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Abstract

The STanford Artificial Intelligence Robot (STAIR) project aims to construct and develop

robots that can work in real-world environments such as homes and offices, where they will

interact regularly with people. To work in such places, manipulation is an essential ability,

and one fundamental skill of manipulation is grasping. Robotic grasping has therefore long

been a focus of the STAIR project. Because STAIR needs to operate in dynamic and

unknown environments, no model of the world or objects to grasp is available; instead, it

must perceive all this from its visual sensors. This makes grasping a very difficult problem

because data from visual sensors is noisy and incomplete. A robust grasping system for

STAIR using only visual input is therefore presented here.

One approach used in the past to solve the grasping problem is to separate it into two

components, the first for finding feasible robotic arm/hand grasp configurations, and the

second to select the best one of these configurations as the final grasp to execute. This is

known as the comparative approach. We build upon and generalize this approach. For the

first component, which we denote as “search,” a previously developed image-based classifier

that we developed is used to find plausible grasping points, then a search strategy is applied to

find feasible grasp configurations. For the second component, which we denote as “selection,”

we notice that there are some properties of a candidate grasp configuration that are indicative

of good/bad grasps, and that these properties remain consistent across different objects.

Moreover, these properties can be easily and reliably computed even if the 3-D point cloud

from visual sensors is incomplete. We therefore present a selection algorithm that computes

these features for candidate grasp candidates, and using a trained logistic classifier produces

a quality score for each grasp. The grasp with maximum score is then executed.

Extensive experiments using this grasping system were performed on STAIR. In partic-

ular, reasonable performance was found in all three tasks assessed: grasping single objects

of various appearances, shapes, and sizes, grasping objects in cluttered environments, and

applying the algorithm on a separate robotic platform to unload items from a dishwasher.

Performance was comparable in each case, which indicates that the grasping system is effec-

tive in its targeted environments and is generalizable to other robots.
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Chapter 1

Introduction

As the field of artificial intelligence becomes increasingly advanced and integrated, it is time

to revisit the half-century old “AI-Dream,” where intelligent robotic agents were envisioned

to interact with the general human population. To this end, the STanford Artificial Intelli-

gence Robot (STAIR) project aims to introduce robots into home and office environments,

where they will facilitate and cooperate with people directly. In order for robots to have any

non-trivial use in such environments, they must have the ability to manipulate objects, which

is provided through robotic arms. An arm usually has a manipulator “hand” attached at

the end to allow finer manipulation and, more importantly, grasping. The ability to grasp is

crucial; if we were unable to grasp with our hands, we would find it very difficult to perform

essential tasks such as eating, and more complex actions such as cooking and working in an

office would definitely be unachievable. A robust and infallible grasping system is therefore

necessary if STAIR is to achieve its future goals.

Figure 1.1: STAIR Grasping.
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At first glance, the problem of grasping appears to be solvable using elementary physics.

Given a 3-D model of an object, its surface properties, and the manipulator’s kinematics, it

is possible to derive conditions on the placement and forces of the manipulator’s fingers such

that the object will be stably grasped upon closing the fingers inwards. However, in most

real-world environments the key piece of information is missing – an accurate 3-D model.

Robots such as STAIR that operate in dynamic environments cannot rely on a static a priori

model; instead, visual sensors must be used to perceive the world. Data acquired from these

cameras are typically inaccurate and incomplete, which presents a significant challenge for

the mechanical approach discussed as much of the object is actually missing from the data.

As characteristic of many AI problems, they become much harder once the environment

is not fully observable. In the context of real-world robotic grasping such as STAIR, the

problem of grasping is therefore difficult and remains to be solved.

The objective of this work was to create a robust grasping system for STAIR that can

operate in unknown and cluttered environments. The latter characteristic presents an extra

challenge as the space of possible grasps becomes significantly limited by the presence of

nearby objects; however, as it pertains to our target environments, we must consider it too.

For this grasping system, full arm/manipulator kinematics have been assumed, and visual

2-D and 3-D data of the scene in front of the robot will be supplied by STAIR’s cameras.

From this data, the system is to provide a single goal grasp configuration θ ∈ R
n, where n

is the number of joints that fully specifies the configuration of the arm/manipulator. (This

goal configuration will sometimes informally be referred to as a “grasp.”) This θ denotes a

configuration at which, when the fingers are closed, should achieve a grasp. The system is

to also provide and execute a trajectory that reaches θ and grasps the target object.

In this thesis, I will describe our grasping system, which is based on the comparative

approach covered in Chapter 2. An overview of STAIR and our implementation of the

approach will then be discussed in Chapter 3. The comparative approach consists of two

steps, grasp configuration generation and selection, and these will be respectively covered in

Chapters 4 and 5. Using this grasping system, we have performed many real-world grasping

experiments, which are described in Chapter 6. Finally, conclusions drawn from these results

and future directions will be discussed in Chapter 7.

Portions of this thesis have appeared in [1] and [2].
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Chapter 2

Literature Review

A general overview of grasping approaches that use vision will be provided here. Note

that many of the approaches discussed will not be applicable to our approach, with their

limitations discussed in greater detail below. We will, however, build upon and generalize

the work done in the comparative approach.

The analytic approach discussed above finds optimal grasping points and configurations,

relative to some criteria for optimality based on the wrench matrix of a grasp, which is

dependent on the normal force, tangential force, and moment about the normal at finger

contact points [3]. As noted, such forces and moments are difficult to compute unless a full

model of the object is present; simply applying these criteria to incomplete models leads to

poor results in practice. Many variants of optimality criteria have been suggested, but they

all assume full knowledge of the object’s 3-D model.

Due to the limitations imposed by perception, much work has started to focus on grasping

using visual information instead of using known models and environments. There are several

major types of approaches in this area. One conceptually simple approach, proposed early on

by Dunn and Segen, is to compile an object library with template grasps for each object [4].

The target object is then matched to one of the objects in the library via object recognition

[5], and the stored grasp is then executed. While these methods are simple and viable, they

are fundamentally limited by the knowledge base – an object that has not been seen before

will often not lead to good grasps. Moreover, object recognition is yet another vast and

active open area of research, so this approach to grasping has another difficulty to overcome.

Instead of identifying the grasp configuration itself, another approach is to find an optimal

control policy for grasping the object. This allows the process to be adaptive, thereby taking

into account the uncertainties in the environment. Anglani et al. used Q-Learning to train a

controller that learned from errors and was able to grasp spherical objects identified through

vision [6]. More recently, Hsiao, Kaelbling, and Lozana-Pérez used partially observable
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Markov decision processes (POMDP) to capture the uncertainties in environment dynamics

and sensor data [7]. Their system was able to find policies in simulation for two-finger

grasping of simple objects. Although initial results appear promising, much more work is

needed to extend this approach to complicated objects and to real-world environments.

An entirely different approach is the comparative approach, as termed by Kamon, Flash,

and Edelman in [8]. This method splits the grasping process into two parts: grasp generation

and evaluation. Candidate grasp configurations are first generated, then the quality of each

grasp is evaluated, and the one with maximum quality is executed. The quality measure is

computed based on a mixture of features, each of which is indicative of good/bad grasps and

is easily computable from the object model provided by visual sensors. An example of such

a feature is the angle between a finger’s applied force direction and the normal of the contact

surface, with the angle ideally being small (which reduces tangential slippage forces).

This approach was used by Pelossof et al., who generated many grasp configurations

for objects in simulation, then used Support Vector Machines (SVM) to learn and estimate

the quality of each grasp from several parameters based on the shape of the object and

hand orientation [9]. While this worked very well in simulation, it was not extended to

real-world cases, which would be significantly more difficult because the shape and surface

of the object would be unknown. Several works have tested their own systems outside of

simulation, with a limited degree of success and generality. Kamon, Flash, and Edelman used

estimations on the object’s center of mass and symmetry axis to both generate and rank

grasp configurations [8]. Despite their relatively simple list of features, their system was able

to grasp most – even novel – objects; however, this was naturally limited to generally regular

and symmetrical objects for which the center of mass can be rather accurately determined.

Chinellato et al. and Morales et al. also jointly developed a grasping system that worked

well for complex planar objects, using features based on the 2-D object contour [10, 11]. This

was possible because for planar objects in uncluttered environments, the 2-D contour can be

easily determined using vision, hence their object models were rather accurate; however, this

does not generalize to our 3-D case. Although previous works using the comparative approach

have yielded considerable successes in real-world grasping, the objects considered so far have

been limited (regular, symmetrical, planar), and the methods used on these objects are not

easily generalizable to complex 3-D objects. Moreover, little work has focused on grasping

in cluttered environments, which make both grasp generation and feature computation more

difficult. We will therefore develop more general methods using this approach.
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Chapter 3

Approach

3.1 Description of Robot

In order to better understand our approach, I will first provide a description of STAIR. The

STAIR robot that we use for grasping-related consists of a 7 degrees of freedom (dof) arm

(WAM, by Barrett Technologies) situated on a mobile platform. The arm is equipped with

a 3-fingered, 4-dof hand, one dof for each finger and one for the spread of the fingers. The

spread allows the outer fingers to rotate around the hand synchronously, varying from being

adjacent to each other (closed spread), to being opposite the middle finger (open spread)

(see Figure 3.1b). The arm is capable of reaching objects within a 1m radius. Since there

are 7 + 4 = 11 degrees of freedom in the arm, grasp configurations θ are in R
11.

(a) STAIR Platform; green
arrow points to Bumble-
bee2 camera, blue to Swis-
sRanger

(b) BarrettHand on STAIR

Figure 3.1
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STAIR is also equipped with two cameras mounted on the robot frame. A stereo camera

(Bumblebee2, by Point Grey Research) captures a 640×480 image using both its lenses and

uses the image differences to compute the depth for each image pixel, thereby giving 3-D

point information. We shall refer to the set of 3-D points returned by the camera as the

scene’s “point cloud.” The point cloud returned by the stereo camera is very incomplete, as

stereo correspondences cannot be found for regions without texture, such as smooth object

surfaces and tabletops. Because objects usually have some untextured parts, the object’s

point cloud often has significant “holes” where stereo matches were not found. To compensate

for this missing information, we included another camera (SwissRanger, by MESA Imaging)

that provides a 144 × 176 array of depth estimates by time-of-flight measurements. Since

this mechanism does not require matching images, the point cloud of an object’s front face

is generally complete (the back face is inevitably occluded). However, the data points are

sparse, and object surfaces that absorb or scatter the camera light source cannot be detected.

While the point clouds from STAIR’s vision system are relatively accurate, they clearly

suffer from large amounts of missing data. Take, for instance, the point clouds of the bowl

shown in Figure 3.2b. The Bumblebee2 point cloud (in red) picks up only the edges of the

bowl, and neither the bowl surface nor the table is seen. The SwissRanger point cloud (in

gray), on the other hand, gives a much more complete view of the bowl front face and table,

but no other side of the bowl is seen. Although bowls are particularly difficult for both

cameras to perceive, point clouds for most objects have similar properties and thus suffer

from the same problems. Because of large amounts of missing data, none of the previously

discussed approaches (and especially not the analytical one) work well for STAIR on general

3-D object grasping in cluttered scenarios.

(a) Actual bowl (b) Point clouds of bowl

Figure 3.2: A bowl and its point clouds. Point cloud points are visualized as cubes; red
cubes come from Bumblebee2, gray from SwissRanger.
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3.2 Grasping System

As noted earlier, we generalize previous work using the comparative approach. To do so, we

require a system that searches for grasp configurations (given the data from the two STAIR

cameras) and a system that selects the best grasp configuration by extracting features from

the 3-D object point cloud . The entire grasping system is shown in Figure 3.3.

Figure 3.3: Grasping System

The search procedure has already been partially addressed by previous STAIR work on

grasping [12, 13, 14]. Using synthetic images of various kitchen and office objects, features

for small several-pixel wide square patches were computed to determine how likely that patch

corresponded to a grasping point for the object. This was done for each patch in the image,

giving a large feature vector for a single image. Several patches corresponding to plausible

grasping points were then hand-labeled to be good points, and the rest bad. A logistic

classifier was then trained using these features and labeled patches. When actual camera

images are taken, features can then be computed for each patch, and the logistic classifier

can then distinguish between good and bad grasping points based on its learned model.

Each patch also receives a score, so the highest scoring patches are outputted as the most

plausible grasping points in the image. From these 2-D image patches, the corresponding

3-D points in the point cloud can be found, which serve as the candidate targets for grasping.

A similar classifier was trained for the SwissRanger camera, but directly uses the 3-D point

cloud. We shall refer to this classifier as our image-based classifier, since it takes as input

images from the camera and outputs plausible 3-D grasping points. Sample outputs from

these classifiers can be seen in Figure 3.4. The grasping points from both classifiers are then

grouped together and ranked, and the highest 20 3-D grasping points are used as targets.

This has been the work so far. However, there is a large gap between these target grasping

points in R
3 and grasp configurations θ ∈ R

11. Extending target 3-D points into 11-D grasp

configurations cannot simply be done by assigning arbitrary values; instead a search over

the extra dimensions is necessary. This strategy will be discussed in Chapter 4.
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Figure 3.4: Sample outputs from image-based classifiers. Red patches indicate the predicted
grasping points.

In contrast to the work already done on search, there has been little previous STAIR

work on the selection procedure. Candidate grasp configurations were selected using simple

heuristics, such as preferring higher grasp points (objects below are more likely to blocked by

objects above) and selecting configurations where the last arm link is as close to a downward

45◦ angle as possible (which empirically worked well). In the past these heuristics often led

to failure. Instead of using heuristics, we turn to the way in which previous works using

the comparative approach have performed selection – features. Having features that capture

properties of good/bad grasps allows us to identify, for a given grasp configuration and its

features, whether the configuration will lead to a good grasp or not, and hence whether the

configuration should be selected. We used supervised learning to train a logistic classifier for

these features, such that given a configuration and its features, the classifier outputs a score

for the quality of the configuration, the higher the better. The highest scoring configuration

is then naturally selected. This approach will be discussed in Chapter 5.

Once a final grasp configuration is selected, what remains is execution. Given the start

and end configurations in R
11, we want to find a path in 11-D space of arm/hand joint

angles that connects the two configurations without colliding into any obstacles modeled

from the point-cloud points (these points, in this case, are also represented in 11-D space).

The process of finding such a plan is referred to as motion planning. We use an efficient

Probabilistic Roadmap (PRM) motion planner for this task [15]. In PRM motion planning,

points in the 11-D joint angle space are randomly sampled, then all obstacle free segments

between points are found and form the “roadmap” of the space. Any graph search algorithm

can then be applied to find a path from the source to the goal. If such a path cannot be

found, the next best configuration is chosen as the goal, and so on until a plan is found.

When a plan is available, it is executed, and upon successful completion of the goal, the

fingers are closed synchronously until they hit the object. A grasp is defined as successful if

the object can then be lifted up into the air (with no support underneath) without its falling

out of the hand. For more details on motion planning and grasp execution, see [13, 16].
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Chapter 4

Search

We use as a baseline the 3-D grasping points returned from the 2-D and 3-D classifiers

mentioned in Section 3. That is, for a given grasp configuration, we require that the end-

effector location (i.e., the center point of the hand’s palm) be at one of the 3-D grasping

points identified. This requirement limits the dimensionality of the problem by 3 dimensions;

hence, there are 8 dimensions left to search (4 for both the arm and the hand).

4.1 A Näıve Method

Given one 3-D grasping point, the search can be split into several subproblems. The first

is the requirement that the end-effector must be at the 3-D point. From a 3-D point in

Cartesian-space, we use the arm’s inverse kinematics to find a 6-D joint-space configuration

that reaches the 3-D point. Although the arm itself has 7 joints, because the final wrist roll

joint only determines the rotational orientation of the hand, it does not affect the position

of the palm. Hence the joint angles of the first 6 joints is sufficient to fully specify the

end-effector position of the arm, and therefore inverse kinematics only needs to find values

for only these 6 joints to satisfy the 3-D grasping point requirement. Because of redundancy,

there are an infinite number of inverse kinematics solutions; in our näıve approach, the first

solution found is used. The wrist roll and hand dimensions remain to be solved.

The second subproblem is the wrist roll. The simplest approach is to set the joint value

as be the midpoint between its maximum and minimum limits; this allows the greatest

flexibility in manipulating the object afterward. The third subproblem is the hand’s spread;

the simplest solution is to have a parallel-plate-like configuration, where the fingers close in

onto each other. This is the case when the spread is fully open. The final subproblem is the

finger openings; it intuitively makes sense to secure the maximal grasp possible, i.e., set the

fingers as wide open as possible.
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Combining the 6-D inverse kinematics solution and the fixed values for the wrist roll and

all hand dimensions, we obtain a single näıve 11-D grasp candidate for the grasping point.

Although this gives a reasonable and generally feasible solution, it is often a poor grasp

candidate, with a suboptimal orientation and a poor hand configuration. We therefore use

better search techniques to improve on these two issues.

4.2 Wrist Orientation

The orientation of the final arm link, or informally the “wrist,” is crucial. This is because the

orientation affects both the stability of the grasp and the directions in which forces can be

applied by the fingers. For example, for grasping an upright book there is greater stability if

the approach direction of the wrist is perpendicular to the spine (Figure 4.1a) than if it is at

a downward 45◦ angle (Figure 4.1b), because the hand is then unable to tightly close around

the book. Even small deviations from the optimal orientation can quickly lead to poor

grasps. Clearly then, simply allowing inverse kinematics to arbitrarily pick an orientation

for the arm as done in the näıve approach will likely lead to suboptimal configurations.

(a) Approach perpen-
dicular to spine

(b) Approach at down-
ward 45◦ angle

(c) Approach aligned
with spine

Figure 4.1: Examples of good and bad grasps

We can specify the direction of the wrist using two parameters for orientation – the

yaw and the pitch. A schematic for these is shown in Figure 4.2. The yaw determines

the horizontal approach direction, and is 0 on the vertical plane; the pitch determines the

vertical approach direction, and is 0 on the horizontal plane. Again, we do not consider the

final orientation parameter – the wrist roll – as it does not affect the wrist direction. Using

a combination of these two parameters, we can specify any wrist direction. Since the target

grasping point only restricts 3 of the 6 dimensions searched by inverse kinematics, further

restricting the dimensionality by 2 (by specifying yaw and pitch) is possible and in general
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(a) Yaw (b) Pitch

Figure 4.2

leads to feasible solutions.

To generate a representative set of configurations with different wrist orientations, we

sample from the orientation parameters (yaw and pitch), then for each pair of parameters,

the modified inverse kinematics returns several configurations that satisfy both position

and orientation requirements. The selection of the set of orientation parameter pairs is

simply a search over 2-D space. The full space for both yaw and pitch is (−180◦, 180◦], and

by discretizing the space, we can include all pairs into our search for good configurations.

However, only 1

8
of the space needs to be considered, since very few objects require grasping

from underneath or behind. Moreover, since the cameras will not be able to see these regions

as clearly as top and frontal areas, grasping from underneath or behind is considerably more

dangerous. Hence, we only search over yaw in [−90◦, 90◦] (in front) and pitch in [0, 90◦]

(above). We discretize and sample parameter values with 30◦ steps.

4.3 Hand Configuration

The search for hand configurations includes several components. The most important one is

the wrist roll, which has been excluded from the inverse kinematics search. As the middle

finger cannot be moved around the hand, the wrist roll solely determines the finger’s place-

ment, which greatly affects grasping. For example, if the middle finger were aligned along

the major axis of a book’s spine, (Figure 4.1c), any grasp would have to close in along the

spine’s direction, which is difficult compared to grasping perpendicularly to the spine. As

with the wrist directions above, we therefore generate configurations in steps of 30◦, between

the joint limits of [−165◦, 165◦]. Note that while the wrist link may appear symmetric, subtle

differences in the fingers’ placement prevent us from reducing the search space.
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Search is less applicable for the actual hand parameters. The spread mainly determines

the overall force directions. In general, the more useful type of grasp is the power grasp,

where the spread is fully open. This applies strong forces in the directions that the fingers

close in on. However, this grasp can be less stable because the force is concentrated in one

direction. Hence a balanced spread, where the angle between any two adjacent fingers is the

same, can sometimes be desirable, especially when a symmetric object such as a ball is being

grasped. Only these 2 spreads are considered for each 7-D grasp configuration obtained from

inverse kinematics and wrist roll search. Other spreads are either too similar, or are likely

to fail (e.g., a fully closed spread would push away the object before a grasp can be made).

Finally, given the 8-D configuration from above, the finger openings are found. Although

the intuition behind the näıve method, full opening of the fingers, is reasonable, it is likely

to fail in cluttered environments because the fingers may hit adjacent objects. Instead of

using the maximal opening, we therefore seek the minimal opening that gives a collision-

free configuration. This ensures a feasible configuration (since it does not intersect any

object according to the point cloud), yet provides a tight grasp and maximum safety from

neighboring objects. For purposes of efficiency, we chose for all fingers to open to the same

degree; allowing more freedom does not lead to large gains, and instead decreases the stability

of grasps. Choosing the finger values therefore simply involves decreasing the opening from

1 (closed) to 0 (open) in steps of 0.1 until a collision-free configuration is found, at which

point the configuration θ ∈ R
11 is added to the grasp configuration candidate set. If at

a finger opening of even 0 the configuration remains in collision, then the configuration

is simply infeasible and is discarded. Note that because collisions are checked using the

motion planner’s collision checker, we have the property that any grasp configuration in the

candidate set is feasible, hence most impossible goal configurations are already pruned.

Using the components discussed, we can expand the search system shown in Figure 3.3

into the pipeline shown below in Figure 4.3.

Figure 4.3: Search System
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Chapter 5

Selection

In order to apply the selection part of the comparative approach, we must have a system

that can rate a given grasp configuration’s quality. This has been done in the past, as

discussed in Chapter 2, by computing features that are indicative of good/bad grasps. In

our case, we use the local 3-D point cloud of a grasp configuration to compute these features;

the features will be discussed in Section 5.3. A set of actual point clouds were collected,

and sample grasp configurations for these scenes were found. The configurations were also

assigned a label 0 or 1, 0 indicating that it is a bad grasp, and 1 for a good grasp. The point

clouds, configurations, and labels were then used as training samples to learn a model for a

logistic classifier. The details of the training process will be described in Section 5.4. This

model can then be used to evaluate the quality of future grasp configurations, as shown in

Figure 5.1. From the candidate set of 11-D grasp configurations outputted by the search

algorithm, the features of each candidate are computed, then a quality measure between 0

and 1 is assigned to each. The probabilistic interpretation of logistic regression suggests that

this quality measure is equal to the probability that the configuration’s label is 1, i.e., the

probability that the configuration is a good grasp. Hence the configuration with maximum

quality, i.e., the one most likely to be a good grasp, is selected.

Figure 5.1: Selection System
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5.1 Motivation

At this point it may seem strange that the comparative approach can actually work on the

significantly incomplete sensor data. Previous works such as [8, 10, 11] worked around this

problem by selecting scenarios where global object information could be reliably retained

despite sensor errors. Examples of such information included a good estimate of the object’s

center of mass and symmetry axes, or even the object contour for planar objects. For general

3-D point clouds that STAIR normally receives, though, none of the above information can

be accurately estimated. However, we observe that there are several point cloud properties

that indicate that we do not necessarily need global object information. In particular, we

hypothesize that it is sufficient in most cases to consider only the local region of an identified

grasp location; if certain local properties are satisfied, then the grasp is likely to be successful.

Before the local properties are discussed, which essentially form our features, it is useful

to understand the rationale behind this hypothesis. When given a 3-D location to grasp, the

most important 3-D region to consider is the region where the grasp will occur, i.e., the local

region. For example, little can be gained by considering the ends of a stick that we want

to grasp in the middle. In addition, although the vision data is incomplete, its distribution

of incompleteness is very skewed; an object will have most of its front face perceived by

the SwissRanger camera, but most of the back half will be missing. Since the algorithm

should always choose visible 3-D locations to grasp, we are therefore usually guaranteed

a reasonably complete model of the local region. We can therefore achieve more reliable

feature computations by considering only the local region, and without needing to discard

too much useful information from external regions. As long as our features, to be described

in Section 5.3, are local and try to capture good local properties in grasps, we claim that we

can still accurately predict whether a given grasp configuration will be successful or not.

5.2 Definitions

Several definitions relating to hand configurations will become convenient when we describe

our features, because they are mainly based on the hand configuration of the grasp. Note

that the terms used here are not widely-used nomenclature, but are introduced solely for the

purposes of clarity. The terms we will use most are (see Figure 5.2 for a schematic):

• Out vector/direction: This is the vector/direction that comes out from the center of

the final arm link. The distance along this direction will be denoted as the “extension”;

zero extension on the out vector denotes that the point is on the palm of the hand.

The maximum extension of the fingertips is about 10cm.
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(a) Side view (b) Palm view

Figure 5.2

• Horizontal direction: This is the direction between the two sides of the hand, which

is equivalent to the direction between the middle finger’s tip and the point on the out

vector with the same extension as the fingertip.

• Vertical direction: This is the direction normal to the out and horizontal directions.

Distance along this direction will be denoted as the “height”; zero height is the height

at the intersection of the out and horizontal directions. Being on either size of zero

will be referred to as being “above” or “below” the hand; which side corresponds to

which name is arbitrary (what matters is that there are two distinct sides).

• Finger direction: This is the direction in which the fingers close (and hence apply forces

in). It is taken to be the vector pointing from the fingertip toward the point on the

out vector with the same extension as the fingertip.

• Grasp center: This is the point on the out vector with extension 5cm. A sphere of

radius 5cm about the grasp center, which we will call the grasp sphere, approximately

defines the region that the hand can grasp.

• Region center: This is the point on the out vector with extension 10cm. A sphere of

radius 10cm about the region center, which we will call the region sphere, is taken to

be the local region; points further away usually do not yield significant information.
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5.3 Features

Note that all features discussed here and previously by us in [1, 2, 17] can be easily computed

from the local point cloud and are all generalizable to most robotic manipulators.

5.3.1 Presence

A grasp must first be able to achieve good contact with the target object; otherwise, the

object may be entirely missed by the hand. This contact between the hand and the object

can be approximated by the presence of point cloud points within the hand. Intuitively, the

more points within the volume of the hand, the bigger the grasping area and volume of the

object, hence the less likely a miss will occur. Similarly, if there are very few points within

the hand, the grasp may likely fail because the points may just have been noise (where the

hand will grasp air) or may have been a small tip of the object (where the hand should grasp

somewhere else). We therefore simply count the number of points within the grasp sphere.

Knowing that there are points nearby but not necessarily in the grasp sphere is useful

too, as a large nearby presence increases the likelihood that an object is actually present.

Hence the number of points within the region sphere and an “edge” region are also counted.

The edge region is defined as all the points in the local region with extension less than

the maximum finger extension; this usually defines the edge of the object, hence the given

name. An example of the presence feature on the edge region is shown in Figure 5.3a. These

counts give information about how the object appears near the target location and increase

the robustness of the feature. Note, however, that this feature has certain drawbacks, as

small objects will naturally have fewer points but should not be undesirable to grasp. Such

subtleties are accounted for by the training set and the learning algorithm.

(a) Presence (b) Stability

Figure 5.3: Presence and stability features. Red cubes in the point cloud are counted.
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5.3.2 Stability

Assuming that an object is present, other grasp properties can be analyzed. Another im-

portant safety feature for grasp configurations is that it must be stable, so an object will

not slip and fall out of the hand (hence by our definition of a grasp, the grasp fails). While

general stability is difficult to determine without knowledge of the object’s center of mass

and other mechanical properties, local stability is a necessary condition for general stability.

Local stability of a grasp depends on the distribution of the object (i.e., the point cloud)

within the hand. Ideally, about the center of the hand, the point cloud should be evenly

distributed along all axes. The outward axis from the hand is accounted for by the presence

feature; if not enough points are near the hand, especially within the edge region, the grasp

will be marked as bad. The horizontal axis is not important because a skewed distribution

along this axis simply means that when the fingers are closed for grasping, the closer finger(s)

will push the object toward the farther finger(s), which in general is not a problem.

The final vertical axis needs to be accounted for. An even distribution along this axis

means that the number of points above and below the hand should be equal (i.e., near

a 1:1 ratio). We therefore compute this feature as
∣

∣

1

2
− Points above

Points above + Points below

∣

∣, which is

the absolute difference between the ideal (where points above = points below) and actual

distributions. This formulation is used so that the level of idealness is monotonic, with

0 being the best, 0.5 the worst, and the lower the value the better the stability. We also

consider a similar measure where we count points only strictly above and below the hand (i.e.,

not enclosed by the hand), again working from the notion that accounting for local regions

neighboring the grasp sphere provides useful information. Figure 5.3b illustrates this strict

feature on an example of an unstable grasp. These measures are computed with the region

sphere and edge region, since stability depends more on the wider region than on the internal

grasp sphere. The presence feature combined with the stability feature therefore accounts

for grasp stability by considering the point cloud distribution in all three axis directions.

5.3.3 Grasp Direction

For an effective grasp, the hand must be able to apply forces on the object in the correct

direction and orientation. For example, grasping a long tube along its axis is much less

effective than grasping perpendicular to its axis. Intuitively, an object should be grasped at

narrow places and not at wide sides because at narrow places a tight closure on the object

can be easily achieved, whereas at wide sides this is difficult, or even impossible, if the side

is wider than the hand. To capture this intuition, we consider the principal components of

the region sphere, which denote the local shape and direction of the object.
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Using singular value decomposition (SVD), we obtain three orthonormal component di-

rections ui with variances σi, with σ1 largest and σ3 smallest. The greater the variance, the

more important the direction is in defining the region; for example, for a plate as displayed in

Figure 5.4, u1 and u2 will lie on the face (with large σ1 and σ2), whereas u3 will be normal to

the plate (small σ3). If we consider the horizontal direction vector h, which is the direction

in which the middle finger (and hence the hand) closes, we want h to be parallel to directions

with small variances and orthogonal to those with large variances. In the case of the plate of

Figure 5.4, if h were parallel to a direction with large variance (any combination of u1 and

u2), the plate would be wider than the hand and no grasp would be possible. However, were

h parallel to the plate normal (u3), then a good grasp could be achieved.

We therefore compute the directional similarity si = |ui · h| for each component direction.

Since u1 is largest and u3 is smallest, it is desirable that s1 = 0 and s3 = 1. This is therefore

measured by computing the difference between the directional similarity and its ideal value,

which is given by
(

σ1−σi

σ1−σ3

− si

)2

. Depending on how large σ2 is, the above measure states

that it may or may not be desirable to grasp in the direction of u2. These features therefore

capture whether the grasp configuration can effectively apply forces on the object.

Figure 5.4: Principle components of a plate. h parallel to u3 is the only good grasp.

5.3.4 Contact Normals

Along the same direction, it is possible to check other orientations. Even if the object’s

narrow edge is selected by the previous feature, the hand may be tilted, as shown in Figure

5.5. This corresponds to bad yaw and pitch orientations. To prevent tangential slippage

forces, the fingers and the palm of the hand should therefore come into contact with the

object in the direction of the surface normal. For each finger direction (in which each finger
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closes) and the out direction (in which the palm reaches toward the grasping point), the

direction should be parallel to its corresponding surface normal on the object. The surface

normal is the plane of points closest to the fingers/palm along the finger/out directions. From

this plane, we can again use SVD to compute the plane normal, and ideally the directional

similarity between the finger/out directions and the corresponding surface normal is 1.

Figure 5.5: Examples of hand tilted even if narrow edge is selected.

5.4 Training

Three classes of objects were considered for training – plates, bowls, and rectangular blocks.

For each class, 5 distinct objects of various sizes and shapes were chosen. The SwissRanger

3-D point cloud was collected for these objects. We did not use the Bumblebee2 point

cloud for the selection algorithm because it was too incomplete and produced heavy bias

toward textured regions such edges, since such regions would then have more points. Grasp

configurations for these objects were then collected by manually moving the arm as if to

grasp the object. Configurations were then visualized in simulation and labeled 0 (bad

grasp) or 1 (good grasp) by hand, based on experience of how successful and unsuccessful

grasps appear in simulation. For each object, 10 good and 10 bad grasp configurations were

collected to give a balanced training set. Since there were 15 objects, this gave a total of

300 training samples. Features for each of the sample configurations were computed, and we

applied logistic regression to learn a logistic model for the relationship between the features

and the labels. The model was then stored and used, as in Figure 5.1, to evaluate future

grasp configurations.
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Chapter 6

Experimental Results

The search and selection algorithms described in the previous two chapters will first be

evaluated, then experiments performed on the actual STAIR robot will be discussed.

6.1 Search

As described in Chapter 4, for each of the 20 3-D grasping points generated by our classifiers

and for each yaw-pitch parameter pair, the system tries to find a satisfying 6-D inverse

kinematics solution. The yaw and pitch spaces are discretized into 7 and 4 steps respectively.

For each 6-D solution, 12 different wrist roll configurations are found, and for each 2 spread

angles are considered. This gives an 8-D configuration, from which the finger openings are

determined. Multiplying the search spaces in each component, for each 3-D grasping point

we therefore have at most 7 × 4 × 12 × 2 = 672 11-D grasp candidates, and hence in total

we have at most 672 × 20 = 13440 candidates. While this may appear to be a very large

number, most of these candidates are not included in the candidate set, either because an

inverse kinematics solution was not found or no finger openings could be found to make the

configuration collision-free. In practice, for a given 3-D grasping point only approximately

10% of the search space become included, and since some grasping points are unreachable

and give no feasible configurations at all, the total number of candidates is around 1000.

To better understand the role of each component of the search pipeline, we can compare

the difference in search performance when components are removed (and the näıve strat-

egy equivalents are used). For each component removal, we ran the search algorithm on

the training samples used for the selection algorithm (see Section 5.4), and analyzed the

candidate configuration set in simulation. When simply using the näıve method, only one

11-D grasp candidate is found from each 3-D grasping point, so at most 20 grasp candidates

can exist; however, this number is usually around 5 only, because the other grasping points
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did not have inverse kinematics solutions or had configurations in collision with the point

cloud. Moreover, at most 1 or 2 were actually good grasps, and in a significant number of

cases no good configurations were found at all. The lack in number of good configurations is

extremely undesirable, since no matter how well the selection algorithm performs, it cannot

produce a configuration that is better than the best one in the candidate set; if the set has

no good configurations, then the final grasp must be bad too.

Significant improvement can be seen when the wrist roll search is added. Now instead

of one 11-D configuration per 3-D grasping point, 12 configurations are found, giving a

candidate set of size around 100. Around 30% of these configurations are good grasps, which

at first glance is disappointing because the same percentage held for the näıve method.

However, the difference lies in that there are now 30 good grasps in 100 instead of 1-2

good grasps in 5. First, this means that there are many more good grasps for the selection

algorithm to choose from, hence eliminating the potential problem in the näıve method where

the candidate set had no good grasps at all. Second, not all good grasps are equal; some

are better than others. With a greater number of candidates, the likelihood that a better

good grasp is produced is higher. Assuming that the selection algorithm can choose a near-

optimal or optimal configuration, the final grasp should therefore in general be better if the

candidate set was larger. Empirically, the difference is evident; the näıve method succeeds

less than 50% of the time, whereas with wrist roll search the success rate is over 70%.

Adding in the wrist direction (yaw-pitch) component did not give as much improvement

as expected. The grasp candidate set size was increased by an order of magnitude, but the

proportion of them being good grasps dropped slightly. There are two main reasons for the

small amount of improvement. First, increasing the number of good grasps from a moderate

number to a large number, which is what happens when wrist direction search is added to

wrist roll search, is much less significant than increasing the number from close to zero to

a moderate number, which is the case when wrist roll is added to the näıve method. The

likelihood that a reasonably good grasp exists in the moderate number is high, so increasing

the number of good grasps will unlikely produce a much better good grasp, hence adding

wrist direction search was much less significant. Second, the system without wrist direction

search already contains some degree of sampling in the yaw-pitch space. This exists because

inverse kinematics originally had the freedom to choose the orientation of the arm (and hence

the wrist), so each of the reachable 3-D grasping points most likely sampled a different part

of the yaw-pitch space. Additionally, as many grasping points are very close to each other,

this effectively means that some grasping points have multiple configurations with different

wrist directions reaching them. This makes the wrist direction search redundant, hence the

small improvement increase. Empirically, the success rate increased by approximately 5%.
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6.2 Selection

To test the features and see if they are effective, the training samples were split into a

training set and a test set, where the logistic classifier was trained on the training set, and

this model was tested on the test set. In particular, 10-fold cross validation was used, where

the training samples were split into 10 partitions, then 10 tests were performed, each time

selecting a different partition as the test set and the other partitions form the training set.

Finally, the errors over the 10 tests are averaged. This is a commonly used test.

Of the four categories of features presented in Section 5.3, all were useful except for the

contact normals feature. The problem is that in order for surface normals to be accurate,

the point cloud region from which a surface normal is found must be small. However, a

small region means fewer points, and given the low resolution of the SwissRanger camera,

very few points (around 10) end up being considered. The fewer the number of points, the

more each one has an influence on SVD (which is used to extract the surface normal from

the points), and the less meaningful the SVD is; in fact, the surface normals produced are

often inaccurate. The contact normals category of features was therefore excluded and was

not used in our empirical experiments discussed in the following sections.

For the other three categories of features, an 85% average test set accuracy was achieved.

6.3 Grasping Single Novel Objects

To test our algorithms on the actual STAIR robot, we first considered grasping single objects

in uncluttered environments from 13 novel classes (i.e., of different types from the training

set) in a total of 150 experiments. These objects differed significantly in size, shape, and

appearance, and are very different from the plates, bowls, and rectangular blocks used in

the training set. In each trial, one object was placed randomly on a table in front of the

robot. The results of this experiment can be seen in Table 6.1. “Prediction good” refers to

the percentage of cases the final grasp returned by the selection algorithm appeared to be

a good grasp in simulation, and “actual success” refers to the percentage of cases in which

the robot actually grasped the object (and by our definition, was able to pick it up).

We performed 10-20 trials for each object class, and each class had different instances of

each object (e.g., multiple apples were used for the “apple” class); this tested the robustness

of the algorithm to changes in the object. Our trained classifier was capable of selecting a

candidate grasp that succeeded in simulation 81.3% of the time. When these grasps were

actually performed, the grasp success rate was 76%. The gap in success rates reflects that

the model is imperfect, since grasps that supposedly succeed in the model fail in reality.
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We also found that success rate was very different depending on the size of the object,

hence size information was also provided in Table 6.1. We defined an object to be small

if it could be enclosed within the robot hand, medium if it was approximately 1.5-3 times

the size of the hand, and large if the size was greater. Both prediction and actual grasping

were best for medium sizes, with success rates of 92% and 86% respectively. On the other

hand, success rates were considerably lower for large objects, mainly because the edges where

grasps can occur were naturally much thicker for the large objects chosen. This constrained

the number of feasible grasps because much fewer grasp configurations could actually fit the

edge and be able to apply sufficient force on the object for grasping.

Nevertheless, even though the experimental setup was significantly harder (in terms of

the object classes considered) than our previous experiments in [13], our current algorithm

was still able to achieve an overall grasp success rate of 76%, which compares to the previous

success rate of 70%. Examples of STAIR grasping experiments can be seen in Figure 6.1.

Table 6.1: Grasping Single Objects (150 trials)

Object Class Object Size Prediction Good Actual Success
Ball Small 80% 80%
Apple Small 90% 80%
Gamepad Small 85% 80%
CD container Small 70% 60%
Helmet Medium 100% 100%
Ski boot Medium 80% 80%
Plate bundle Medium 100% 80%
Box Medium 90% 90%
Robot arm link Medium 90% 80%
Cardboard tube Large 70% 65%
Foam Large 60% 60%
Styrofoam Large 80% 70%
Coil of wire Large 70% 70%

Figure 6.1: Examples of grasping experiments.
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6.4 Grasping in Cluttered Environments

The main objective of our algorithm was to address the problem of grasping in cluttered

environments. In a total of 40 experiments, each in which more than 5 objects were placed

randomly but close to each other (possibly even touching), STAIR was instructed to any

single object from the scenario. If any object can be grasped from the scene, the experimental

trial was denoted a success. STAIR was able to achieve a success rate of 75% in this task

(see Table 6.2), which is surprisingly close to the success rate for single objects, indicating

that our algorithm is to some extent robust to clutter.

Table 6.2: Grasping in Cluttered Scenes (40 trials)

Environment Object Class Prediction Good Actual Success
Terrain Long tube 87.5% 75%
Terrain Rock 100% 75%
Kitchen Plate 87.5% 75%
Kitchen Bowl 75% 75%

6.5 Grasping on a Different Robotic Platform

One property noted when describing the selection algorithm’s features in Section 5.3 is that

the features are not manipulator-dependent, and can be applied on other robotic hands. To

test the validity of this claim, we applied the algorithm on our STAIR 1 robot, the predecessor

of the current STAIR robot studied. STAIR 1 parallel-plate gripper whose size is somewhat

smaller than the hand discussed so far. In a total of 50 trials of a dishwasher unloading task,

where kitchen items were to be removed from a cluttered dishwasher containing 3 or more

randomly-placed objects, our algorithm gave results comparable to the previous two tasks

(see Table 6.3). Our algorithm can therefore be generalized to different robots.

Table 6.3: Dishwasher Unloading on STAIR 1 (50 trials)

Object Class Prediction Good Actual Success
Plate 100% 85%
Bowl 80% 75%
Mug 80% 60%
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Chapter 7

Conclusions

To construct a robust grasping system for STAIR, I applied the comparative approach and

split the problem into two main subsystems - search and selection. The search algorithm

uses input from STAIR’s cameras to generate a grasp configuration candidate set, and the

selection algorithm ranks each of these candidates and outputs the maximally-scoring one.

Combining these two subsystems, we get a system that takes as input camera data of the

scene in front of the robot, and gives as output a single grasp configuration (and a grasp

trajectory through motion planning) that grasps a target object in the scene.

In search, we used a previously developed image-based classifier to find candidate 3-D

grasping points from the camera images and point clouds. A näıve method that simply

found a configuration that reached these 3-D grasping points was assessed, and was found

to perform poorly. The main problem observed was that arbitrarily choosing the orientation

(which was not constrained by the näıve method) often led to bad grasps. To have a chance

of getting a good grasp, the space of orientations must therefore be sampled systematically.

Hopefully, even if the proportion of good grasps among those found is small, the selection

algorithm will be able to choose grasps with correct orientations. Orientations are sampled

in two independent spaces, the wrist direction (yaw-pitch) and the wrist roll. The latter

sampling proved to give significant improvements empirically, and the former was useful but

not as significant. However, due to the brute-force nature of the search, this step is somewhat

slow; more intelligent search methods will be considered and developed in the future.

In selection, we trained a logistic classifier based on features of a grasp configuration’s

local point cloud that were indicative of whether the grasp would succeed/fail. Four cate-

gories of features were considered: presence, stability, grasp direction, and contact normals.

These correspond to checking the presence of point cloud points within the hand’s grasp, the

vertical direction distribution of the object (ideally even), the horizontal direction (ideally

parallel to small component directions of the region), and the finger/out directions (ideally
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parallel to the corresponding surface normals). In practice, the surface normal category

was not used because there were often too few points on the relevant surface’s point cloud,

giving uninformative and inaccurate surface normals. This feature is a powerful check for

orientation, hence its absence probably gave rise to the empirical observation that many

grasps output by the selection algorithm still had suboptimal orientations even with the

grasp direction feature. Not having a way to compute surface normals therefore directly

affects the performance of the grasping system. The root of this problem is the lack of point

cloud points that represent the relevant surface, which is caused by the low resolution of

the SwissRanger camera. There appears to be no other way to resolve this issue until a

higher resolution camera that gives relatively complete images is available; we are currently

developing one that shall be used in the near future.

A more long-term future direction focuses on environment feedback. The grasping system

described in this thesis uses input from the environment at one point only – the beginning.

From that snapshot of the scene, STAIR is expected to be able to grasp a target object with-

out any other input. For humans, that is analogous to looking at the scene and identifying

the target, then blindly moving one’s arm toward the object and grasping the object with

thick gloves on (hence not actually knowing when one has touched the object). This clearly

is a difficult and unreasonable task, because it requires one to be correct from the beginning

– there is no margin for error. Instead, when we perform grasping, we rely on continuous

visual information to locate the object relative to our hand, and on sensory information

from the hand to know when we are touching the object or have collided into something

else. Were similar feedback systems implemented on STAIR, it would know how to correct

its own errors and stop before doing something bad (e.g., tipping over a bowl of water). We

have begun our investigation on force feedback systems, and plan to incorporate them as

part of our grasping system in the future.

Nevertheless, through the robotic grasping system presented in this thesis, STAIR is

now capable of grasping a wide variety of objects in previously unimaginable environments.

This is an important step toward realizing the aim of the STAIR project: to construct an

intelligent robotic agent that can facilitate and interact with the general human population.
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