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Abstract
To accomplish tasks in human-centric indoor envi-
ronments, agents need to represent and understand
the world in terms of objects and their attributes.
We consider how to acquire such a world model via
noisy perception and maintain it over time, as ob-
jects are added, changed, and removed in the world.
Previous work framed this as multiple-target track-
ing problem, where objects are potentially in mo-
tion at all times. Although this approach is general,
it is computationally expensive. We argue that such
generality is not needed in typical world modeling
tasks, where objects only change state occasionally.
More efficient approaches are enabled by restrict-
ing ourselves to such semi-static environments.
We consider a previously-proposed clustering-
based world modeling approach that assumed static
environments, and extend it to semi-static domains
by applying a dependent Dirichlet process (DDP)
mixture model. We derive a novel MAP inference
algorithm under this model, subject to data associa-
tion constraints. We demonstrate our approach im-
proves computational performance for world mod-
eling in semi-static environments.

1 Introduction
Robots need to know about objects in order to perform most
tasks in human-centered environments. Objects should be un-
derstood in terms of semantic attributes such as type, pose,
function, and possibly relations with other objects. Semantic
perception tools are increasingly becoming available, and it is
tempting to use them as black-box perception modules. How-
ever, such perception is still error-prone, due to noise, occlu-
sion, clutter, and limited fields of view. To achieve greater
reliability, our strategy is to aggregate the output from noisy
perception pipelines, across time and space (different view-
points), and estimate the true state, i.e., the world model.

Estimating properties of individuals from noisy observa-
tions is a relatively simple statistical estimation problem if the
observations are labeled according to which individual gener-
ated them. Even when the underlying attributes of the indi-
vidual change over time, estimating their history reduces to
inference in a hidden Markov model.

The key difficulty is data association. We do not know
which particular individual is responsible for each observa-
tion; determining an appropriate association of observations
to individuals is key. The only information we have to make
such associations are noisy and partial observations, which
may contain errors both in attribute values and in number.

This problem was first addressed in the context of multiple-
target tracking [Bar-Shalom and Fortmann, 1988]. A clas-
sical solution is multiple hypothesis tracking [Reid, 1979],
which has been applied in previous world modeling appli-
cations [Cox and Leonard, 1994; Elfring et al., 2013]. Oh
et al. [2009] have pointed out drawbacks in using the MHT,
which include inefficiency due to considering an exponential
number of hypotheses, and the inability to revisit associations
from previously-considered views (the MHT is a filtering al-
gorithm). Inspired by this, they and others [Dellaert et al.,
2003; Pasula et al., 1999] have proposed different Markov-
chain Monte Carlo (MCMC) methods for data association,
and have demonstrated superior tracking performance.

In multiple-target tracking problems, each target’s state
(typically location) changes between observations. How-
ever, if we consider applications such as tracking objects in
a household, the dynamics are different: most objects tend to
stay in the same state when they are not being actively used.
In this paper, we study the world modeling problem in semi-
static environments, where time is divided into known epochs,
and within each epoch the world is stationary. Intuitively, data
association should be easier within static periods, since there
is no uncertainty arising from stochastic dynamics.

At the other end of the spectrum, in previous work we
considered the world modeling problem under a static world
assumption [Wong et al., 2015]. We proposed a clustering-
based view of the problem, where objects are treated as clus-
ter components (in a joint attribute space), and observations
are noisy measurements generated from these clusters. We
used Bayesian nonparametric models to handle an unknown
number of objects, in particular the Dirichlet process mixture
model (DPMM). This approach is fundamentally limited by
the DPMM’s inability to capture temporal dynamics.

Dependent Dirichlet processes (DDP), in contrast, are ca-
pable of modeling dynamic clusters. We use a DDP mixture
model to infer object attributes and their changes over time,
including the addition and removal of objects in the world. A
novel approximate MAP inference method is also proposed.
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Figure 1: An illustration of the world modeling problem. An unknown number of objects exist in the world (top row), and change in pose
and number over time (world at each epoch enclosed in box). At each epoch, limited views of the world are captured, as depicted by the
triangular viewcones. Within these viewcones, objects and their attributes are detected using black-box perception modules (e.g., off-the-shelf
object detectors). In this example, the attributes are shape type (discrete) and 2-D location. The observations are noisy, as depicted by the
perturbed versions of viewcones in the middle row. Uncertainty exists both in the attribute values and the existence of objects, as detections
may include false positives and negatives (e.g., t = 3). The actual attribute detection values obtained from the views are shown in the bottom
row (“Observations”); this is the format of input data. Given these noisy measurements as input, the goal is to determine which objects were
in existence at each epoch, their attribute values (e.g., Θ3 in top right), and their progression over time.

2 Problem Definition
In world modeling, we seek the state of the world, consist-
ing an unknown finite number Kt of objects, which changes
over time. Object k at epoch t has attribute values θkt. We
sometimes decompose θkt into

(
ak, xkt

)
, where a is a vec-

tor of fixed attributes, and x is a vector of attributes that may
change between epochs. The top row in Figure 1 illustrates
the world state over three epochs for a simple domain.

Our system obtains noisy, partial views of the world. Each
view v produces a set of observations Otv = {otvi }, where
otvi = (btvi , y

tv
i ), corresponding to the fixed attributes a and

dynamic attributes xt of some (possibly non-existent) object.1
Each view is also associated with a field of view V tv . The
collection of views in a single epoch may fail to cover the
entire world. The partial views and noisy observations are
illustrated in the middle and bottom rows of Figure 1.

The world modeling problem can now be defined: Given
observations O = {otvi }(t,v,i) and fields of view {V tv}(t,v),
determine the state of objects over time Θ =

{
θkt
}
(k,t)

. The
state includes not only objects’ attribute values, but also the
total number of objects that existed at each epoch, and im-
plicitly when objects were added and removed (if at all).

There is no definitive information in the observations that
will allow us to know which particular observations corre-
spond with which underlying objects in the world, or even

1Superscripts in variables will generally refer to the ‘context’,
such as object index k and time index t. Subscripts refer to the
index in a list, such as oti = i’th observation at time t.

how many objects were in existence at any time step. For ex-
ample, in the views of t = 1 shown in Figure 1, the square
detected in the left-most view may correspond to either (or
neither) square in the center view. Also, despite there being
only four objects in the world, there were five observations
because of overlapping visible regions.

The critical piece of information that is missing is the as-
sociation ztvi of an observation otvi to an underlying object k.
With this information, we can perform statistical aggregation
of the observations assigned to the same object to recover its
state. We will model the associations Z = {ztvi }(t,v,i) as
latent variables in a Bayesian inference process.

2.1 Observation noise model
The observation model describes how likely an observation
o = (b, y) was generated from some given object state
θ = (a, x) (if any), given by the probability f (o ; θ). For
a single object, let θc and θd be the true continuous and dis-
crete attribute values respectively, and likewise oc and od for
a single observation of the object. We typically consider ob-
servation noise models of the following form:

f (o ; θ) = φθd(od) N (oc ; θc, S) (1)

Here φ represents a discrete confusion matrix, where φθd(od)
is the probability of observing od given the true object has
discrete attributes θd. The continuous-valued observation oc
is the true value θc corrupted with zero-mean Gaussian noise,
with fixed sensing covariance S. The noise on oc and od are
assumed to be independent for simplicity.



2.2 Additional data association assumptions
Besides errors in attribute values, Figure 1 also illustrates
cases of false positives and false negatives. A false positive
occurs when the observation did not originate from any true
object. We assume that this occurs at a fixed rate ρ. When
this occurs, od has noise distribution φ0, and oc is uniformly
distributed over the field of view V . A false negative occurs
when an object is within the sensor’s field of view but failed
to be detected. We assume that an object within the field of
view V will be undetected with probability η(θ).

There is an additional common domain assumption in
target-tracking problems: within a single view, each visible
object can generate at most one detection [Bar-Shalom and
Fortmann, 1988]. This implies that within a view, each ob-
servation must be assigned to a different hypothesized under-
lying object. In the parlance of clustering, we refer to this
as the “cannot-link constraint” (CLC). The constraint is pow-
erful because it can reduce ambiguities when there are sim-
ilar nearby objects. However, we will need to modify the
DDPMM model and inference algorithms to handle the CLC.

3 A Clustering-Based Approach
We now specify a prior on how likely an assignment to a clus-
ter is, and how clusters change over time. Since the number
of clusters are unknown, we chose to use Bayesian nonpara-
metric mixture models, which allow for an indefinite and un-
bounded number of mixture components.

The Dirichlet process (DP) (Teh [2010] provides a good
overview) is a widely-studied prior for density estimation
and clustering [Antoniak, 1974; Escobar and West, 1995;
Neal, 2000]. The DP’s popularity stems from its simplicity
and elegance, and in previous work we have applied them to a
similar (static) world modeling problem [Wong et al., 2015].
However, one major limitation is that clusters cannot change
over time, a consequence of the fact that observations are as-
sumed to be fully exchangeable. This assumption is violated
for problems like ours, where the observed entities change
over time. Various generalizations of the DP that model tem-
poral dynamics have thus been proposed [Zhu et al., 2005;
Ahmed and Xing, 2008; Neiswanger et al., 2014; Luo et al.,
2015; Huang et al., 2015].

Many of these generalizations belong to a broad class
of stochastic models known as dependent Dirichlet pro-
cesses (DDP) [MacEachern, 1999; 2000]. We will adopt
a theoretically-appealing instance of the DDP, based on a
Poisson-process construction [Lin et al., 2010]. This con-
struction subsumes a number of existing algorithmically-
motivated DP generalizations. Additionally, it has the nice
property that at each time slice, the prior over clusters is
marginally a DP. Given a DP prior at time t, the construc-
tion specifies a dependent prior at time t + 1 (or another fu-
ture time), which is shown to also be a DP. The construction
therefore generates a Markov chain of DPs over time, which
reflects temporal dynamics between epochs in our problem.

We now restate one result of the DDP construction; see
Lin [2012] for details. The construction results in the follow-
ing prior on parameter θt (to be assigned to a new observa-
tion), given past parameters Θ<t and parameters Θt for clus-

ters that have already been instantiated at the current epoch:

θ0 | Θ0 ∝ αH
(
θ0
)

+
∑
k

Nk0 δθk0

(
θ0
)

(2)

θt | Θ≤t ∝ αH
(
θt
)

+
∑

k:Nkt>0

Nk,≤t δθkt

(
θt
)

(3)

+
∑

k:Nkt=0

q(θk,t−1) Nk,<t T
(
θt ; θk,t−1

)
At the initial time step, clusters are formed as in a standard
DPMM with concentration parameter α and base distribution
H . For later time steps, the prior distribution on θ is de-
fined recursively. The first two terms are similar to the base
case, for new clusters and already-instantiated clusters (in the
current epoch) respectively. The third term corresponds to
previously-existing clusters that may be removed with proba-
bility (1−q(θk,t−1)), and, if it survives, is moved with transi-
tion probability T

(
· ; θk,t−1

)
. Nk,≤t is the number of points

that have been assigned to cluster k, for all time steps up to
time t. If q ≡ 1 and T (· ; θ) = δθ, then the model is static,
and Equation 2 is equivalent to the DP predictive distribution.

3.1 Inference by forward sampling
As mentioned in the problem definition, our focus will be
on determining latent assignments Z = {zti} of observa-
tions O = {oti} to clusters with parameters Θ =

{
θkt
}

.
In the generic DDP, views do not exist yet; those will be
introduced in Section 4. One way to explore the distribu-
tion of assignments is to sample repeatedly from the assign-
ment’s conditional distribution, given all other assignments
Z\ti , Z \ {zti}, found using Bayes’ rule:

P
(
zti = k

∣∣ oti,Θ, Z\ti) =

∫
P
(
zti , θ

kt
∣∣ oti,Θ, Z\ti) dθkt

∝
∫
P
(
oti
∣∣ θkt)P (θkt ∣∣Θ, Z\ti) dθkt (4)

The first term in the integrand is given by the observation
noise model (Equation 1), and the second term is given by
the DDP prior (Equation 2). If θkt already exists, then
P
(
θ
∣∣Θ, Z\ti) = I

[
θ = θkt

]
, and the integrand only has sup-

port for θ = θkt. Otherwise, we have to consider all possible
settings of θkt, which has a prior distribution given by Equa-
tion 2. The expression in Equation 4 above can be decom-
posed into three cases, corresponding to terms in Equation 2:

P
(
zti = k

∣∣∣ oti,Θ≤t, Z≤t\ti) (5)

∝



Nk,≤t
\ti f

(
oti ; θkt

)
,

k existing, instantiated at t

q̃(θkτ ) Nk,<t
\ti

∫
f
(
oti ; θkt

)
T̃
(
θ ; θkτ

)
dθkt ,

k existing, not instantiated at t

α
∫
f
(
oti ; θkt

)
H
(
θkt
)

dθkt ,

k new

In the DDPMM, clusters move around the parameter space
during their lifetimes, and, depending on our chosen view-
points, may not generate observations at some epochs. When



cluster k has at least one time-t observation assigned to it, it
becomes instantiated at time t. Any subsequent observations
at time t that are assigned to cluster k must then share the
same parameter θkt; this corresponds to the first case. The
second case is for clusters not yet instantiated at time t, and
we must infer θkt from the last known parameter for cluster
k, at time τ < t. If t − τ > 1, we use generalized survival
and transition expressions for our application:

q̃(θkτ ) ,
[
q(θkτ )

]t−τ
(6)

T̃
(
θkt ; θkτ

)
= I

[
akt = akτ

]
N
(
xkt ; xkτ , (t− τ)R(ak)

)
The third case is for new clusters that are added at time t.

In general, since the cluster parameters Θ are also un-
known, they need to be sampled from their conditional distri-
butions given Z. With additional assumptions presented next,
we can find the parameter posterior distribution efficiently
and avoid sampling the parameter entirely by ‘collapsing’ it.

3.2 Application of DDPs to world modeling
We now apply the DDP mixture model (DDPMM) to the
semi-static world modeling problem. For simplicity, we con-
sider an instance of the world modeling problem where the
fixed attribute a is the discrete object type (from a finite list
of known types), and the dynamic attribute x is the contin-
uous pose in Rd (either 3-D location or 6-D pose). Despite
these restrictions, our model and derivations can be immedi-
ately applied to problems with any fixed attributes, and with
any dynamic continuous attributes with linear-Gaussian dy-
namics. Arbitrary dynamic attributes can be represented in
our model, but inference will likely be more challenging be-
cause in general we will not obtain closed-form expressions.
For our instance of the DDPMM, we assume:

• Time steps in the DDP correspond to epochs in world
modeling, i.e., each epoch is modeled as a static DPMM.

• The survival rate only depends on the fixed attribute, i.e.,
q(θ) = q(a). (For us, that means the likelihood of object
removal is dependent on the object type but not its pose.)

• Likewise, the detection probability only depends on the
fixed attribute (object type), i.e., η(θ) = η(a).

• The dynamic attribute (pose) follows a random walk
with zero-mean Gaussian noise that depends on a (e.g.,
a mug likely travels farther per epoch than a table):

xt+1 = xt + w, where w ∼ N (0, R(a)) (7)

This implies that the full transition distribution is (of
both object type and pose) is:

T
(
θt+1 ; θt

)
= I

[
at+1 = at

]
N
(
xt+1 ; xt, R

)
(8)

• The DP base distribution has the following form:

H (θ) , π(a) N
(
x ; µ0 = 0,Σ0 =∞I

)
(9)

We place a (discrete) prior π over the object type, and a
noninformative normal distribution over the object pose,
to allow for an object being introduced at any location.

The above choices for the dynamics and base distribution
implies that the parameter posterior and predictive distribu-
tions have closed-form expressions. The posterior distribu-
tion of the dynamic attribute is a mixture of Gaussians, with
a component for each possible value of the fixed attribute a
(since the process noise R(a) may be different), weighted
by the posterior probability of a. In practice, we track the
pose using only the dynamics of the most-likely object type
âk. Thus, in our application, each cluster maintains a discrete
posterior distribution ϕ(a) for the object type, and a Kalman
filter or Rauch-Tung-Striebel (RTS) smoother [Rauch et al.,
1965] for the object pose distribution. The latter is repre-
sented as a sequence of means and covariances {µkt,Σkt}ζt=ξ
over the cluster k’s lifetime t ∈ [ξ, ζ], with the interpretation
that xkt ∼ N (µkt,Σkt). For more details and derivation of
the parameter distributions, please refer to the extended ver-
sion of our paper [Wong et al., 2016].

Because we have compact representations of the parame-
ter posterior distributions, we can analytically integrate Θ out
instead of sampling them. We first modify the forward sam-
pling equation (Equation 5) to reflect this ‘collapsing’ oper-
ation. Since we can no longer condition on the parameters
themselves, we instead need to condition on the other obser-
vations O\ti and their current cluster assignments Z\ti, and

use posterior predictive likelihoods of the form P
(
oti

∣∣∣Ok\ti)
to evaluate the current observation oti:

P
(
zti = k

∣∣∣ oti, O≤t\ti, Z≤t\ti) (10)

∝ P
(
oti

∣∣∣ zti = k,O≤t\ti, Z
≤t
\ti

)
P
(
zti = k

∣∣∣O≤t\ti, Z≤t\ti)
∝
∫ [

P
(
oti
∣∣ θkt) P

(
θkt
∣∣∣Ok,≤t\ti

)]
P
(
zti = k

∣∣∣Z≤t\ti) dθkt

We can now substitute the expressions for P
(
oti
∣∣ θkt),

T̃ , and H , where properties of the normal distribution will
help us evaluate the integrals. The derivations in Wong et
al. [2016] give the following expressions, as well as details
for finding the posterior hyperparameters ϕ, µkt, and Σkt

(recall that θkt =
(
ak, xkt

)
, oti = (bti, y

t
i)):

P
(
zti = k

∣∣∣ oti, O≤t\ti, Z≤t\ti) (11)

∝



Nk,≤t
\ti

[∑
ak φ

ak(bti) ϕ(ak)
]
×

N
(
yti ; µkt,Σkt + S

)
,

k existing, instantiated at t

q̃(âk) Nk,<t
\ti

[∑
ak φ

ak(bti) ϕ(ak)
]
×

N
(
yti ; µkτ ,Σkτ + (t− τ)R(âk) + S

)
,

k existing, not instantiated at t

α
[∑

ak φ
ak(bti) π(ak)

]
×

Unif(vol(world)) , k new

4 Incorporating World Modeling Constraints
So far, we have only applied a generic DDPMM to our obser-
vations, but have ignored false positives (FP), false negatives



(FN), and the cannot-link constraint (CLC). To capture these
additional domain characteristics, we modify the conditional
distribution from which samples are iteratively taken from:

PView
(
ztv
∣∣otv, O\tv, Z\tv) (12)

∝

 ∏
i: ztvi 6=0

(1− ρ) P
(
ztvi
∣∣ otvi , O\tv, Z\tv)


×

 ∏
i: ztvi =0

ρ

[∑
ak

φa
k

(btvi ) π(ak)

]
N0
\tv or α

vol(world)


×

 ∏
k: ξk≤t≤ζk

[
P
(
δtvk = 1

)]δtvk [1− P
(
δtvk = 1

)]1−δtvk 
× I
[
ztv satisfies CLC

]
In the above, the correspondence vector ztv is the concate-

nation of the individual ztvi assignment variables, for all ob-
servation indices i made in view v at epoch t; the interpreta-
tion of otv is similar. The individual terms in the first product
are given by Equation 11 (the value of ztvi determines which
case applies). The product is over all observations that are not
FPs (ztvi 6= 0), hence the (1− ρ) Bernoulli term.

The second product is the likelihood for all FP observations
(ztvi = 0), which is basically the same as the new-cluster
case in Equation 11, except for the N0

\tv factor at the end.
The similarity is intentional, since, given a single observation,
an FP is indistinguishable from a new cluster. N0

\tv is the
number of other FPs observed, or, if none exist, then α is
used instead (to prevent the product being zero).

The third product, for FNs, is a product over all clusters
alive at time t. Recall that an object that is within the field
of view fails to be detected with type-dependent probability
η(ak). Let δtvk be 1 if cluster k is detected in view v at epoch t,
and 0 otherwise. For a cluster k that is alive at epoch t (ξk ≤
t ≤ ζk) with parameter θkt, the probability of detection is the
probability it is within the field of view, and is not missed:

P
(
δtvk = 1

)
=
[
1− η(ak)

]
P
(
θkt ∈ V tv

)
(13)

=

[
1−

∑
ak

η(ak) ϕ(ak)

]
Φ̃
(
xkt ∈ V tv ; µkt,Σkt

)
The Φ̃ function denotes the CDF of the multivariate normal
distribution, with mean µkt and covariance Σkt. The detec-
tion indicator variables δtvk are determined during sampling
by the correspondence vector ztv: if some element of otv is
assigned to cluster index k, then δtvk = 1; otherwise, δtvk = 0.

Finally, the cannot-link constraint, described in Sec-
tion 2.2, couples together cluster assignments for observa-
tions within the same view, since we must ensure that no two
observations can be assigned to the same existing cluster. The
final term in Equation 12 enforces this constraint. Invalid cor-
respondence vectors that violate the cannot-link constraint are
assigned zero probability and hence are not considered; the
remaining conditional probabilities are normalized. This can
be interpreted as performing blocked Gibbs sampling, where
blocks are determined by the joint constraints.

Putting everything together, we arrive at a constrained
blocked collapsed Gibbs sampling inference algorithm. The
algorithm takes the observations O = {otvi } and visible re-
gions {V tv} as input. As output, the algorithm produces sam-
ples from the posterior distribution over correspondence vec-
tors {ztv}, from which we can compute the posterior param-
eter distributions ak ∼ ϕ and xkt ∼ N

(
µkt,Σkt

)
. The sam-

pling algorithm repeatedly iterates over epochs t and views v,
each time sampling a new correspondence vector ztv from its
constrained conditional distribution, given by Equation 12.

5 Approximate MAP Inference
We have now presented the entire Gibbs sampling algo-
rithm for DDPMM-based world modeling. which generates
samples from the posterior distribution of object states Θ
(and object-observation assignments Z). However, sampling-
based inference can be slow, especially because of the cannot-
link constraint that couples together many latent variables.
Although we are interested in maintaining an estimate of our
uncertainty in the world, frequently just having the most-
likely (maximum a posteriori – MAP) world model suffices.
In general, even the MAP is hard to find, because it can be for-
mulated as a multidimensional assignment problem, which is
known to be NP-complete for T ≥ 3 epochs [Karp, 1972].
Nevertheless, since it is a fundamental combinatorial prob-
lem, many approximate solutions have been proposed.

5.1 Iterated conditional modes (ICM)
The iterated conditional modes (ICM) algorithm performs
coordinate ascent on each variable’s conditional distribution,
and is guaranteed to converge to a local maximum [Besag,
1986]. Instead of iteratively sampling correspondence vectors
from their conditional distributions in Gibbs sampling, we
find the most-likely one, update parameters based on it, and
repeat for each view and epoch. The space of joint correspon-
dence vectors is combinatorial in size, so finding the maxi-
mizer is still potentially inefficient. Fortunately, finding the
most-likely correspondence for a single view can be formu-
lated as a maximum weighted assignment problem, for which
cubic-time exact algorithms such as the Hungarian algorithm
exist (and have been used in data association) [Kuhn, 1955;
Munkres, 1957; Murty, 1968].

Suppose, for view v at epoch t, there are M observa-
tions {o1, . . . , oM} and K existing clusters (possibly not
alive/instantiated). Then we wish to match each oi to an
existing cluster, a new cluster, or a false positive. Any un-
matched existing cluster must also be assigned the probabil-
ity of missed detection. We can solve this as an assignment
problem with the following payoff matrix:

Obs (M cols) FN (M +K)
Clusters log P (zi = k) + log(1 − ρ) I

[
ξk ≤ t ≤ ζk

]
(K rows) +I

[
ξk ≤ t ≤ ζk

]
log P (δk = 1) log P (δk = 0)

New (M ) log P (zi = new) + log(1 − ρ) 0
FP (M ) log P (zi = 0 (FP)) + log ρ 0

The payoff matrix has 2M + K entries to allow for the
case that all observations are assigned to new clusters, and
likewise that all are spurious. Any extra New/FP nodes are
assigned to extra FN nodes, with zero payoff. The payoffs in



Input: Obs. O =
{
otvi

}
, Visible regions

{
V tv

}
, Num. samples N

Output: Samples of cluster assignments
{
ztv

}
1: Init. all entries to −1 (FP) in Z(0) =

{
ztv

}(0)

2: repeat
3: for t := 1 to T ; v := 1 to V t do
4: Solve assignment problem for most-likely ztv , given Zt

\v
5: until convergence
6: Construct a new dataset C =

{
cti
}

with a single data point
for each non-FP cluster found by ICM (above) at each epoch

7: Sample tracks by performing MCMCDA on C
8: Convert track samples to cluster assignments

Figure 2: ICM-MCMC, a two-stage inference algorithm for
DDPMM, using ICM and MCMCDA [Oh et al., 2009].

the first column are: for an existing cluster, given by cases
1 and 2 in Equation 11, depending on whether or not the
cluster has been instantiated yet; for a new cluster, given by
case 3 in Equation 11; and for an FP, given within the sec-
ond product of Equation 12. Log probabilities decompose
the view’s joint correspondence probability into a sum of in-
dividual terms. By construction, the cannot-link constraint
is satisfied. Since all terms in Equation 12 are exactly ac-
counted for in the constructed payoff matrix, the maximum
assignment found through this procedure yields the joint cor-
respondence vector that maximizes the conditional distribu-
tion (Equation 12), given all other associations. Iterating this
procedure for each view and epoch thus yields an ICM algo-
rithm and produces an approximate MAP solution.

5.2 A two-stage inference scheme
Although the ICM algorithm presented can find good clusters
at a single epoch very quickly, we will see in experiments
that it does not converge to good cluster trajectories. The is-
sue is that ICM moves are local, in that it considers one view
at a time. Suppose we have identified correctly all objects in
epoch 1 using ICM. When we consider the first view in epoch
2, there may be significant changes present, and using obser-
vations from the first view only, ICM must decide whether
or not to assign the new observations to existing clusters (by
reviving them). Since the uncertainty in the object states im-
mediately after a transition is high, basing the cluster connec-
tivity decisions on a single view is unreliable.

This suggests a two-level inference scheme. Since ICM
can reliably find good clusters within single epochs, we first
apply ICM to each epoch’s data independently, treating them
as unrelated static worlds. Next, we attempt to connect clus-
ters between different epochs. This is essentially another
tracking problem, although the likelihood function is some-
what different (depends on many underlying data points), and
is much reduced in size. Since the problem is significantly
smaller, tracking methods such as MHT or MCMCDA can be
applied to this cluster-level tracking problem.

We present one such scheme in Algorithm 2, using MCM-
CDA [Oh et al., 2009] to solve the cluster-level problem. We
choose a batch-mode sampling algorithm such as MCMCDA
because it can return samples from the posterior distribution,
and has an attractive anytime property – we can terminate at
any point and still return a list of valid samples. For infer-

ring the MAP configuration, the best sample can be returned
instead. Since we are sampling from the true posterior dis-
tribution (assuming that the per-epoch clusters are identified
correctly), in the limit of infinite samples, the true MAP con-
figuration will be found almost surely.

6 Experiments
Approximate MAP inference for world modeling via ICM,
MCMCDA, and the two-stage ICM-MCMC were tested on
a simulated domain, and on a sequence of robot vision data
constructed from the static scenes in Wong et al. [2015]. To
perform MAP inference on MCMCDA and ICM-MCMC,
the most-likely sample was chosen, from 105 samples in
MCMCDA, and 104 in the second stage of ICM-MCMC. We
find that ICM-MCMC significantly outperforms the other two
methods, and even ICM performs better than MCMCDA.

We used a simulated domain similar to the one given in
the MCMCDA paper [Oh et al., 2009]. Objects in our ver-
sion had one of four fixed object types, a time-evolving lo-
cation (x, y) ∈ [0, 100] × [0, 100], and a time-evolving ve-
locity vector. Observations were made in 10 epochs of this
domain, with 5 views per epoch (visible region is the entire
domain). In total, 5 objects existed, each for some contiguous
sub-interval of the elapsed time. Noise parameters were sim-
ilar to Oh et al. [2009]. The observed data and the true object
states from one trial (of 100) are shown in Figure 3.

The resulting MAP clusters found by ICM, MCMCDA,
and ICM-MCMC for a representative trial are shown in Fig-
ure 4, along with their log-likelihood values (higher / less neg-
ative is better). ICM-MCMC clearly outperforms the other
methods, and finds essentially the same clusters as given
by the true association. The clusters found generally have
tight covariance values, unlike those in ICM and MCMCDA.
These two methods, especially MCMCDA, tend to find many
more clusters than are truly present. Due to the large num-
ber of candidates (neighbors) in MCMCDA, it fails to one
that explains all the data. In contrast, by running ICM first,
and performing MCMCDA on the found clusters, the search
space is greatly reduced and the algorithm performs well.

We also applied the same algorithms to the static robot vi-
sion data from Wong et al. [2015]. To convert static scenes
into dynamic scenes, we choose static scenes that were rea-
sonably similar, and simply concatenated their data together,
as if each scene corresponded to a different epoch. One such
example is shown in Figure 5. Objects in different scenes
were all placed on the same tabletop. Four object types were
present, and typically each scene had 5–10 objects. Object
types and poses were detected using a black-box object detec-
tor; see Wong et al. [2015] for details about the data and noise
models. Unlike the simulation, objects do not have velocities.
Instead, between epochs, we assume that the location changes
with isotropic Gaussian noise, standard deviation 0.1. Since
changes were significant between epochs, we assumed a rel-
atively low 0.5 probability of survival.

Figure 5 shows the MAP associations found by ICM
and ICM-MCMC, with lines connecting cluster states over
epochs. Annotations were also added (in the form of three
different line styles) to facilitate comparison between the



(a) True object paths (b) Data (from 10 epochs)

(c) t = 5 (d) t = 6 (e) t = 7 (f) t = 8

Figure 3: Data and object states in a simulated domain. The top left shows the true object (x, y) locations and their trajectories over time,
color-coded by their associated object type (4 types in total: red, green, blue, black). Observations are shown as filled dots (corresponding
to true positives) and crosses (false positives). The top right shows the data from all 10 epochs (5 views per epoch) that is given as input,
without any information about the underlying object states and associations. Some form of clustering over views and time is visible. Since
the data is divided into epochs, a more realistic view of the data is shown in the bottom row, for a sequence of 4 consecutive epochs.

(a) Truth (b) ICM-MCMC (LL = −3168)

(c) ICM (LL = −3329) (d) MCMCDA (LL = −3365)

Figure 4: The clusters found for the simulated domain are shown in thick ellipses, centered at the location mean, color-coded by the most-
likely object type inferred (across the entire trajectory, since it is a static attribute). The ellipses depict a level set of the posterior location
distribution (uncertainty given by Gaussian covariance matrix). In contrast, the posterior clusters found by ICM and the most-likely sample
from MCMC (of 105), shown in the bottom row, are qualitatively much different, and have significantly lower log-likelihood (LL) values.



(a) ICM transitions
not present in ICM-MCMC

(b) Most-likely ICM
configuration (LL = −968)

(c) Most-likely ICM-MCMC
configuration (LL = −931)

(d) ICM-MCMC transitions
not present in ICM

Figure 5: Approximate MAP cluster (object) trajectories found using ICM and ICM-MCMC on the robot vision data collection in Wong et
al. [2015]. The concatenated sequence of scenes (epochs) is shown from top to bottom. The inferred clusters and tracks are shown in the
middle two columns. Lines connecting cluster pairs between epochs are color-coded by the inferred object type (fixed across epochs), and
are marked by one of three line styles used to compare results from the two algorithms. A solid line means the same pair was connected by
both algorithms; a dashed line means a similar pair (in likelihood) was connected; a dotted line means the pair was not connected by the other
algorithm. To make the differences clearer, the top-down reference views have been annotated with arrows, for pairs of objects that were only
connected by one algorithm (dotted lines in the middle two). The left column shows pairs that were connected by ICM but not ICM-MCMC;
the right column shows the opposite. Solid arrows depict transitions that are unlikely, whereas dashed arrows depict plausible transitions.
ICM tends to suggest many more transitions than ICM-MCMC, many of which are actually implausible.

ICM and ICM-MCMC results; see figure caption for de-
tails. ICM tends to suggest many more transitions than ICM-
MCMC, many of which are actually implausible.

7 Discussion
We have presented an extension of the clustering-based world
modeling approach to semi-static environments, by apply-
ing the DDPMM. Multiple modifications on the generic
DDPMM were necessary to adhere to assumptions in the
world modeling problem. Additionally, because of the ex-
tra temporal dimension, inference is even more challenging.
A fast approximate MAP inference algorithm, iterated condi-
tional modes (ICM), was therefore explored. By itself, ICM
did not perform well; a novel two-stage inference algorithm,
with ICM followed by MCMCDA, fared much better, both in
simulation and on real-world data.

The downside of the ICM-MCMC inference procedure is
that very few guarantees can be made, since ICM is itself ap-
proximate and only reaches a local optimum. Additionally,
even though the second-stage MCMCDA provides samples,
they are not true samples from the full posterior, since the
‘data points’ it is trying to connect are in fact clusters found
by ICM. Nevertheless, the idea of splitting the inference into
within-epoch and between-epoch stages is appealing. The
between-epoch stage of joining clusters into tracks also has
connections with split-merge methods (e.g., [Jain and Neal,
2004]). We are currently developing a two-stage sampling
procedure that relies on the same intuition, but produces as-

sociation samples from the true posterior distribution.
The inference algorithms presented in this paper, and other

traditional tracking algorithms such as MHT, all consider
each view in sequence, sampling/scoring correspondence
vectors given the associations from all previous views, but
not future ones. That is, they are all performing forward fil-
tering/sampling, but no smoothing is done in the space of as-
sociations. In previous work, we showed cases where this
may be problematic [Wong et al., 2015]. For sampling-based
algorithms to be considered a true Gibbs sampler, it must con-
dition on all information that is available to it, both past and
future (if operating in batch mode, which is the case). We are
currently developing a true Gibbs sampler for the DDPMM.

Framing data association as a clustering problem allows us
to consider sophisticated machine learning algorithms, such
as variational inference [Blei and Jordan, 2006], possibly
leading to better and faster data association. We can also con-
sider connections in the reverse direction, leading to new al-
gorithms for dynamic clustering, such as using MCMCDA to
perform inference in generic DDPMMs and other models.
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