CS 6120/CS4120: Natural Language Processing
Instructor: Prof. Lu Wang
College of Computer and Information Science
Northeastern University
Webpage: www.ccs.neu.edu/home/luwang

Outline
• What is part-of-speech (POS) and POS tagging?
• Hidden Markov Model (HMM) for POS tagging
• Learning an HMM
• Prediction with an learned HMM (inference)

Parts of Speech
• Perhaps starting with Aristotle in the West (384–322 BCE), there was the idea of having parts of
 speech (POS)
 • a.k.a lexical categories, word classes, "tags"
 • Lowest level of syntactic analysis

English Parts of Speech (POS) Tagsets
• Original Brown corpus used a large set of 87 POS
tag.
• Most common in NLP today is the Penn Treebank
set of 45 tags.
 • Tagset used in the slides.
 • Reduced from the Brown set for use in the context of a
 parsed corpus (i.e. Penn Treebank).

English Parts of Speech
• Noun (person, place or thing)
 • Singular (NN): dog, fork
 • Plural (NNS): dogs, forks
 • Proper (NNP, NNPS): John, Springfields
 • Personal pronoun (PRP): I, you, he, she, it
 • Wh-pronoun (WP): who, what
• Verb (actions and processes)
 • Base, infinitive (VB): eat
 • Past tense (VBD): ate
 • Gerund (VBG): eating
 • Past participle (VBN): eaten
 • Non 3rd person singular present tense (VBP): eat
 • 3rd person singular present tense: (VBN): eats
 • Modal (MD): should, can
 • To (TO): to (to eat)

English Parts of Speech (cont.)
• Adjective (modify nouns)
 • Basic (JJ): red, tall
 • Comparative (JRP): redder, taller
 • Superlative (JJS): reddest, tallest
• Adverb (modify verbs)
 • Basic (RBR): quickly
 • Comparative (RBR): quicker
 • Superlative (RBS): quickest
• Preposition (IN): on, in, by, to, with
• Determiner,
 • Basic (DT): a, an, the
 • WH-determiner (WDT): which, that
• Coordinating Conjunction (CC): and, but, or,
• Particle (RP): off (took off), up (put up)
Open vs. Closed classes

- Open vs. Closed classes
 - Closed:
 - Determiners: a, an, the
 - Pronouns: she, he, I
 - Prepositions: on, under, over, near, by, ...
 - Why "closed"?
 - Open:
 - Nouns, Verbs, Adjectives, Adverbs.

Ambiguity in POS Tagging

- "Like" can be a verb or a preposition
 - I like/VBP candy.
 - Time flies/IN an arrow.
- "Around" can be a preposition, particle, or adverb
 - I bought it at the shop around/IN the corner.
 - I never got around/RP to getting a car.
 - A new Prius costs around/RB $25K.

POS Tagging performance

- How many tags are correct? (Tag accuracy)
 - About 97% currently
 - But baseline is already 90%
 - Baseline is performance of stupidest possible method
 - Take an annotated corpus (or a dictionary), tag every word with its most frequent tag
 - Tag unknown words as nouns
 - Partly easy because
 - Many words are unambiguous
 - You get points for them (the, a, etc.) and for punctuation marks!

POS Tagging

- The POS tagging problem is to determine the POS tag for a particular instance of a word.

POS Tagging

- Input: plays well with others
- Ambiguity: NNS/VBZ UH/JJ/NN/RB IN NNS
- Output: Plays/VBZ well/RB with/IN others/NNS
- Uses:
 - Text-to-speech (how do we pronounce "lead"?)
 - Can write regexps over the output for phrase extraction
 - Noun phrase: (Det) Adj+ N*
 - As input to or to speed up a full parser
How difficult is POS tagging?

- Word types: roughly speaking, unique words
- About 11% of the word types in the Brown corpus are ambiguous with regard to part of speech
- But they tend to be very common words. E.g., *that*
 - I know *that* he is honest = IN (preposition)
 - Yes, *that* play was nice = DT (determiner)
 - You can’t go *that* far = RB (adverb)
- 40% of the word tokens are ambiguous

Sources of information

- What are the main sources of information for POS tagging? “Bill saw that man yesterday”
 - *Contextual*: Knowledge of neighboring words
 - Bill saw that man yesterday
 - NNP NN DT NN NN
 - VB VBD DT NN
 - *Local*: Knowledge of word probabilities
 - man is rarely used as a verb...
 - The latter proves the most useful, but the former also helps.
 - Sometimes these preferences are in conflict:
 - *The trash can is in the garage*

More and Better Features ➔ Feature-based tagger

- Can do surprisingly well just looking at a word by itself:
 - Word *the*: the → DT
 - Lowercased word *Importantly*: importantly → RB
 - Prefixes *unfathomable*: un → JJ
 - Suffixes *Importantly: -*ly → RB
 - Capitalization *Meridian*: CAP → NNP
 - Word shapes *35-year*: d-x → JJ

POS Tagging Approaches

- **Rule-Based**: Human crafted rules based on lexical and other linguistic knowledge.
- **Learning-Based**: Trained on human annotated corpora like the Penn Treebank.
 - *Statistical models*: Hidden Markov Model (HMM) – this lecture, Maximum Entropy Markov Model (MEMM), Conditional Random Field (CRF)
 - *Rule learning*: Transformation Based Learning (TBL)
 - *Neural networks*: Recurrent networks like Long Short Term Memory (LSTMs)
- Generally, learning-based approaches have been found to be more effective overall, taking into account the total amount of human expertise and effort involved.

Outline

- What is part-of-speech (POS) and POS tagging?
 - Hidden Markov Model (HMM) for POS tagging
 - Learning an HMM
 - Prediction with an learned HMM (inference)
Markov Model / Markov Chain

- A finite state machine with probabilistic state transitions.
- Makes Markov assumption that next state only depends on the current state and independent of previous history.

Sample Markov Model for POS (a finite state machine)

Hidden Markov Model

- Probabilistic generative model for sequences.
- Assume an underlying set of hidden (unobserved) states in which the model can be (e.g. part-of-speech).
- Assume probabilistic transitions between states over time (e.g. transition from POS to another POS as sequence is generated).
- Assume a probabilistic generation of tokens from states (e.g. words generated for each POS).

Sample HMM for Generation

Sample HMM Generation
Sample HMM Generation

Formally, Markov Sequences
- Consider a sequence of random variables X_1, X_2, \ldots, X_m where m is the length of the sequence
- Each variable X_i can take any value in $\{1, 2, \ldots, k\}$
- How do we model the joint distribution
 \[P(X_1 = x_1, X_2 = x_2, \ldots, X_m = x_m) \]

The Markov Assumption
\[
P(X_1 = x_1, X_2 = x_2, \ldots, X_m = x_m) \\
= P(X_1 = x_1) \prod_{j=2}^{m} P(X_j = x_j | X_1, \ldots, X_{j-1} = x_{j-1}) \\
= P(X_1 = x_1) \prod_{j=2}^{m} P(X_j = x_j | X_{j-1} = x_{j-1})
\]
- The first equality is exact (by the chain rule).
- The second equality follows from the Markov assumption: for all $j = 2 \ldots m$,
 \[P(X_j = x_j | X_1, \ldots, X_{j-1} = x_{j-1}) = P(X_j = x_j | X_{j-1} = x_{j-1}) \]

Homogeneous Markov Chains
- In a homogeneous Markov chain, we make an additional assumption, that for $j = 2 \ldots m$,
 \[P(X_j = x_j | X_{j-1} = x_{j-1}) = q(x_j | x_{j-1}) \]
 where $q(x'|x)$ is some function
- Idea behind this assumption: the transition probabilities do not depend on the position in the Markov chain (do not depend on the index j)
Homogeneous Markov Chains

- In a homogeneous Markov chain, we make an additional assumption, that for \(j = 2 \ldots m \),
 \[P(X_j = x_j | X_{j-1} = x_{j-1}) = q(x_j | x_{j-1}) \]

where \(q(x'|x) \) is some function

- Idea behind this assumption: the transition probabilities do not depend on the position in the Markov chain (do not depend on the index \(j \))

"the Markov Chains follows the Markov assumption"

Markov Models

- Our model is then as follows:
 \[p(x_1, x_2, \ldots, x_m; \theta) = q(x_1) \prod_{j=2}^{m} q(x_j | x_{j-1}) \]

- Parameters in the model:
 - \(q(x) \) for \(x = \{1, 2, \ldots, k\} \)
 Constraints: \(q(x) \geq 0 \) and \(\sum_{x=1}^{k} q(x) = 1 \)
 - \(q(x'|x) \) for \(x = \{1, 2, \ldots, k\} \) and \(x' = \{1, 2, \ldots, k\} \)
 Constraints: \(q(x'|x) \geq 0 \) and \(\sum_{x'=1}^{k} q(x'|x) = 1 \)

Probabilistic Models for Sequence Pairs – words and POS tags

- We have two sequences of random variables:
 \(X_1, X_2, \ldots, X_m \) and \(S_1, S_2, \ldots, S_m \)

- Intuitively, each \(X_i \) corresponds to an "observation" and each \(S_i \) corresponds to an underlying "state" that generated the observation. Assume that each \(S_i \) is in \(\{1, 2, \ldots, k\} \), and each \(X_i \) is in \(\{1, 2, \ldots, o\} \)

- How do we model the joint distribution
 \[P(X_1, x_2, \ldots, x_m, S_1, s_2, \ldots, S_m = s_m) \]

Probabilistic Models for Sequence Pairs – words and POS tags

- We have two sequences of random variables:
 \(X_1, X_2, \ldots, X_m \) and \(S_1, S_2, \ldots, S_m \)

- Intuitively, each \(X_i \) corresponds to an "observation" and each \(S_i \) corresponds to an underlying "state" that generated the observation. Assume that each \(S_i \) is in \(\{1, 2, \ldots, k\} \), and each \(X_i \) is in \(\{1, 2, \ldots, o\} \)

- How do we model the joint distribution
 \[P(X_1 = x_1, \ldots, X_m = x_m, S_1 = s_1, \ldots, S_m = s_m) \]

Hidden Markov Models (HMMs)

- In HMMs, we assume that:
 \[P(X_1 = x_1, \ldots, X_m = x_m, S_1 = s_1, \ldots, S_m = s_m) \]
 \[= P(S_1 = s_1) \prod_{j=2}^{m} P(S_j = s_j | S_{j-1} = s_{j-1}) \prod_{j=1}^{m} P(X_j = x_j | S_j = s_j) \]
Independence Assumptions in HMMs

- By the chain rule, the following equality is exact:

\[
P(X_1 = x_1, \ldots, X_m = x_m, S_1 = s_1, \ldots, S_m = s_m) = P(S_1 = s_1, \ldots, S_m = s_m) \times P(X_1 = x_1, \ldots, X_m = x_m | S_1 = s_1, \ldots, S_m = s_m)
\]

- Assumption 1: the state sequence forms a Markov chain
e.g. Part-of-Speech tags

\[
P(S_1 = s_1, \ldots, S_m = s_m) = P(S_1 = s_1) \prod_{j=2}^{m} P(S_j = s_j | S_{j-1} = s_{j-1})
\]

Formally

- The model takes the following form:

\[
p(x_1 \ldots x_m, s_1 \ldots s_m; \theta) = t(s_1) \prod_{j=2}^{m} \ell(s_j | s_{j-1}) \prod_{j=1}^{m} e(x_j | s_j)
\]

- Parameters in the model:
 1. Initial state parameters \(t(s) \) for \(s \in \{1, 2, \ldots, k\} \)
 2. Transition parameters \(t(s'|s) \) for \(s, s' \in \{1, 2, \ldots, k\} \)
 3. Emission parameters \(e(x|s) \) for \(s \in \{1, 2, \ldots, k\} \) and \(x \in \{1, 2, \ldots, n\} \)

Outline

- What is part-of-speech (POS) and POS tagging?
- Hidden Markov Model (HMM) for POS tagging
 - Learning an HMM
 - Prediction with an learned HMM (inference)

HMM

- Parameter estimation
 - Learning the probabilities from training data
 - \(P(\text{verb}|\text{noun})? \), \(P(\text{apples}|\text{noun})? \)

- Inference: Viterbi algorithm (dynamic programming)
 - Given a new sentence, what are the POS tags for the words?
Parameter Estimation with Fully Observed Data

- We’ll now discuss parameter estimates in the case of fully observed data: for \(i = 1 \ldots n \), we have pairs of sequences \(x_{i,j} \) for \(j = 1 \ldots m \) and \(s_{i,j} \) for \(j = 1 \ldots m \). (i.e., we have \(n \) training examples, each of length \(m \).)

Parameter Estimation: Transition Parameters

- \(P(\text{verb}|\text{noun}) \)

Parameter Estimation: Emission Parameters

- \(P(\text{apples}|\text{noun}) \)

Parameter Estimation: Initial State Parameters

- Assume we have fully observed data: for \(i = 1 \ldots n \), we have pairs of sequences \(x_{i,j} \) for \(j = 1 \ldots m \) and \(s_{i,j} \) for \(j = 1 \ldots m \)
- Define \(\text{count}(i, s \rightarrow s') \) to be the number of times state \(s' \) follows state \(s \) in the \(i \)th training example. More formally:

\[
\text{count}(i, s \rightarrow s') = \sum_{j=1}^{m-1} [[s_{i,j} = s \land s_{i,j+1} = s']]
\]

(We define \([x]\) to be 1 if \(x \) is true, 0 otherwise.)

- The maximum-likelihood estimates of transition probabilities are then

\[
t(s'|s) = \frac{\sum_{i=1}^{n} \text{count}(i, s \rightarrow s')}{\sum_{j=1}^{m} \sum_{s'} \text{count}(i, s \rightarrow s')}
\]

- Assume we have fully observed data: for \(i = 1 \ldots n \), we have pairs of sequences \(x_{i,j} \) for \(j = 1 \ldots m \) and \(s_{i,j} \) for \(j = 1 \ldots m \)
- Define \(\text{count}(i, s \Rightarrow x) \) to be the number of times state \(s \) is paired with emission \(x \). More formally:

\[
\text{count}(i, s \Rightarrow x) = \sum_{j=1}^{m} [[s_{i,j} = s \land x_{i,j} = x]]
\]

- The maximum-likelihood estimates of emission probabilities are then

\[
\epsilon(x|s) = \frac{\sum_{i=1}^{n} \text{count}(i, s \Rightarrow x)}{\sum_{j=1}^{m} \sum_{x} \text{count}(i, s \Rightarrow x)}
\]
Outline

- What is part-of-speech (POS) and POS tagging?
- Hidden Markov Model (HMM) for POS tagging
- Learning an HMM
 - Prediction with an learned HMM (inference)

HMM

- Parameter estimation
- Inference: Viterbi algorithm (dynamic programming)

The Viterbi Algorithm

- Goal: for a given input sequence \(x_1, \ldots, x_m \), find
 \[
 \arg\max_{s_1, \ldots, s_m} p(x_1, \ldots, x_m, s_1, \ldots, s_m ; \theta)
 \]
- This is the most likely state sequence \(s_1 \ldots s_m \) for the given input sequence \(x_1 \ldots x_m \)

Most Likely State Sequence

- Given an observation sequence, \(X \), and a model, what is the most likely state sequence \(S = s_1, s_2, \ldots, s_m \) that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.
Most Likely State Sequence

• Given an observation sequence, X, and a model, what is the most likely state sequence, $S=s_1, s_2, ..., s_m$, that generated this sequence from this model?

• Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.

The Viterbi Algorithm

• Goal: for a given input sequence $x_1, ..., x_m$, find $\arg \max_{s_1, ..., s_m} p(x_1, ..., x_m, s_1, ..., s_m)$

• The Viterbi algorithm is a dynamic programming algorithm. Basic data structure: $\tau[j, s]$ will be a table entry that stores the maximum probability for any state sequence ending in state s at position j. More formally: $\tau[1, s] = t(s)(x_1|s)$, and for $j > 1$.

• The goal: find a path with highest probability

Continue forward in time until reaching final time point.

Each column contains all possible POS tags
Why do we need this data structure?

The Viterbi Algorithm

- Goal: for a given input sequence \(x_1, \ldots, x_m \), find
 \[
 \arg \max_{q_1, \ldots, q_m} p(x_1 \ldots x_m, q_1 \ldots q_m; \theta)
 \]

- The Viterbi algorithm is a dynamic programming algorithm. Basic data structure: \(\pi[j,s] \) Why do we need this data structure?

 will be a table entry that stores the maximum probability for any state sequence ending in state \(s \) at position \(j \). More formally: \(\pi[1,s] = \ell(s) \epsilon(x_1 | s) \), and for \(j > 1 \),

- Initialization: for \(s = 1 \ldots k \)
 \[
 \pi[1,s] = \ell(s) \epsilon(x_1 | s)
 \]

- For \(j = 2 \ldots m, s = 1 \ldots k \):
 \[
 \pi[j,s] = \max_{s' \in \{1, \ldots, k\}} \left\{ \pi[j-1,s'] \times t(s'|s) \times \epsilon(x_j | s) \right\}
 \]

 and
 \[
 b^p[j,s] = \arg \max_{s' \in \{1, \ldots, k\}} \left\{ \pi[j-1,s'] \times t(s'|s) \times \epsilon(x_j | s) \right\}
 \]

- The \(b^p \) entries are backpointers that will allow us to recover the identity of the highest probability state sequence.

Viterbi Backpointers

- Most likely Sequence: \(s_0 \ s_1 \ s_2 \ s_3 \ \ldots \ s_2 \ s_F \)

Viterbi Backtrace

- Highest probability for any sequence of states is
 \[
 \max_s \pi[m,s]
 \]

- To recover identity of highest-probability sequence:
 \[
 s_m = \arg \max_s \pi[m,s]
 \]
 and for \(j = m \ldots 2 \),
 \[
 s_{j-1} = b^p[j,s_j]
 \]

- The sequence of states \(s_1 \ldots s_m \) is then
 \[
 \arg \max_{s_1 \ldots s_m} p(x_1 \ldots x_m, s_1 \ldots s_m; \theta)
 \]
Homework

• Reading J&M Ch5.1-5.5, Ch6.1-6.5
 For 3rd Edition:

• HMM notes

• Start thinking about course project and find a team.