\text{line} \mid f) = \frac{1+1}{8+6} = \frac{2}{14} \]

\[P(\text{guitar} \mid f) = \frac{0+1}{8+6} = \frac{1}{14} \]

\[P(\text{jazz} \mid f) = \frac{0+1}{8+6} = \frac{1}{14} \]

\[P(\text{line} \mid g) = \frac{1+1}{3+6} = \frac{2}{9} \]

\[P(\text{guitar} \mid g) = \frac{1+1}{3+6} = \frac{2}{9} \]

\[P(\text{jazz} \mid g) = \frac{1+1}{3+6} = \frac{2}{9} \]
WSD Evaluations and baselines

• Best evaluation: **extrinsic (‘end-to-end’, `task-based’) evaluation**
 • Embed WSD algorithm in a task and see if you can do the task better!

• What we often do for convenience: **intrinsic evaluation**
 • Exact match **sense accuracy**
 • % of words tagged identically with the human-manual sense tags
 • Usually evaluate using **held-out data/test data** from same labeled corpus

• Baselines
 • Most frequent sense
 • The Lesk algorithm
Most Frequent Sense

- WordNet senses are ordered in frequency order
- So “most frequent sense” in WordNet = “take the first sense”
- Sense frequencies come from the *SemCor* corpus

<table>
<thead>
<tr>
<th>Freq</th>
<th>Synset</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>338</td>
<td>plant1, works, industrial plant</td>
<td>buildings for carrying on industrial labor</td>
</tr>
<tr>
<td>207</td>
<td>plant2, flora, plant life</td>
<td>a living organism lacking the power of locomotion</td>
</tr>
<tr>
<td>2</td>
<td>plant3</td>
<td>something planted secretly for discovery by another</td>
</tr>
<tr>
<td>0</td>
<td>plant4</td>
<td>an actor situated in the audience whose acting is rehearsed but seems spontaneous to the audience</td>
</tr>
</tbody>
</table>
The Simplified Lesk algorithm

• Let’s disambiguate “bank” in this sentence:
 The bank can guarantee deposits will eventually cover future tuition costs because it invests in adjustable-rate mortgage securities.

• given the following two WordNet senses:

<table>
<thead>
<tr>
<th>bank¹</th>
<th>Gloss: a financial institution that accepts deposits and channels the money into lending activities</th>
<th>Examples: “he cashed a check at the bank”, “that bank holds the mortgage on my home”</th>
</tr>
</thead>
<tbody>
<tr>
<td>bank²</td>
<td>Gloss: sloping land (especially the slope beside a body of water)</td>
<td>Examples: “they pulled the canoe up on the bank”, “he sat on the bank of the river and watched the currents”</td>
</tr>
</tbody>
</table>
The Simplified Lesk algorithm

Choose sense with most word overlap between gloss and context (not counting function words)

The bank** can guarantee deposits** will eventually cover future tuition costs because it invests in adjustable-rate mortgage** securities.

bank\(^1\)	Gloss:	a financial institution that accepts deposits** and channels the money into lending activities
Examples:	“he cashed a check at the bank”, “that bank holds the mortgage** on my home”	
bank\(^2\)	Gloss:	sloping land (especially the slope beside a body of water)
Examples:	“they pulled the canoe up on the bank”, “he sat on the bank of the river and watched the currents”	
The Corpus Lesk algorithm

• Assumes we have some sense-labeled data (like SemCor)
• Take all the sentences with the relevant word sense:
 These short, "streamlined" meetings usually are sponsored by local banks, Chambers of Commerce, trade associations, or other civic organizations.
• Now add these to the gloss + examples for each sense, call it the “signature” of a sense.
• Choose sense with most word overlap between context and signature.
Corpus Lesk: IDF weighting

• Instead of just removing function words
 • Down-weights words that occur in every “document” (gloss, example, etc)
 • These are generally function words, but is a more fine-grained measure

• Weigh each overlapping word by inverse document frequency
Corpus Lesk: IDF weighting

- Weigh each overlapping word by inverse document frequency
 - \(N \) is the total number of documents
 - \(df_i = \) “document frequency of word \(i \)”
 - \(df_i = \# \) of documents with word \(i \)

\[
\text{idf}_i = \log \left(\frac{N}{df_i} \right)
\]

\[
\text{score}(\text{sense}_i, \text{context}_j) = \sum_{w \in \text{overlap}(\text{signature}_i, \text{context}_j)} \text{idf}_w
\]
Semi-Supervised Learning

Problem: supervised and dictionary-based approaches require large hand-built resources

What if you don’t have so much training data?

Solution: Bootstrapping

Generalize from a very small hand-labeled seed-set.
Bootstrapping

• For bass
 • Rely on “One sense per collocation” rule
 • A word reoccurring in collocation with the same word will almost surely have the same sense.
 • the word play occurs with the music sense of bass
 • the word fish occurs with the fish sense of bass
Sentences extracting using “fish” and “play”

<table>
<thead>
<tr>
<th>Sentences</th>
</tr>
</thead>
<tbody>
<tr>
<td>We need more good teachers – right now, there are only a half a dozen who can play the free bass with ease.</td>
</tr>
<tr>
<td>An electric guitar and bass player stand off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps.</td>
</tr>
<tr>
<td>The researchers said the worms spend part of their life cycle in such fish as Pacific salmon and striped bass and Pacific rockfish or snapper.</td>
</tr>
<tr>
<td>And it all started when fishermen decided the striped bass in Lake Mead were too skinny.</td>
</tr>
</tbody>
</table>
Summary: generating seeds

1) Hand labeling

2) “One sense per collocation”:
 • A word reoccurring in collocation with the same word will almost surely have the same sense.

3) “One sense per discourse”:
 • The sense of a word is highly consistent within a document - Yarowsky (1995)
 • (At least for non-function words, and especially topic-specific words)
Summary

• Word Sense Disambiguation: choosing correct sense in context
• Applications: MT, QA, etc.
• Three classes of Methods
 • Supervised Machine Learning: Naive Bayes classifier
 • Thesaurus/Dictionary Methods
 • Semi-Supervised Learning
• Main intuition
 • There is lots of information in a word’s context
 • Simple algorithms based just on word counts can be surprisingly good