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1 Introduction

Mobile-manipulation robots performing service tasks in human-centric indoor environments have
long been a dream for developers of autonomous agents. Tasks such as cooking and cleaning typi-
cally involve interaction with the environment, hence robots need to know relevant aspects of their
spatial surroundings. However, service robots typically have little prior information about their en-
vironment, unlike industrial robots in structured environments. Even if this information was given
initially, due to the involvement of other agents (e.g., humans adding/moving/removing objects),
uncertainty in the complete state of the world is inevitable over time. Additionally, most infor-
mation about the world is irrelevant to any particular task at hand. Mobile-manipulation robots
therefore need to continuously perform the task of state estimation, using perceptual information
to maintain a representation of the state, and its uncertainty, of task-relevant aspects of the world.

Because indoor tasks frequently require interacting with objects, objects should be given crit-
ical emphasis in spatial representations for service robots. Compared to occupancy grids and
feature-based maps that have been used traditionally in navigation and mapping, object-based
representations are still in their infancy. By definition, mobile-manipulation robots are capable of
moving in and interacting with the world. Hence, at the very least, such robots need to know about
the physical occupancy of space and potential targets of interaction (i.e., objects). In this thesis,
I propose a representation based on objects, their ‘semantic’ attributes (task-relevant properties
such as type and pose), and their geometric realizations in the physical world.

Objects are challenging to keep track of because there is significant uncertainty in their states.
Object detection and recognition is still far from solved within classical computer vision, and even
less so from a robotic vision standpoint. Objects can also be inherently ambiguous because they
have the same values for some, or even all, attributes. Besides detection noise, other agents may
manipulate objects as well and change object states without informing robots. Compounded over
multitudes of objects (thousands or more) and long temporal horizons (days or longer), the above
sources of uncertainty give rise to a large and difficult estimation problem.

In previous investigations, I have developed estimators for the types, poses, and occupancy of
objects in a static world from noisy perception. In the remainder of the thesis, I will explore:

• Extensions to increase the representation’s expressiveness. Object attributes that change
over time, possibly without the robot’s control or constant observation, need to be tracked.
Estimation under state constraints (e.g., contact, collision) will also be incorporated.

• Approaches that make the representation scalable. Aggressive independence assumptions and
factoring approximations are needed to maintain tractability of the state estimator. Even
this may not be sufficient; an ‘attention mechanism’ that focuses on task-relevant aspects of
the state, and ignores or delays processing for other features, will be explored.

Finally, a state estimator with these characteristics will be demonstrated on a PR2 robot.
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2 Background

Understanding the mobile robot’s spatial environment, by deriving a world model from its sensors,
has long been a problem of interest to the robotics community (Crowley, 1985). Early work typically
focused on using ultrasonic range sensors, tracking low-level planar and corner features as landmarks
in a map (Cox and Leonard, 1994). The resulting geometric maps were useful for mobile robot
navigation, but the features are too low-level for modeling objects.

For mobile-manipulation robots that operate on objects, the world model must contain infor-
mation about object states. With the advent of more effective visual sensors, image features, and
object detectors, world models are now capable of supporting richer representations of objects. For
example, Ranganathan and Dellaert (2007) demonstrated that it is useful and natural to model
indoor places using objects as the basic unit of representation. However, like much of the related
work in semantic mapping (Vasudevan et al., 2007; Zender et al., 2008; Nüchter and Hertzberg,
2008; Pronobis and Jensfelt, 2012), the ultimate goal was place recognition for navigation tasks.

Recently, there has also been growing interest in world modeling involving object information,
but without explicit recognition. Anati et al. (2012) showed that object-based robot localization is
still possible even if ‘soft’ heatmaps of local image features are used instead of explicit object poses.
The recent success of dense 3-D reconstruction (Newcombe et al., 2011; Whelan et al., 2012, 2014)
has also led to dense surface maps being a viable representation of space.

I argue that these representations are not sufficient for mobile-manipulation tasks, which require
precise knowledge about object states, including information that may not be visible. I cannot cook
with a collection of localized SIFT features or a reconstructed cloud of points; I cook with a wok.
Ultimately, recognition must be part of the pipeline. Object state estimation, the focus of this
thesis, considers the acquisition and maintenance of knowledge beyond the point of recognition.

To measure object states, we rely on attribute detectors, particularly ones operating on 3-D
visual data. Object recognition and pose estimation has received widespread attention from the
computer vision and robotics communities. With the recent advances in RGB-D cameras, several
systems have been developed to detect object types/instances and their 6-D poses from 3-D point
clouds (Rusu et al., 2010; Glover et al., 2011; Lai et al., 2012; Aldoma et al., 2013; Marton et al.,
2014). I have used one such detector (Glover and Popovic, 2013) as the black-box attribute detector,
but the methods developed in this thesis are agnostic to the detector used.

A basic world model could simply use a detector’s output on a single image as a representation
of the world. However, doing so suffers from many sources of error: sensor measurement noise,
object occlusion, and modeling and approximation errors in the detection algorithms. Aggregating
measurements across different viewpoints can help reduce estimation error. For example, Hager and
Wegbreit (2011) demonstrate the utility of considering a prior 3-D scene model and its potential
evolution over scenes. Using this observation as a premise, active perception approaches (e.g.,
Eidenberger and Scharinger, 2010; Velez et al., 2012; Atanasov et al., 2013) seek the next best
view (camera pose) where previously-occluded objects may be visible, typically by formulating the
problem as a partially-observable Markov decision process. Because the focus is on planning instead
of estimation, active perception is complementary to the world modeling problem, which considers
estimation using measurements from an arbitrary collection of camera poses.

The primary challenge in aggregating object detections across multiple views of the world is
identity management, induced by the fact that measurements often cannot be uniquely mapped to
an underlying object. Tackling this data association problem forms the first part of my thesis. The
second part of my thesis considers how to integrate this object-based representation with traditional
spatial representations such as occupancy grids. Finally, I propose to investigate mechanisms that
will make the developed estimation approaches scalable to large domains over long time horizons.
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3 Completed investigations

Within the space of object-based state estimation tasks, perhaps the most basic one is: what
objects did the robot perceive, and where are they located in the world? These two properties
(type and pose) are examples of object attributes that an estimator should track. Additionally,
the geometric shape models of objects are tracked as special attributes, used to determine their
physical occupancy and realization in the world, thus providing information about feasible motions.

3.1 Semantic World Modeling from Partial Views (Wong et al., 2013b)

(a) Single viewpoint (b) Aggregation of object detections from multiple viewpoints

Figure 1: (a) Given a tabletop scene (top), we want to estimate the types and poses of objects in the
scene using a black-box object detector. From a single RGB-D image, however, objects may be occluded
or erroneously classified. In the rendered image (middle; detections superimposed in red), three objects are
missing due to occlusion, and the bottom two objects have been misidentified. The semantic attributes that
result in our representation are very sparse (bottom; dot location is measured 2-D pose, color represents type).
(b) Aggregation of measurements from many different viewpoints (top) is therefore needed to construct good
estimates. However, this introduces data association issues of the type addressed in this work, especially
when multiple instances of the same object type are present. From all the object detection data, as shown
(bottom) by dots (each dot is one detection), our goal is to estimate the object types and poses in the
scene (shown as thick ellipses centered around location estimate; color represents type, ellipse size reflects
uncertainty). The estimate above identifies all types correctly with minimal error in pose.

The ‘what and where’ problem, when considered abstractly on the level of objects and attributes,
has a natural generalization: given detections of object attributes only (without knowing which
objects generated them), estimate the objects that are present (including their number) and their
attributes. I assume the existence of off-the-shelf black-box attribute detectors, such as object
recognition and pose estimation modules. Because the information returned from such modules
is typically very sparse (at most one detection per object from a single viewpoint), aggregating
detections across multiple viewpoints is necessary (see Figure 1).

However, this introduces data association issues, because it is unclear which measurements
correspond to the same object across different views. I proposed a Bayesian nonparametric batch-
clustering approach, inspired by the observation that ‘objects’ are essentially clusters in joint at-
tribute space. Given attribute detections from multiple viewpoints, this algorithm outputs a dis-
tribution (in the form of samples) over hypotheses of object states, where a hypothesis consists of
a list of objects and (distributions of) their attribute values.
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3.1.1 Related work

The data association problem was historically motivated by target tracking; Bar-Shalom and Fort-
mann (1988) provide a comprehensive overview of the foundations, as well as coverage of greedy
nearest-neighbor methods and an approximate Bayesian filter, the joint probabilistic data associa-
tion filter (JPDAF). Apart from being a suboptimal approximation, the JPDAF is also limited by
its assumption of a fixed number of tracked targets (objects), which is not valid for our problem.

A more principled approach when the number of tracks is unknown is multiple hypothesis
tracking (MHT) (Reid, 1979). In principle, MHT considers the tree of all possible association
hypotheses, branching on the possible tracks that each measurement can correspond to. However,
due to the number of measurements involved, maintaining the entire tree (and hence the exact
posterior distribution) is exponentially expensive and intractable for any non-trivial branching
factor. As a result, practical implementations of MHTs must use one of many proposed heuristics
(e.g., Kurien, 1990; Cox and Hingorani, 1996), typically pruning away all but the few most-likely
branches in the association tree. Aggressive pruning potentially removes correct associations that
happen to appear unlikely at the moment. Although this problem is somewhat mitigated by
postponing ambiguous associations through delayed filtering, the window for resolving issues is
short because of computational limitations. In the context of semantic world modeling, Elfring
et al. (2013) identified the presence of data association issues, and applied an MHT approach.

The MHT pruning heuristics were necessitated by the combinatorial complexity of MHT, which
in turn is due to the enumeration of all possible association histories. Instead of attempting to
evaluate every point in this large space, most of which contains little probability mass, efficient
sampling techniques have been proposed that try to only explore high-probability regions. Markov-
chain Monte Carlo (MCMC) methods for sampling association matchings and tracks have been
explored by Dellaert et al. (2003) for structure-from-motion and by Pasula et al. (1999) for traffic
surveillance. More recently, Oh et al. (2009) generalized the latter work by considering a wider class
of transition moves during sampling, and provided theoretical bounds on the mixing (convergence)
time of their sampling algorithm, MCMCDA. Because only a small space of likely associations is
frequently sampled, and all measurement associations are repeatedly considered (unlike MHT with
pruning), MCMCDA empirically outperforms MHT both in efficiency and accuracy, especially in
environments with heavy detection noise.

3.1.2 Contributions

In the context of previous work, I view my approach as building on the semantic world modeling
problem formulation of Elfring et al. (2013) and the data association techniques of Oh et al. (2009).
As argued above and by Oh et al. (2009), MHT has various drawbacks, which are directly inherited
by the approach of Elfring et al. (2013). However, instead of directly applying MCMCDA to world
modeling, I will introduce more domain assumptions to make inference more efficient.

Unlike target tracking, for which most data association algorithms are designed, semantic world
modeling has three distinguishing domain characteristics:

• Objects can have attributes besides location, and hence are distinguishable from each other
in general (which likely makes data association easier). Some data association methods can
be readily generalized to this case (as was done by Elfring et al., 2013), but it excludes some
from consideration, such as the probability hypothesis density (PHD) filter by Mahler (2007).

• Only a small region of the world is visible from any viewpoint. Most data association methods
operate in regimes where all targets are sensed (possibly with noise/failure) at each time point.
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• Most object states do not change over short periods of time.

In light of the final point, I studied the semantic world modeling problem under the stringent
assumption that the world is static, i.e., object states do not change. This does not trivialize the
data association problem, since it is still necessary to determine measurement-to-object correspon-
dences (and is exacerbated by the limited field of view). However, target-tracking algorithms no
longer seem most appropriate, since time is no longer an essential dimension. Instead, the problem
becomes more akin to clustering, where objects are represented by points in the joint attribute
(product) space, and measurements form clusters around these points.

A useful model for performing clustering with an unbounded number of clusters is the Dirichlet
process mixture model (DPMM) (Antoniak, 1974; Neal, 2000), a Bayesian nonparametric approach
that can be viewed as an elegant extension to finite mixture models. I applied this method to world
modeling and derived a Gibbs sampling algorithm to perform inference. The sampling candidate
proposals in this algorithm can be viewed as a subset of those considered by Oh et al. (2009).
However, clustering ignores a crucial assumption in data association, which led me to introduce
modifications and approximations to address this issue.

3.2 Combining Object and Metric Spatial Information (Wong et al., 2014a)

Object
pose

Pose
observation

(a) Object-level

Occupancy
prior

Grid cell
occupancy

Occupancy
observation

(b) Metric-level

Object
pose

Occupancy
prior

Pose
observation

Grid cell
occupancy

Occupancy
observation

(c) Information fusion

Figure 2: Graphical model depiction of object and metric spatial information. (a) Object attributes such
as pose are detected and tracked using the methods described in Section 3.1. (b) Occupancy observations
are used separately to maintain a standard occupancy grid (Thrun et al., 2005). (c) Combining these two
sources of information is useful (see Figure 3); I derived an inference procedure to link the two (red arrow).

Alas, not all things in the world are objects and attributes. One concept that was lacking in the
above work was the notion that objects occupy physical regions of space. The concept of free space,
regions that no object overlaps, was also only implicitly represented. It is therefore difficult, in the
object-attribute representation, to incorporate absence/‘negative’ observations, most prominently
that observing a region of free space should suggest that no object overlaps that region. On the
other hand, this information is handled very naturally in an occupancy grid, but grids cannot
incorporate the concept of ‘objects’ (besides representing them as a collection of cells).

The complementary advantages of these two representations inspired a search for a way to
maintain filters of both object and metric information. Because filtering in the joint state involves
complex dependencies and is intractable, I instead adopted the strategy of filtering separately in
the object and metric spaces by using the existing filters. To compensate for the lost dependencies
between objects and their geometric realizations, I then developed a way to merge the filters on
demand as queries about either posterior distribution are made.
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(a) Scenario (b) Robot view
(e) Initial belief:
P(1 car) = 0.43

(f) Board is moved:
P(1 car) = 0.73

(g) Free space obs.
rules out two-car case

(c) Is it 1 car? (d) Or 2 cars?
(h) Arm moves towards object:
P(1 car) = 0.44

(i) Arm ‘overlaps’ second car,
rules out two-car hypothesis

Figure 3: A 3-D demonstration on a PR2 robot. Plots show occupancy grids with 1m × 0.4m × 0.2m
volume, containing 104 cubes of side length 2cm, with the final (vertical) dimension projected onto the table.
Colors depict occupancy type/source: Yellow = free space observation; Black = occupancy observation; Blue
= inferred occupancy from one-car train; Green = inferred occupancy from two-car train; Red = occupied
by robot in its current state. In this projection, the robot is situated at the bottom center of the plot,
facing ‘upwards’; the black line observed near the bottom corresponds to the board. (a)-(b) A toy train
is on a table, but only part of the front is visible to the robot. (c)-(d) This is indicative of two possible
scenarios: the train has one car or two cars; there is in fact only one car. (e)-(g) One way to determine the
answer is to move the occluding board away. This reveals free space where the second car would have been
(circled in (e)), hence ruling out the two-car case. (h)-(i) Another way is to use the robot arm. If the arm
successfully sweeps through cells without detecting collision, the cells must have originally been free and are
now occupied by the arm. Sweeping through where the second car would have been therefore eliminates the
possibility of the train being there. Video: http://lis.csail.mit.edu/movies/ICRA14 1678 VI fi.mp4

Since Moravec and Elfes (1985) pioneered the occupancy grid model of space, occupancy grids
have been used extensively in robotics, most notably in mapping. These maps have paved the way
for tasks such as navigation and motion planning, in which knowledge of free and occupied spaces is
sufficient for success. However, as we move to tasks that require richer interaction with the world,
such as locating and manipulating objects, occupancy information alone is insufficient.

In the mapping community, there has been recognition that using metric representations only
is insufficient. In particular, the rise of topological mapping, and the combination of the two in
hybrid metric-topological mapping (Thrun, 1998) suggests the utility of going beyond metric repre-
sentations. These hybrid representations have been successfully applied in tasks such as navigation
(Konolige et al., 2011). In the related field of semantic mapping (e.g., Kuipers, 2000; Ekvall et al.,
2007; Pronobis and Jensfelt, 2012; Liu and von Wichert, 2014), topological information is typically
extracted from metric layers (occupancy grids). As described in Section 2, some works in semantic
mapping do place greater emphasis on the detailed modeling of objects (e.g., Ranganathan and
Dellaert, 2007; Wurm et al., 2011; Mason and Marthi, 2012). Wurm et al. (2011) modeled objects
as local grid models within a hierarchy of octrees, where the hierarchy was informed by support
relations. Mason and Marthi (2012) describe a system that maintains world models by detecting
protrusions atop planes and considering them as ‘objects’. However, as with the hybrid mapping
community, object-based information is rarely propagated back down to the metric level.

Combining object-level and metric-level information is useful, as depicted in the example in
Figure 3. In particular, I identified two ways in which fusion is particularly informative: free space
detections strongly indicate that objects cannot be positioned in such regions (Figure 3(g)), and
object pose detections can be used to infer that overlapping occupancy cells must be occupied. By
considering the hypothetical occupancy induced by objects and observing occupancy information
that is inconsistent, hypotheses about objects’ attributes can be ruled out, and uncertainty reduced.
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4 Proposed Directions

I propose to continue investigating two orthogonal directions: expressiveness and scalability.
The former refers to the class of object attributes, and possibly other non-object spatial information,
that the state estimator is capable of maintaining. The latter refers to the complexity of the
estimator, both as a function of the number of objects / volume of space that a robot has explored,
and of the time that it has been online. Naturally, maximizing expressiveness of the state estimator
while maintaining scalability is desirable. Characterizing this trade-off and demonstrating efficient
and sound estimation in real-world scenarios is the primary objective of this proposed thesis.

4.1 Expressiveness

So far, I have only considered object type, object pose, and metric occupancy as attributes. There
is nothing fundamental in the current approach that limits attention to these three – it is only
a matter of integrating additional attribute perception modules. Additional attributes that are
needed should surface when identifying suitable demonstration tasks later.

Besides aggregating static properties, there are at least two aspects of object state that will
require non-trivial extensions to the existing representations. First is the temporal dynamics of
object states, in particular considering changes that do not occur continuously over time, but
rather at discrete events. The motivating case for this is intervention by another agent while the
robot is away – when the robot returns, how much of the previous world state estimate can it
retain? Is it possible/useful to tell if an object has been moved, or must estimates be obtained
from scratch once a change has been detected?

The second extension is the incorporation of known state constraints. Examples of constraints
include object-object non-interpenetration (Grundmann et al., 2010; Wong et al., 2012), sup-
port/containment relationships, and stability/contact. State estimation with hard constraints is
challenging because of the additional coupling of (typically many) state variables. However, con-
straints also offer an avenue for estimation to be more efficient, since they can greatly reduce the
feasible state space. For example, the vertical position of objects in a stack is essentially determined
once it is recognized that each object must be resting stably on the one beneath it.

4.2 Scalability

As the spatial representation’s expressiveness increases, the space of possible states grows com-
binatorially too, and maintaining distributions over all states is clearly intractable. There are at
least two approaches for reducing the space that are worthy of further investigation: factoring the
state (asserting a simpler model, i.e., more independence assumptions and fewer dependencies),
and ignoring (or delaying evaluation in) certain subspaces of states.

One possibility for the former was already explored in the work described in Section 3.2, where
object and metric information were filtered independently, and only fused on demand at query time.
This strategy offers computational advantages during filtering, while allowing dependencies to still
be incorporated when more accurate answers are necessary. However, there are no guarantees on
when such an approach is sound; a theoretical characterization is desirable.

Ultimately though, even the most aggressive factorization cannot provide a good solution –
there are just too many things one can keep track of in the world! Ideally, a state estimator
should consider the task at hand as well, and ignore all information that is irrelevant in the present
moment. More concretely, I hope to devise a scheme that takes as input a list of state variables
and a description of the task, and prioritizes the variables such that state estimation resources can
be devoted to an appropriately-small, high-priority subset.
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5 Potential Developments

In line with the directions proposed in the previous section, I have identified two thrusts that are
currently in the early stages of development. The first is on incorporating temporal dynamics in
object attributes, the second is on task-relevant estimation by aggressively ignoring information.

5.1 Temporal Dynamics in Object Attributes via a Mathematical Connection

For the work described in Section 3.1 on semantic world modeling, I developed a DPMM-based
approach to resolve the data association problem, with additional constraints that are implied by
common data association assumptions. Under this picture of clustering, objects are analogous to
clusters in the product space of attributes. Hence, temporal dynamics in object attributes are
analogous to evolution in clusters. Clustering problems where clusters change over time have been
studied recently within different communities (e.g., Chakrabarti et al., 2006; Blei and Lafferty,
2006). Within the Bayesian nonparametrics community, the dependent Dirichlet process (DDP)
(MacEachern, 1999, 2000) is a general method for modeling dependencies between a collection of
clusters/distributions, such as over a spatial region or, in our case, a temporal interval.

The DDP can be considered as a formulation that builds on top of the stick-breaking construc-
tion for the DP (Sethuraman, 1994). To define the DDP prior on distributions at two time steps,
take the (infinite) collection of sticks that define the distribution at the first time step, apply a given
stochastic transition process that transforms the stick weights and atoms, the result of which forms
the distribution at the second time. Lin et al. (2010) observed an elegant mathematical connection
between DDPs and Poisson processes, which represented clusters across time as a Markov chain
of DPs, that can in turn be represented using compound Poisson processes. This observation led
to the development of the DDP mixture model (DDPMM), along with an elegant Gibbs sampling
algorithm for performing inference in this model. Building on this, Campbell et al. (2013) recently
introduced an efficient algorithm for performing maximum a posteriori (MAP) inference, via an
analysis of the low-variance asymptotics of the Gibbs sampler (Kulis and Jordan, 2012).

The DDPMM is exactly the right tool for incorporating discrete object dynamics into the se-
mantic world modeling work. Addition, transition, and removal of clusters are all supported in the
DDPMM, which can be used to model analogous operations on objects (when considered as clusters
of attributes). As in the DPMM case, the generic DDPMM likely performs poorly on the data asso-
ciation problem, because it ignores important information encoded in the assumptions/constraints
of the problem. Work is needed to encode these constraints in the DDPMM model and to adapt
the Gibbs sampling algorithm to respect such assumptions.

While the DDPMM provides an elegant foundation for extending the semantic world model
across time, inference is computationally challenging. Even in the static case, Gibbs sampling is slow
because it requires many iterations through measurement data. Constraints that couple variables
together further slows down inference by an order of magnitude. If the dynamic possibilities of
objects are also considered, inference via a modified Gibbs sampling algorithm may be prohibitive.
For the static case, I modified the efficient MAP inference algorithm by Kulis and Jordan (2012),
and achieved object hypotheses comparable to the Gibbs sampler (Wong et al., 2014b). For the
DDPMM, adapting the method by Campbell et al. (2013) will likely produce an analogous result.

Of course, comparing a Gibbs sampler against MAP inference is unfair, since the Gibbs sampler
produces samples from a distribution of data association hypotheses, whereas MAP inference essen-
tially produces a deterministic answer. However, it begs the question: Do we need to reason over
the big latent distribution? Can we perform efficient MAP inference by default, and only perform
the more expensive Gibbs sampling when a better characterization of uncertainty is needed?
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5.2 A Model Attention and Selection Framework for Large-Scale Estimation

To deal with different kinds of uncertainty, much effort has gone into developing various estimators,
including my previous work described in Section 3. However, little attention has been placed on
why the particular estimation problem arises. State estimation should not be treated as a black
box; it should be tied to the task. Estimating large sets of variables is computationally costly; just
because a technique exists to estimate the values of certain variables does not justify its application.
For robots performing tasks, only variables relevant to successful completion should be estimated.
For example, while cooking, a robot should not prioritize estimating cleanliness of its surroundings.
Similarly, while cleaning a specific room, not only should a robot not be concerned with estimating
variables used in the cooking task, it should not even estimate cleanliness of other rooms.

Of course, the selection of relevant variables is not so clear-cut in practice. Lack of cleanliness
in the kitchen environment may lead to food contamination during cooking. Yet, we want to avoid
estimating all uncertain variables at once. Instead, I propose to initially only track a minimal set
of directly-relevant variables, and gradually increase the sophistication of models on-demand, in a
local fashion. This estimator refinement process is triggered by violations in expectations of task
success. With respect to state estimation, if observed empirical quantities differ significantly from
the current probabilistic model, then this indicates the model must be improved.

In light of the object-based semantic world model and the object-metric fused grid described
in Section 3, the latter estimator can be viewed as a refinement of the former, because it fuses
extra observations with the former model. The drawback of doing so is computational complexity:
because the method reasons over grids of space, its representation scales with the volume of space
covered, which, under discretization, typically results in many more grid cells compared to the
number of objects seen. Moreover, the number of observations that need to be handled differs
greatly as well; for example, each image of a scene with several objects on a table will only result
in several attribute detections, but each image pixel generates an occupancy observation (or more).
Ideally, we would track only the coarse object-attribute estimates (and only objects with relevant
attribute values), and if the estimate is not sufficiently accurate (e.g., too much uncertainty), nearby
occupancy information is incorporated via the finer estimator.

The above behavior emerges from a attention-mismatch-refinement-learning framework, wherein
a small subset of task-relevant variables are estimated, and only upon differing from expected task
outcomes (e.g., success) is the estimator incrementally refined by expanding the model class (with
finer models and/or including more variables). The framework has the following components:

• Attention: Task relevance. Autonomous robots need to ‘focus’ on relevant variables for
given tasks. Without constraints, the model-free ‘model’ is always most faithful to observed
data. For many tasks, however, only a small subset of variables benefit the task with addi-
tional accuracy. Improved accuracy for other variables is irrelevant and is a waste of resources.
Monolithic estimation of all variables is not practical; only a small subset matters.

• Mismatch: Fault detection. If deviations between expected and observed values exceed
thresholds, as informed by the task, the current model must be refined.

• Refinement: Model class expansion. When a relevant variable’s model is found inade-
quate, explore a larger model class for a small subset of related variables only.

• Learning: Estimating parameters. Expanded model classes will have additional param-
eters to be learned. Here is where the inference techniques developed for various estimators
apply. Non-parametric ‘models’ (empirical estimates) can be considered the final refinement,
where empirical estimates are used directly, as in model-free approaches.
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5.2.1 A proof-of-concept case study: 1-D colored intervals domain

(a) Task: Locate red (striped) objects in 1-D world (b) Initial task-relevant estimator: Red objects only

(c) Näıve estimator: Estimate all variables (d) After refinement: Includes task-correlated vars.

Figure 4: Locating unknown red (striped) objects in a 1-D domain (line). Curves above objects represent
Gaussian distributions on the object’s centroid. Shaded boxes below the line show a discretized occupancy
grid, where darker shades indicate greater probabilities of being occupied. Different estimators keep track
of different sets of variables; those not shown are ignored.

Consider the domain and task depicted in Figure 4(a). The task is to locate (to some specified
uncertainty tolerance) red (striped) objects on the real line, given a list of ‘images’ as input, each
containing a small set of noisy attribute (location, length, and color) detections and a larger set
of occupancy observations. The näıve solution is to run all estimators on all the observations, as
depicted in Figure 4(c). Since the task is to locate only red objects, this approach, while sound, is
inefficient, especially if the domain is significantly larger and contains few red objects.

Instead, consider the estimator in Figure 4(b). Only objects whose color attribute is red with
high probability are given attention; the rest is discarded/ignored. This is conceivably the minimal
estimator for the task. However, these observations are very noisy (e.g., the output of an entire
object detection pipeline) and lead to large variance in the posterior attribute distribution, above
the required tolerance. The performance of this estimator is therefore mismatched for the task,
and therefore estimator refinement is necessary.

The refinement process involves adding new variables to the estimator and estimating their
values based on a buffer of lazily-stored recent observation values. Variables are ranked and added
(up to a threshold) based on the expected cost reduction obtained by incorporating each of them.
More formally, let X be the variables already estimated (e.g., red object locations), and Y be a
candidate variable to add. For each candidate, consider the benefit in cost f(·) over the distribution
pX , in expectation over the possible outcomes of Y (given what is already known about X):

R(pX|Y) , Ey∼pY

[
f(pX) − f(pX|Y=y)

]
, where pY =

∫
pY |X=x pX(x) dx

In our case, the cost function is the variance on red objects’ location distributions. The criterion
leads to the addition of two sets of variables (Figure 4(d)). The first set, for the left red object, is
a subset of occupancy grid cells; their primary purpose is to distinguish the boundary of the object
more finely. The second set, for the right red object, is more interesting: not only does it include
associated occupancy grid cells, it also includes the location attribute of the nearby blue object.
This latter variable is helpful because of the domain constraint that objects cannot overlap each
other, which correlates the states of the two objects (Wong et al., 2012). Incorporating these new
variables in the refined estimator sufficiently reduces the variance for successful task completion.
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5.2.2 Relevant approaches and future directions

So far, I have considered one possible criterion for determining which variables to include in the
estimator refinement step. The decision-theoretic criterion is related to the expected error reduction
approach to active learning (Settles, 2012), where new training data is selected based on its expected
benefit to reducing error in the learned hypothesis. Other approaches to active learning may
serve as an inspiration for alternative ways to perform estimator refinement. Approaches from
feature/variable selection (Guyon, 2003) may also provide insight.

Apart from determining which variables to include in refinement, when to trigger this process
is also important. Various metrics for Bayesian ‘surprise’ (e.g., Ranganathan and Dellaert, 2009;
Maier and Steinbach, 2011; White et al., 2014) can be used to measure how unlikely measurements
and belief states are, compared to model/filter predictions. Methods from the mature literature of
fault detection/identification/diagnosis can also be applied to determine when a mismatch event has
occurred (Kurien and Nayak, 2000; Verma et al., 2004; Pettersson, 2005; Dearden, 2010). Most of
these approaches still require ad-hoc thresholds (for the level of mismatch); ultimately they should
be automatically learned from task performance. Possible techniques for this include Bayesian
optimization (Snoek et al., 2012) and metareasoning (Cox and Raja, 2011).

The presented framework should in principle work for any hierarchy of estimators and models.
Possible candidates for testing this include using grammars that generate increasingly-complex
models (Grosse et al., 2012), and a recent approach that uses a hierarchical decomposition of
variables to produce a partition of variables with varying fineness (Steinhardt and Liang, 2014).

5.2.3 Closing thought

Ultimately, I view the proposed model attention and selection framework as part of an answer to
the following observation by Anderson and Oates (2007):

Natural intelligent systems tend to be robust;
artificial intelligent systems tend to be brittle.

As mortal designers, the models we supply to systems will eventually be wrong, and hence systems
become brittle. Robust AI systems need to be able to discover model mismatch autonomously and
apply flexible estimators that learn to deal with uncertainty in the world.

6 Proposed Timeline

• Fall 2014: Work on model selection problem (Section 5.2). Formulate problem rigorously and
demonstrate utility of coarse-to-fine, task-relevant estimation scheme. Appropriate heuristics
may need to be developed for world modeling on mobile-manipulation robots.

• Fall 2014 / Winter 2015: Devise ‘kitchen’ demonstration for the PR2 robot that showcases
object-based world models, and possibly task-relevant estimation.

• Winter 2015: Work on tracking object changes over time (Section 5.1), in particular using the
DDPMM as the theoretical foundation. Devise approximations to ensure inference is scalable.

• Winter 2015 / Spring 2015: Increase complexity of demonstrations, possibly including the
task of object search (Wong et al., 2013a). Identify missing pieces that still require work.

• Spring 2015: Devise plan for completion. Write thesis, defend, and revise!
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