Logistics

• Project feedback
 • Progress report is due on November 18.
 • We will arrange feedback time with the instructor on November 20 (2:30-4:30pm at Churchill Hall 101), November 22 (tentatively 3:45pm at 177 Huntington), November 25 (1:30-2:30pm at 177 Huntington)
 • We have 18 teams, so each team will sign up with one time slot and meet with the instructor for 10 minutes.
 • Details will be available on piazza this weekend.

• Prelim
 • We will not return the exam sheets to the students. But we will arrange several time slots (not TA OHs) to allow you to look at your own exam sheet.
 • TA will also have one or two lectures during OHs to explain the answers.

What is Natural Language Dialogue?

• Communication involving
 • Multiple contributions
 • Coherent interaction
 • More than one participant
 • Interaction modalities
 • Input: Speech, typing, writing, gesture
 • Output: Speech, text, graphical display, animated face/body (embodied virtual agent)

[Some slides are borrowed from Svetlana Stoyanchev and Dan Jurafsky]
What is involved in NL dialogue

- Access to information (Can you deliver this action?)
- To process a request "Please close the window" you (or the system) needs to know:
 - There is a window
 - Window is currently opened
 - Window can/cannot be closed

What is involved in NL dialogue

- Producing language
- Deciding when to speak
- Deciding what to say
- Choosing the appropriate meaning
- Deciding how to present information
 - So partner understands it
 - So expression seems natural

When is automatic dialogue system useful?

- When hands-free interaction is needed
 - In-car interface
 - In-field assistant system
 - Command and control interface
 - Language tutoring
 - Immersive training
- When speaking is easier than typing
 - Voice search interface
 - Virtual assistant (SIRI, Google Now)
- Replacing human agents (cutting cost for companies)
 - Call routing
 - Menu-based customer help
 - Voice interface for customer assistance

Visions of dialogue from science fiction

- Hal “2001: A Space Odyssey” (1968)
 - Naturally conversing computer
- Star Trek (original 1966)
 - Natural language command and control
- Her (2013)
 - A virtual partner with natural dialogue capabilities

Conversational Agents aka Dialogue Agents

Phone-based Personal Assistants
 - SIRI, Cortana, Google Now
Talking to your car
Communicating with robots
Clinical uses for mental health
Chatting for fun

Two classes of systems

1. (Goal-based) Dialogue agents
 - SIRI, interfaces to cars, robots
 - booking flights or restaurants
2. Chatbots
Two classes of systems

1. (Goal-based) Dialogue agents (this lecture)
 - Siri, interfaces to cars, robots
 - Booking flights or restaurants
2. Chatbots

Examples of modern Virtual Assistant dialogue systems

- Apple Siri
 - Supports questions in a set of domains
 - Answers open-end questions
 - Cute “Easter egg” responses

- Android Google Now (2013)
 - Predictive search assistant

- Windows Cortana (2014)
 - Works across different Windows devices
 - Aims to be able to “talk about anything”
Embedded devices with dialogue capabilities

- Amazon Echo (2014) – home assistant device
 - Plays music
 - With voice commands
 - Question answering
 - Get weather, news
 - More complex questions, like
 - "How many spoons are in a cup?"
 - Setting timer
 - Manages TODO lists

Architectures for Practical Dialogue Systems

- Finite-State
 Simple information: e.g., passwords or credit cards
- Frame-Based
 All commercial and academic system (SIRI etc.)

Architectures for Practical Dialogue Systems

- Finite-State
 Simple information: e.g., passwords or credit cards
- Frame-Based
 All commercial and academic system (SIRI etc.)

Finite-State Dialog Management

Consider a trivial airline travel system:
- Ask the user for a departure city
- Ask for a destination city
- Ask for a time
- Ask whether the trip is round-trip or not

Finite-state dialogue managers

- System completely controls the conversation with the user.
- It asks the user a series of questions
- Ignoring (or misinterpreting) anything the user says that is not a direct answer to the system’s questions
Dialogue Initiative

• Systems that control conversation like this are called **single initiative**.
• **Initiative**: who has control of conversation
• In normal human-human dialogue, initiative shifts back and forth between participants.

System Initiative

System completely controls the conversation

+ • Simple to build
 • User always knows what they can say next
 • System always knows what user can say next
 • Known words: Better performance from ASR
 • Known topic: Better performance from NLU (NL understanding)
 • OK for VERY simple tasks (entering a credit card, or login name and password)

− • Too limited

Problems with System Initiative

• Real dialogue involves give and take!
• In travel planning, users might want to say something that is not the direct answer to the question.
• For example answering more than one question in a sentence:

 HI, I'd like to fly from Seattle Tuesday morning
 I want a flight from Milwaukee to Orlando one way leaving after 5 p.m. on Wednesday.

Single initiative + universals

• We can give users a little more flexibility by adding **universals**: commands you can say anywhere
• As if we augmented every state of FSA with these
 • **Help**
 • **Start over**
 • **Correct**
• This describes many implemented systems
• But still doesn’t allow user much flexibility

Architectures for Practical Dialogue Systems

• **Finite-State**
 • Simple information: e.g., passwords or credit cards
 • Frame-Based
 • All commercial and academic system (SIRI etc.)

Instead, the state of the art:
Frame-based dialogue

• A kind of **mixed initiative**
 • The conversational initiative shifts between system and user
 • The structure of the **frame** guides dialogue
Frame-based dialogue

- Invented up the hill in 1977:
 - GUS, A Frame-Driven Dialog System
 - D. G. Bobrow, R. M. Kaplan, M. Kay, D. A. Norman, H. Thompson and T. Wang
 - Still the state of the art (in real world systems)
 - SIIRI based on GUS architecture

Frames are mixed-initiative

- System asks questions of user, filling any slots that user specifies
- When frame is filled, do database query
- If user answers 3 questions at once, system can fill 3 slots and not ask these questions again!

The Frame

- A set of slots, to be filled with specific information
- Each associated with a question to the user

<table>
<thead>
<tr>
<th>Slot</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>What city are you leaving from?</td>
</tr>
<tr>
<td>DEST</td>
<td>Where are you going?</td>
</tr>
<tr>
<td>DEPT DATE</td>
<td>What day would you like to leave?</td>
</tr>
<tr>
<td>DEPT TIME</td>
<td>What time would you like to leave?</td>
</tr>
<tr>
<td>AIRLINE</td>
<td>What is your preferred airline?</td>
</tr>
</tbody>
</table>

The Natural Language Understanding Component

Show me morning flights from Boston to SF on Tuesday.

SHOW:

- FLIGHTS:
 - ORIGIN:
 - CITY: Boston
 - DATE: Tuesday
 - TIME: morning
 - DEST:
 - CITY: San Francisco

Often called "dialogue state" detection

Dialogue state: representation of what the user wants at any point in a dialogue
- Which slots got filled in the last sentence?
- What is the current state of the frame?
 - All the values of the filled slots
- What is the user’s last "dialogue act":
 - Did they ask me a question?
 - Inform me of something?

How to do Frame-based Natural Language Understanding?

- Rule-based models
- Statistical models
Siri uses GUS architecture:
Condition-Action Rules

- **Active Ontology**: relational network of concepts
 - data structures: a meeting has
 - a date and time,
 - a location,
 - a topic
 - a list of attendees
 - rule sets that perform actions for concepts
 - the date concept turns string
 - **Monday at 2pm** into
 - date object \(\text{date}() \) (\(\text{DAY,MONTH,YEAR,HOURS,MINUTES} \))

Part of ontology for meeting task

Statistical Natural Language Understanding

- Statistical classifiers to map words to semantic frame-fillers
- Given a set of labeled sentences
 - "I want to fly to San Francisco on Tuesday"
 - Destination: San Francisco
 - Depart-date: Tuesday
- Requirements: Lots of labeled data

Statistical Slot filling

- Given a sentence:
 - I want to go from Boston to SF
- Classifier predicts which slot the user wants to fill
- Output: (\(\text{ORIGIN, DESTINATION, DEPART-DATE, AIRLINE} \))
- Features: Words, Named Entities
- Classifier or sequence model predicts the filler:

Evaluation

1. Slot Error Rate for a Sentence
 - \# of inserted/deleted/substituted slots
 - \# of total reference slots for sentence
2. End-to-end evaluation (Task Success)
Evaluation

"Make an appointment with David at 11:30 in Rm 905"

<table>
<thead>
<tr>
<th>Slot</th>
<th>Filler</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERSON</td>
<td>David</td>
</tr>
<tr>
<td>TIME</td>
<td>11:30 p.m.</td>
</tr>
<tr>
<td>ROOM</td>
<td>Rm 905</td>
</tr>
</tbody>
</table>

Slot error rate: 1/3

Task success: At end, was the correct meeting added to the calendar?

Intentions

• After understanding "what is said"...
 • Dialogue Act
 • Grounding and Confirmation
 • Rejection

Dialogue Act Detection

• Dialogue Act: The dialogue function of the sentence
 • Question
 • Command
 • Suggestion
• Given a user's sentence:
 • Context: David wants to eat Italian food.
 • He asked: How many Italian restaurants are in walking distance?
 • Was that a question?

Dialogue Act detection is hard

Can you give me a list of the flights from Atlanta to Boston?
 • This looks like a QUESTION.
 • It has a question mark, starts with "can you"
 • If so, the answer is:
 • YES.
 • But really it's a COMMAND, a polite form of:
 Please give me a list of the flights...
 • What looks like a QUESTION can be a COMMAND

Dialogue Act detection

• Rules-based models
• Statistical models/Machine learning models
Another example of dialogue act detection:
Correction Detection
• If system misrecognizes an utterance, and either
 • Rejects
 • Via confirmation, displays its misunderstanding
• Then user has a chance to make a correction
 • Repeat themselves
 • Rephrasing
 • Saying “no” to the confirmation question.

Corrections
• Unfortunately, corrections are harder to recognize than normal sentences!
 • Swerts et al (2000): corrections misrecognized twice as often as non-corrections!!!
 • Why?
 • Prosody seems to be largest factor: hyperarticulation
 • Liz Shriberg example:
 • “NO, I am DE-PAR-TING from Jacksonville”

Machine learning to detect user corrections: features
• Lexical information (no, correction, I don’t, swear words)
• Prosodic indicators of hyperarticulation
 • pause duration, word duration
• Length
• LM probability
• Various dialogue features (repetition)

Deciding what to say:
Dialogue act generation/prediction
Should I do a “Confirmation” dialog act?
Natural Language Generation
Given that I'm confirming, what exactly should I say?

Grounding
• Why do elevator buttons light up?
 • Clark (1996) (after Norman 1988)
 Principle of closure. Agents performing an action require evidence, sufficient for current purposes, that they have succeeded in performing it
 • What is the linguistic correlate of this?

Grounding and Confirmation
• We need to know whether an action succeeded or failed
 • Talking is an action!
• I need to know if my action succeeded
 • i.e. the hearer understood my turn!
How do speakers ground?
Clark and Schaefer

- Continued attention:
 - B continues attending to A
- Relevant next contribution:
 - B starts in on next relevant contribution
- Acknowledgement:
 - B nods or says continuer (uh-huh) or assessment (great!)
- Demonstration:
 - B demonstrates understanding A by reformulating A’s contribution, or by collaboratively completing A’s utterance
- Display:
 - B repeats verbatim all or part of A’s presentation

A human-human conversation

<table>
<thead>
<tr>
<th>C:</th>
<th>I need to travel in May.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A:</td>
<td>And, what day in May did you want to travel?</td>
</tr>
<tr>
<td>C:</td>
<td>What are they?</td>
</tr>
<tr>
<td>A:</td>
<td>The first one departs PHL at 6:55pm arrives Seattle at 12:05 later time. The second flight departs PHL at 6:55pm arrives Seattle at 8pm. And the last flight departs PHL at 6:15pm arrives Seattle at 10:20pm.</td>
</tr>
<tr>
<td>C:</td>
<td>OK. I’ll take the 6:15 flight on the night before or on the 13th.</td>
</tr>
<tr>
<td>A:</td>
<td>On the 11th. OK. Departing at 5:50pm arrives Seattle at 3pm. U.S. Air flight 11.</td>
</tr>
<tr>
<td>C:</td>
<td>OK.</td>
</tr>
</tbody>
</table>

Grounding examples

Display:
C: I need to travel in May
A: And, what day in May did you want to travel?
Acknowledgement
C: He wants to fly from Boston
A: mm-hmm
C: to Baltimore Washington International

Grounding examples (2)

- Acknowledgement + next relevant contribution
 And, what day in May did you want to travel?
 And you’re flying into what city?
 And what time would you like to leave?
- The and indicates to the client that agent has successfully understood answer to the last question.

Grounding negative responses
From Cohen et al. (2004)

- System: Did you want to review some more of your personal profile?
- Caller: No.
- System: Okay, what’s next?
- System: Did you want to review some more of your personal profile?
- Caller: No.
- System: What’s next?

Confirmation

- Errors: Speech is a pretty errorful channel
 - Humans use grounding to confirm that they heard correctly
 - Automatic speech recognition (ASR) is way worse than humans!
- Dialogue systems need to do even more grounding and confirmation than humans
 - Users are confused when system doesn’t give explicit acknowledgement signal.
 Stifelman et al. (1993), Yankelovich et al. (1995)
Explicit confirmation

S: Which city do you want to leave from?
U: Baltimore
S: Do you want to leave from Baltimore?
U: Yes

Explicit confirmation

U: I'd like to fly from Denver Colorado to New York City on September 21st in the morning on United Airlines
S: Let's see then. I have you going from Denver Colorado to New York on September 21st. Is that correct?
U: Yes

Implicit confirmation: display

U: I'd like to travel to Berlin
S: When do you want to travel to Berlin?
U: Hi I'd like to fly to Seattle Tuesday morning
S: Traveling to Seattle on Tuesday, August eleventh in the morning. Your name?

Implicit vs. Explicit

• Complementary strengths
• Explicit: easier for users to correct systems's mistakes (can just say "no")
• But explicit is cumbersome and long
• Implicit: much more natural, quicker, simpler (if system guesses right).

Implicit and Explicit

• Early systems: all-implicit or all-explicit
• Modern systems: adaptive
• How to decide?
• ASR system can give confidence metric.
• This expresses how convinced system is of its transcription of the speech
• If high confidence, use implicit confirmation
• If low confidence, use explicit confirmation
Should also consider cost of an error: Explicit confirmation before moving money or booking flights

Implicit and Explicit

• Early systems: all-implicit or all-explicit
• Modern systems: adaptive
• How to decide?
• ASR system can give confidence metric.
Rejection

- “I’m sorry, I didn’t understand that.”
- Reject when:
 - ASR confidence is low
 - Best interpretation is semantically ill-formed
- Might have four-tiered level of confidence:
 - Below confidence threshold, reject
 - Above threshold, explicit confirmation
 - If even higher, implicit confirmation
 - Even higher, no confirmation