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Abstract— A core capability of robots is to reason about mul-
tiple objects under uncertainty. Partially Observable Markov
Decision Processes (POMDPs) provide a means of reasoning
under uncertainty for sequential decision making, but are
computationally intractable in large domains. In this paper,
we propose Object-Oriented POMDPs (OO-POMDPs), which
represent the state and observation spaces in terms of classes
and objects. The structure afforded by OO-POMDPs support
a factorization of the agent’s belief into independent object
distributions, which enables the size of the belief to scale linearly
versus exponentially in the number of objects. We formulate
a novel Multi-Object Search (MOS) task as an OO-POMDP
for mobile robotics domains in which the agent must find the
locations of multiple objects. Our solution exploits the structure
of OO-POMDPs by featuring human language to selectively
update the belief at task onset. Using this structure, we develop
a new algorithm for efficiently solving OO-POMDPs: Object-
Oriented Partially Observable Monte-Carlo Planning (OO-
POMCP). We show that OO-POMCP with grounded language
commands is sufficient for solving challenging MOS tasks both
in simulation and on a physical mobile robot.

I. INTRODUCTION

A core capability of robots is to reason about multiple
objects under uncertainty. A rescue robot, for example, may
be asked to find all human survivors in a disaster site. A
service robot, on the other hand, may be asked to find all
toys in the living room to clean up a house. In this work,
we introduce a novel multi-object search (MOS) task, in
which the objective is to find the locations of a number of
objects with uncertainty over all possible object locations.
One crucial challenge for an MOS task is supporting efficient
planning while scaling with the number of objects.

In real-world robotic tasks, the robot may operate without
full knowledge of the environment. Partially observable
Markov decision processes (POMDPs) provide a means for
sequential decision making under uncertainty [1]. POMDPs
are an appealing framework for modeling a robot because
they capture the observe, predict, and act tasks a robot
must perform when interacting within a partially observ-
able world [2]. However, POMDPs are computationally
intractable for planning in large domains [3]. A POMDP
planner reasons about current and future beliefs, which are
probability distributions over all possible states. One source
of intractability is that the belief space has dimensionality
equal to the number of possible states, termed the curse of
dimensionality [4]. In an MOS task, the belief grows expo-
nentially with the number of objects if naı̈vely represented.
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Fig. 1: The agent (red dot) must find the locations of one or more objects
(yellow). (a) The belief after a language observation “Find the mugs in the
library, living room, or kitchen.” (b) and (c) show the belief after a sensor
observations via Look actions. (d) The agent’s belief converges to the true
object location after a sequence of actions. (Probabilities in log scale.)

In this work, we formulate the MOS task as an Object-
Oriented POMDP (OO-POMDP), a generalization of prior
work on OO-MDPs [5]. An OO-POMDP, introduced in
this paper, supports convenient representations of robotic
tasks that require reasoning about multiple objects under
uncertainty. The state, transition, and observation spaces are
represented in an OO-POMDP in terms of classes and ob-
jects. With this additional structure, we can factor the belief
into object distributions, using an additional assumption that
objects are independent. This allows the belief space size to
scale linearly (versus exponentially) in the number of objects.

To solve the MOS task we propose an OO-POMDP
model called the Multi-Object Search OO-POMDP (MOS
OO-POMDP). We exploit the structure of OO-POMDPs to
develop an object-scalable planning algorithm called Object-
Oriented Partially Observable Monte-Carlo Planning (OO-
POMCP), which extends POMCP, a well-known online plan-
ning algorithm for large domains [6].

We also explore the use of language as input for up-
dating priors on object uncertainty. The belief for each
object distribution is selectively updated at task onset by
an initial grounded language statement. A human operator,
for example, can express the statement, ”Find the mugs in
the library, living room, or kitchen,” which directly modi-
fies the robot’s belief to express uncertainty over locations
in the referenced rooms for a referenced class of objects
(Figure 1(a)). The structure of OO-POMDPs make it simple



to express observation models involving objects, as in this
example. Additionally, belief updates can be easily restricted
to involve only the relevant objects. Our implementation of
the MOS OO-POMDP also uses a topological map generated
by Rapidly-exploring Random Trees (RRT) [7] and a fan-
shaped sensor with limited range, which accounts for sensor
errors. Figure 1(b-d) show an actual trace of actions inferred
by our model when searching for objects.

We validate the performance of our approach from ex-
periments conducted in both simulated and real-world en-
vironments. In a complex MOS task with 8 objects, ≈ 12
actions, ≈ 109 observations, ≈ 1027 states, and large-scale
belief spaces with ≈ 1021 dimensions, OO-POMCP achieves
high performance in planning, while considering a number of
types of language observations categorized as misinformed,
no information, ambiguous and informed.

II. RELATED WORK

Object search has received considerable attention in the
service robotics community. The problem originated as an
extension of active visual search [8, 9, 10, 11] and since then
has focused on exploiting additional structure so as to scale to
realistic environments [12], which includes object-to-object
co-occurrence [13, 14, 15], object-to-scene co-occurrence
[16, 17, 18, 19, 20], relational affordances [21], and scene
ontologies [22]. All such works, however, have focused
on single object search. Nie et al. [23] has investigated
object search in single-room cluttered environments with an
unknown number of objects, but does not focus on scaling to
large domains. The multi-object search task proposed in this
paper represents a natural generalization of current object
search literature and to date has not been investigated.

Use of language for directly reducing uncertainty over spa-
tial locations is a novel contribution in object search. In the
area of collaborative robotics, natural language commands
have been used for spatial reasoning in robot navigation [24,
25, 26] without modeling environment uncertainty. Whitney
et al. [27] looks at reducing uncertainty in a POMDP with
observations from human speech for a tabletop item-delivery
task. Our work similarly looks at language as a source of
information, however, in the context of object search. Walter
et al. [28] described an approach for combining language
and physical sensor observations to map an environment;
our approach assumes a known map but uses language to
induce posteriors over object locations.

Planning with large belief spaces in POMDPs has been
addressed by estimating the belief via sampling [6, 29, 30],
compressing the belief space into a more tractable lower-
dimensional subspace [31], or defining the belief only over
components of the state relevant for decision-making [32].

OO-POMDPs extend Object-Oriented Markov Decision
Processes (OO-MDPs) [5] to POMDPs by factorizing both
state and observation spaces in terms of objects. OO-MDPs
use object state abstractions to enable the agent to reason
about objects and relations between objects. Work that fo-
cuses on relational representations in reinforcement learning
include Relational-MDPs [33] and Relational-POMDPs [34].

A POMDP [1] is defined as a 7-tuple
〈S,A, T ,R, γ,Ω, O〉. The state s ∈ S contains all
task-relevant information for decision-making. An agent
selects actions a ∈ A resulting in a next state s′ defined by
the transition function: T (s, a, s′) = p(s′|s, a). Execution
of an action yields an observation z ∈ Ω derived by the
observation function O(s, a, z) = p(z|s, a). The reward
of each action is defined by the reward function R with
discount factor γ. The agent maintains a belief, b, which
is a probability distribution over possible states in S that
the agent could be in. Taking an action a and receiving an
observation z results in a new belief b′ for a particular next
state via a belief update:

b′(s′) = η O(s′, a, z)
∑
s∈S
T (s, a, s′) b(s) , (1)

where η is the normalizing constant.

III. TECHNICAL APPROACH

In this paper, we develop an OO-POMDP formulation of
the MOS task. The task objective is for an agent to find
the (x, y) location of n object instances, which are situated
among a set of locations in a 2-D environment. We assume
that the layout of the environment is known. Each object
belongs to some class c ∈ C. The OO-POMDP framework
provides structure for factorizing the belief for efficient
inference. We introduce two contributions that exploit this
factorization:

1) Observations from language commands
2) OO-POMCP algorithm
In later sections, we demonstrate the selectivity and effi-

ciency of object-specific belief updates, respectively, through
language commands and the OO-POMCP algorithm.

A. MOS OO-POMDP

We formulate the MOS task as an OO-POMDP which sup-
ports convenient representation of robotic tasks that require
reasoning about multiple objects under uncertainty. As with
a conventional object-oriented programming language, there
are two levels of organization in an OO-POMDP: classes
and objects. An OO-POMDP is represented as a 10-tuple
〈C,ATT(c),DOM(a), Obj,A, T ,R, γ,Ω, O〉 [5].

In an OO-POMDP, the state space, S and observa-
tion space, Ω, are factored into a set of objects Obj =
{obj1, . . . , objn}. Each object obji is an instance of a par-
ticular class, c ∈ C that consists of a set of class-specific
attributes Att(c) = {ca1 , . . . , cam}. Each attribute a ∈
Att(c) has a domain of possible values Dom(a). The dual-
factorization of S and Ω allows the observation function to
exploit shared structure so as to define observations grounded
in the state with varying degrees of specificity: over a class
of objects, a single object, or an object’s attribute.

The state of the MOS OO-POMDP is decomposed into the
state of the robot sr and the state of objects sobj . The state
of n objects is defined as s =

⋃n
i=1 si, where si encodes the

cell containing the object as a one-hot vector.
We make use of three maps: an occupancy-grid mapMo,

a semantic mapMs, and a topological mapMt. We assume



thatMo andMs are given.Mo is a m×m grid that marks
each grid cell as empty or occupied by fixed, static structures
such as walls, while Ms maps from grid cells to a single
room in a set of rooms R. Mt provides a sparse graph
representation of Mo for navigation. We reduce the number
of cells considered for navigation usingMt by applying the
RRT algorithm onMo, as inspired by Wang et al. [19]. In the
center of each room, we run RRT for a fixed time interval,
which constructs a star-like graph. Each node is a sparsely
sampled cell in Mo and each edge is a path between nodes.
We reject an edge that is shorter than D for sparsity, D being
the depth of the fan-shaped sensor region. An off-the-shelf
planner computes a navigation policy per edge for traversing
between nodes. All room centers are connected to each other
by additional edges.

We define the OO-POMDP components as follows:
• C: the object classes like Robot, Mug, and Key.
• ATT(c): all classes contain the attribute of the (X,Y )-

location.
• DOM(a): the range of the (X,Y )-location is the set of all

possible locations, L, consisting of all cells in rooms.
• Obj: the set of objects. Obj excludes the agent, is finite

(with known cardinality n), and fixed in advanced.
• A: Look(d) projects a fan-shaped sensing region of depth
D in one of the four cardinal directions d; Find(l) marks
a single location l as containing an object; Move(e)
moves an agent to a connected node via edge e ∈ Mt;
Move(r) moves an agent to an adjoining room r ∈Ms.

• T : All actions are assumed to be deterministic.
• R: the agent receives for each object +1000 for Find(l)

if l corresponds to an object’s true location and −1000 if
incorrect. All other actions get −10. Move actions receive
an extra cost of the Euclidean distance from the start to end
location. The experiment task ends after n Find actions.

• O and Ω are defined in a later section. They consist of
language observations (Section III-C) and direct object
observations from a fan-shaped sensor (Section III-D).

B. Beliefs over Multiple Objects

One challenge for OO-POMDPs is to efficiently manage
a belief distribution that scales with multiple objects. In the
MOS OO-POMDP, uncertainty is defined over L possible
object locations. The state space grows exponentially with
the number of objects: |S| =

∏n
i=1 |Sobji | = |L|n, where

Sobji denotes the state space of object obji. A POMDP
planner must reason over beliefs with dimension equal to
the size of the state space.

In this work, we tackle the problem of representing
the belief over multiple objects by exploring one possi-
ble independence assumption. We assume that objects are
independent, thereby allowing the belief b to be factored
into n components, each defined over the state space of
a particular object obji: b =

∏n
i=1 bi. Crucially, this inde-

pendence assumption enables the size of the belief to scale
linearly in the number of objects. While the dimension of the
unfactored belief is |L|n, the dimension of the factored belief
is n|L|. A core technical contribution of OO-POMDPs is to

provide structure for defining object-specific observations zi,
restricted to a component of the state si ∈ Sobji , to support
such a factorization. The belief for object i is updated by:

b′i(si) = η p(zi|si) bi(si) , (2)

where zi denotes an observation for object i and η is a
normalization factor. The observation zi is an observation
by the sensor zsi or the by the language command zli. While
zsi is received throughout agent planning, an initial language
command yields zli only once at the beginning of each task.

C. Observations from Language Commands

Observations in an OO-POMDP can reference a class,
object, or attribute while directly mapping to the state. In this
section, we look at selectively updating the belief via object-
specific observations afforded by language observations.

We consider the scenario in which a human operator tells
the robot: “The mugs are in the kitchen, and the books are
in the library”. We assume a keyword language model that
maps words in the language command into a set of classes
and room labels. A language command can be represented
by a set of pairs (ci, Ri), where ci ∈ C is a class of objects
and Ri is a set of cells in the referenced rooms.

A statement (ci, Ri) can be encoded as an observation
by zli ∈ [0, 1]m

2

where each element zlij represents the
probability that object i occupies the cell j. Error as a result
of the robot misinterpreting the human command or the
human commanding the robot to the wrong room is captured
by the term ψ below. Formally:

zlij =

{
(1−ψ)
A if the cell j ∈ Ri,
ψ

m2−A otherwise
(3)

where A is the number of cells in the referenced rooms and
ψ is a small value between 0 and 1. For objects that are
referenced but without rooms (i.e. Ri = ∅), zlij = 1/m2 for
all j. Given that object i is in location si, the probability of
zli is simply their dot product: p(zli|si) = si · zli. Thus the
agent’s belief for i can be updated with zli alone.

Whereas the initial belief is assumed to be a uniform
distribution, a language observation updates each bi object
distribution, resulting in a modified belief that is sensitive
to the knowledge of the human operator. A human operator
may possess general knowledge (e.g., that mugs tend to be
in the kitchen) as well as domain-specific knowledge (e.g.,
in my house mugs also tend to be in the bathroom).

D. Fan-Shaped Sensor Model

In this section, we propose the observation model for the
sensor: p(zs|s). The sensor is modeled as a discretized fan-
shaped sensing region, V , with a limited field of view and
depth D. Observations from the sensing region, zs, consist
of n object-specific observations zsi ∈ V ∪{NULL}. If object
i is not detected by the sensor, zsi = NULL. Otherwise, zsi
is the location where object i is detected in V .

Each zsi is obtained from one of three mutually exclusive
and exhaustive events, Ai, Bi, and Ci. Let the event Ai be
zsi ∈ V and zsi is from the object i. Let the event Bi be



POMCP functions include SIMULATE and ROLLOUT. OO-POMCP additions are SAMPLE and UPDATE. Crossed-out text denotes removal from POMCP.

zsi ∈ V and zsi is from other sources. Let the event Ci be
zsi = NULL. Thus we can decompose p(zsi |s) as follows:

p(zsi |s) =
∑
ei∈{Ai,Bi,Ci} p(z

s
i |ei, s)p(ei|s)

If event A occurs, the observation is normally distributed
with µi being the true object i position: p(zsi |Ai, s) = η′ ·
f(zsi |µi,Σi), for zsi ∈ V . The covariance matrix is defined
by Σi = σ2I2×2 and η′ is the normalization factor. If event B
occurs, we assume that the false positive detection could have
come equally likely from any location in V: p(zsi |Bi, s) =
1
|V| , if zsi ∈ V . If event C occurs, zsi should be always NULL
and p(zsi = NULL|Ci, s) = 1. Note that it is impossible for
A and B to get the observation zsi = NULL.

We define the probability of the events as p(Ai|s) =
αi, p(Bi, |s) = βi, p(Ci|s) = γi, where αi + βi + γi =
1. These parameters are defined differently depending on
whether the object i is in the sensing region or not:

(αi, βi, γi) =

{
(ε, 1−ε

2 , 1−ε
2 ) if the object i is in V

( 1−ε
2 , 1−ε

2 , ε) if the object i is not in V,
where ε acts to define the overall accuracy of the sensor. We
can model a perfect detector with σ = 0, ε = 1.

E. OO-POMCP Algorithm

Partially Observable Monte-Carlo Planning (POMCP) is
a well-known online POMDP planning algorithm that has
demonstrated success in scaling to large POMDPs [6].
POMCP applies Monte-Carlo Tree Search (MCTS) [35] to
POMDPs to estimate both the Q-value for selecting a real
action and the next belief. In Algorithm 1, the two functions
that are part of POMCP are SIMULATE and ROLLOUT
(ROLLOUT is omitted for space; see [6] for details).

OO-POMCP differs from POMCP in its representation of
the belief as a collection of independent object distributions,
b0, as manifested in the functions SAMPLE and UPDATE
in Algorithm 1. More importantly, OO-POMCP does not
estimate the next belief b′ while estimating the Q-values
but performs a full belief update, reflected in UPDATE,
by exactly updating each of the more manageable object

components. We next go over the OO-POMCP algorithm
in more detail and then discuss its improvements.

A forward search tree T is constructed each decision cycle
by iteratively sampling particles, ŝ, from the current belief
for SIMULATE. Each node in the tree, T , represents a par-
ticular sequence of action and observations called a history
h = {a1, z1, ..., at, zt}. T (h) contains a value estimate of
h calculated by the sum of discounted rewards encountered
in h, V (h), divided by the number of times h was visited
N(h): V (h) =

∑
Ri

N(h) , Ri =
∑∞
k=t γ

krk.
Histories in the tree are sampled by recursively calling

the function SIMULATE with a black-box simulator, G(s, a).
If a history has not been encountered, then it is initialized
and added to the tree; otherwise each sampled history adds
the discounted reward and increments its count. After a
fixed number of simulations, the maximum estimated Q-
value V (ha) is selected from the tree to execute a real action
in the environment E(s, a), yielding a real observation to
update the belief to give b′, and ending the decision cycle.

POMCP estimates the next belief b′ while sampling his-
tories: B(h)← B(h) ∪ {s}. The belief B(h) is a multiset
of particles (e.g. {s1, s2, s1...}), which implicitly captures
the frequency of a given particle. B(h) is stored for each
next action-observation pair. After an action is chosen and
executed, the belief update occurs by setting b′ directly to
be the B(h) of the action-observation pair that corresponds
to the true executed action and resulting observation. OO-
POMCP, in contrast, separates belief estimation and Q-
value estimation into two separate processes. Like POMCP,
OO-POMCP samples particles from each object distribution
in SAMPLE to perform SIMULATE and estimate Q-values.
However, OO-POMCP then performs an explicit, exact belief
update (outside of constructing T ) per object distribution bo
in UPDATE. This is possible because it is computationally
tractable to represent each bo in the factored belief.

One shortcoming of POMCP is failing to sufficiently
approximate a large b′. In MOS the joint belief grows
exponentially as the number of objects increases. Further-



Fig. 2: Simulated 30 × 30 domains with agent (blue circle), objects (red
squares), and walls (black squares). Light grey marks uncertain locations.

more, the difficulty of sampling enough particles in POMCP
is compounded because many particles are rejected. The
probability of keeping a particle consistent with the correct
action-observation pair is λ = 1

|A||Ω| when assuming a
uniform distribution over action-observation pairs, but for
rare action-observation pairs λ is strictly less.

Small values of λ result in particle decay: gradually losing
particles when recomputing b′ over successive planning
cycles [6]. Particle decay is harmful when b′ does not
contain the true environment state, resulting in suboptimal
behavior, and fatal when no samples exist to represent the
next belief (because all were rejected after encountering a
rare observation), resulting in random behavior. One partial
solution is to resample K particles per planning cycle, known
as particle reinvigoration; however, this cannot recover from
cases where the true environment state is no longer in b′.

An explicit belief update in OO-POMCP, however, guar-
antees that b′ is computed according to the true action-
observation pair, thereby eliminating particle decay. This
allows OO-POMCP to plan in a robust fashion. A factored
belief, furthermore, allows for greater sample efficiency
because |Sobji |n particles can be represented by n|Sobji |
particles within a factored belief for n objects. OO-POMCP
extends POMCP to support robust planning and sample
efficiency while scaling to domains with many objects.

IV. EVALUATION

A. Results in Simulation

In the simulation experiments, we test our approach on an
MOS task in four domains. Each domain consists of a 30×
30 grid composed of 8 rooms with hallways and doorways
(see Figure 2). Objects can exist in any room with about
500 possible object locations in each simulated domain. The
complexity of each domain, when considering 8 objects, is
approximately 12 actions, 109 observations, 1027 states, and
a belief space of 5008 ≈ 1021 dimensions, representing a
challenging POMDP.

The performance of OO-POMCP is contrasted against
six methods: Known gives an upper bound on performance
by solving the task with OO-POMCP and known object
locations; Random executes a random policy giving a lower
bound on performance; Iterative OO-POMCP decomposes
the MOS task into n single-object POMDPs, each solved
by OO-POMCP. This condition validates how much MOS
is improved by shared information across objects. When
the belief distribution is defined over all objects, as in OO-
POMCP, observations reduce uncertainty across all objects.
An agent must search a location once for n objects versus

n times (once per each object). Finally, .95/.5 and .90/1.0
refer to running OO-POMCP with sensor noise respectively
defined by the accuracy ε and standard deviation σ used to
parameterize Σ. All other methods had sensor model settings
of 1.0 and 0 respectively.

We conduct three experiments that vary the number
of objects, number of simulations (number of calls to
SIMULATE), and informativeness of the language-based
prior. Figure 3 illustrates the cumulative reward measured for
each experiment. Each data point is the mean of 100 trials,
25 trials of each domain, with randomized object locations
in each trial. A trial terminates when executing 200 actions
or executing n FIND actions. The agent searches for objects
with uniform uncertainty over all possible object locations
in the first and second experiment.

In the first experiment, we investigate how the algo-
rithms scale with the number of objects with 104 sim-
ulations. OO-POMCP outperforms Iterative OO-POMCP
and POMCP even with significant sensor noise. This is
because OO-POMCP maintains a belief distribution over
all objects, which exploits shared information (vs. Iterative
OO-POMCP) while avoiding particle decay (vs. POMCP).
Iterative OO-POMCP’s performance does not improve be-
cause the algorithm cannot exploit shared observational
information across objects, which results in re-searching
empty object locations. POMCP’s performance regresses to
Random because it cannot efficiently estimate large beliefs
even with 103 additional states sampled per planning cycle
for particle reinvigoration.

In the second experiment, we investigate the sample
efficiency of the algorithms by modifying the number of
simulations with 4 objects. All algorithms improve with more
simulations. The rate at which OO-POMCP and its variants
improve, however, reflects that a smaller number of simula-
tions are necessary to estimate good Q-values. We conjecture
that this is related to the number of relevant samples s that
SIMULATE receives during planning. POMCP often results
in an inaccurate set of particles for the current belief b
due to particle decay. A simulation is irrelevant if POMCP
executes SIMULATE on a state that is incorrectly believed to
be likely, or does not execute SIMULATE on a state that is
incorrectly believed to be unlikely. OO-POMCP avoids this
issue by using exact factored belief updates, hence all calls
to SIMULATE begin from relevant samples of the current
state. This simulation-sample efficiency enables OO-POMCP
to scale to large domains.

In the third experiment, we investigate the effect of the
informativeness of the language observation type on per-
formance with 104 simulations and 4 objects. A language
command provides an observation that updates the agent’s
initial uniform belief. Language observations are categorized
as misinformed, no information, ambiguous, and informed.
Misinformed is the case where the language command does
not reflect the ground truth; no information omits room
information entirely; ambiguous references multiple rooms;
informed references one room. In this experiment, misin-
formed and ambiguous references 3 rooms and ψ (error rate)



Fig. 3: Algorithm performance for three experiments. The vertical axis measures cumulative reward. Each point is the mean of 100 trials. The cumulative
reward roughly corresponds to the number of objects found (+1000 for correctly / -1000 for incorrectly choosing an object).

Fig. 4: Experiment with a language command “Find mugs in the kitchen and a book in the library”. The first image shows an occupancy grid map and
semantic map of the environment. Red and blue circles indicate mugs and book respectively, and the blue box indicates the robot MOVO. The robot
directly moves to the kitchen, looks around, and finds the first mug at 02:59. The inset images (red box) is the robot’s view. The second mug is found in
the kitchen at 03:27, after 6 actions. The robot next moves to the library, looks around again, and then finds the book at 05:14 (3 additional actions).

was set to .05. All algorithms consistently improve as the
informativeness of the language observation increases, except
POMCP. This is because in the informed case all objects
aggregate in one room. This results in rare observations
corresponding to a specific configuration of multiple detected
objects. Rare observations cause POMCP to not receive
enough particles to estimate the next belief.

B. Real World Results

OO-POMCP was evaluated using a Kinova MOVO mobile
robot. The robot searches for objects in a 13.33 m× 6.50 m
physical environment composed of a five rooms. In Figure 4,
the occupancy grid map and the semantic map of the
environment are shown. The workspace of the robot is de-
composed into a 20×20 grid map. The semantic map consists
of Kitchen, Library, LivingRoom, Storage, and
RoboticsLab. If the robot finds an object, it moves its
torso up and down.

Figure 4 shows the sequence of actions of the robot.
The language command is “Find a book in the library and
mugs in the kitchen,” which is processed by Google’s Cloud
Speech-to-Text API. The robot detects the book and mugs
using AR tags with its Microsoft Kinect 2 sensor. Since
the robot receives selective information from the human, it
does not have to visit all rooms; instead, it searches the
kitchen and the library directly. Over 5 trials, the robot
took 11.20 actions on average to find all objects, with an
average reward of 2907 and average execution time of 364s
(including preprocessing time for building the topological
graph). These results demonstrate that our approach scales
to a mobile robot in real-world environments. An example
of the robot’s execution can be seen in our video attachment.

V. CONCLUSION AND FUTURE WORK

In this paper, we defined an OO-POMDP formulation of a
novel multi-object search (MOS) task. Our solution enables
searching for multiple objects in a large space by factorizing
the agent’s belief in terms of objects. By leveraging a
key object-independence assumption, we demonstrated that
OO-POMCP can efficiently maintain object-specific factored
beliefs, and observations from both our visual sensor and
natural language support factored belief updates as well.
As a result, our method outperforms POMCP, achieving
high performance on large MOS tasks with approximately
12 actions, 109 observations, 1027 states, and large-scale
belief spaces with 1021 dimensions. We show that our
solution scales to a physical mobile robot using a LIDAR for
localization and a Microsoft Kinect 2 for object detection,
enabling it to efficiently find objects, incorporate information
from language, and operate in real-world environments.

Our solution uses a keyword language model for generat-
ing language commands as a proof of concept. In future work
we plan to develop a realistic model trained on unrestricted
natural language commands. The observation from language
commands, furthermore, currently occur only at the onset of
the task. In future work, we aim to create an observation
model with the capacity to receive language commands
throughout the duration of the task, enabling collaborative
human-in-the-loop multi-object search.
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