Unbounded-Thread Program Verification
using Thread-State Equations

Konstantinos Athanasiou Peizun Liu Thomas Wahl

Northeastern University, Boston, MA

[JCAR 2016, University of Coimbra, Portugal

unsigned value, m = 0;
unsigned count () {
unsigned v = 0;

acquire (m);
if (value == Ou—1) {
release (m);

return 0;

else {
v = value;
value = v + 1;
release (m);
assert (value > v);
return v + 1;

¥

¥

int main() {
while(...)
thread(&count) ;

inc.c

unsigned value, m = 0;

unsigned count () {
unsigned v = 0;

acquire (m) ;
if (value == Ou—1) {

release (m);

return 0;

else {
v = value;
value = v + 1;

release (m) ;
assert (value > v);
return v + 1;
}
}

int main() {
while(...)
thread (&count) ;

inc.c

void main () begin

11:
if 0 then goto 16; fi;
start-thread goto 12;
goto 15;

12:
atomic_begin;
assume (*) ;
atomic_end;
if ! (*) then goto 13; fi;
atomic_begin;
assume (*) ;
atomic_end;
goto 14;

13:
atomic.begin;
assume (*) ;
atomic-end;
assert (! (x));
goto 14;

14:
end-thread;

15:
goto 11;

16:

end

inc.bp

unsigned value, m = 0;

unsigned count () {
unsigned v = 0;

acquire (m) ;
if (value == Ou—1) {
release (m);

return 0;

else {
v = value;
value = v + 1;
release (m);
assert (value > v);
return v + 1;

¥

}

int main() {
while(...)
thread (&count) ;

inc.c

void main () begin

11:
if 0 then goto 16; fi;
start.thread goto 12;
goto 15;

12:
atomic_begin;
assume (*) ;
atomic_end;
if ! (*) then goto 13;
atomic.begin;
assume (*) ;
atomic_end;
goto 14;

13:
atomic.begin;
assume (*) ;
atomic-end;
assert (! (x));
goto 14;

14:
end-thread;

15:
goto 11;

16:

end

fi;

inc.bp

(20) (21 (22)

(1,0) / (1,1) (1,2)

(00) (01) (0.2)
l

Thread-Transition Systems (TTS)

n
v

Finite-state models extracted from
recursion-free, finite-data procedures
executed by threads

(2,0) (2,1) (22)

(1,0) A (1,1) (1,2)

(00) (01) (0.2)
14

v

(s,!): shared s and local | component.

v

Configurations of the form (s|¢1,...,¢,)
(0[0,0) = (2]1,0)

v

Thread-Transition Systems (TTS)

n
v

Finite-state models extracted from
recursion-free, finite-data procedures
executed by threads

(2,0) (2,1) (22)

(1,0) A (1,1) (1,2)

(00) (01) (0.2)
14

v

(s,!): shared s and local | component.

v

Configurations of the form (s|¢1,...,¢,)
(0[0,0) = (2]1,0)

v

Problem Statement
Given a target conf. vg = (sg|¢g), can the unbounded-thread
system reach a configuration of the form v = (sg|l1,...,¢F,...)7

The coverability problem for TTS

» Coverability is decidable for well-quasi ordered systems.
(Finkel and Schnoebelen '01, Abdulla '10)

The coverability problem for TTS

» Coverability is decidable for well-quasi ordered systems.
(Finkel and Schnoebelen '01, Abdulla '10)

» Complexity Issues: EXPSPACE-complete.
(Cardoza et al. '76, Rackoff '78)

What if we over-approximate?

What if we over-approximate?
» Esparza et al. encoded the Petri net marking equation into
symbolic expressions to over-approximate coverability (CAV'14).

» Out-performed existing approaches with high rate of success
on uncoverable instances (inapplicable on coverable).

What if we over-approximate?
» Esparza et al. encoded the Petri net marking equation into
symbolic expressions to over-approximate coverability (CAV'14).

» Out-performed existing approaches with high rate of success
on uncoverable instances (inapplicable on coverable).

This work

> Set of equations for TTS expressed in the decidable theory of
ILA, whose inconsistency implies uncoverability of vg.

» Algorithm that uses the equations to often prove uncoverable
and coverable instances and detect spurious assignments.

Thread State Equations

Thread and Transition Counting

S
(2,0) (2.1) (2,2)

v

(10) /(1L.1) (1.2) G=(T,R)where T=Sx1L

" » rc NIRI
00) (0.1) (02) » ¢; € NIt
/! » ¢ € NIt

c e {0,1, —1}HxIRI

v

(0]0,0) ¥ (2|1,0)

—1 if transition r starts in local state ¢
0 otherwise.

+1 if transition r ends in local state ¢
c(l,r)=

Thread and Transition Counting

S

(200 21 @2 » G=(T,R)where T=Sx1L
> rE N‘R|
1,0 1,1 1,2
(10) /(1.1) (1) - o el
(0,0) (0,1) (0,2) » ¢ € NIt
1 » cc {0,1, —1}LIxIRI
(>0
£y >0

b >0
C = =
= Neogr, &1(€) =0

Le=L+cC-r
L Aver 2e(0) > |{i: ve(i) = £}

An example

(20) (21) (2,2)

(1,0)/0(11) (12)

(0.0) (0.1) (0.2)
L

{ PP
Nocr £r(€) > [{i - ve(i) = £}]

ve = (srllF) = (02)

An example

(20) (21) (22 .
C, = /\ be=461+c-r
(10) £ (1)~ (1.2) Neecr €r(€) = {i - ve(i) = £}

!

(00) (0,1) (0.2)

0 ve = (srllF) = (02)
1 : £6(0) = £(0) - (0
- H o - H - H 2-(1) = r(0) — #(1)
0 1 26(2) = (1)
sat. assignment Lr(2) > 1

An example

(20) (21 (22

(1,0) A (1,1) (1.2)

(0,0) (0,1) (0,2)
14

1
r _|}:|,£1 = O,KF
0

sat. assignment

Vast over-approximation
» Ordering is violated

» Shared state not utilized

2£(0) = £1(0) — ¢(0)
0 € (1) = r(0) — r(1)
= H er(2) =r(1)
e(2)>1

(2,00 (2.1) (2,2)

(1,0) / (1,1) (1,2)

(00) (0.1) (0.2)
L

Gr

A sequence of transitions forms a path p,
1. utilizing the transitions in the multiplicity given by r,

2. synchronizing on the shared states.

2,0) (21) (22) s
2
(10) / (1.1) (1,2)
0 . 1 o
(0,0) (0.1) (02) "
) 0
G, Gels

A sequence of transitions forms a path p,
1. utilizing the transitions in the multiplicity given by r,
2. synchronizing on the shared states.

Observation
1 and 2 are satisfied iff p forms an Euler path in G|

The Seven Bridges of Konigsberg

10

The Seven Bridges of Konigsberg

There exists an Euler path from s; to sg in G"S iff:

flow: each shared state except s; and sg is entered and exited
the same number of times, and

connectivity: the undirected subgraph of G"s is connected.

10

Flow Condition

|

0
-1
+1

if s¢ {s;,sp} or s =5, = sf
ifSZSI#SF
if s =sF # 51

Cr = /\ flow(s)

seS

11

A full example

S

(20) (21) (22

(1,0) / (1,1) (1,2)

(0.0) (0.1) (0.2)

14
£¢(0) = £(0) — r(0)
£r(1) =r(0) —r(1)
£r(2) = (1)
lr(2) > 1

ST :O,SF =0

12

A full example

0

S
2
1
n
0
S| = O,SF

— —~ —~p
N N N
o — o
~—" (N(
— — —
L) i) i)
o — o
= = =
o

— — —
< e e
o — o
= = =
"

£¢(0) = &(0) — (0)
£r(1) = r(0) - r(1)

£r(2) = (1)
tr(2) > 1

12

Coverability via TSE

Algorithm

Input: TTS G; initial configuration vg; final configuration vg
Output: “uncoverable”, or “coverable” + witness path

@ :=CLNCF
while Im: m =
Nm =3 e 41(£)(m)
if Fss(G, ny,) = witness p
return “coverable” + p
w:=pA(n>npy)
return “uncoverable”

Noakwbdh

14

Evaluation

» Compare against state-of-the-art unbounded-thread Boolean
program checkers
> Investigate relation to tools targeting Petri nets

» Conversion times from BP to Petri Nets ignored
» Experimented with multiple translators

Experimental Setup

» Benchmark set consisting of 339 concurrent Boolean programs
» 135 of the Boolean programs are safe (i.e. uncoverable)

» Timeout: 30 minutes

15

Precision

Success rate on proving Boolean programs either safe or unsafe

wite tools TSE Petrinizer BFC lig;_ IIC 1\&8;— EEC # instances
safe BP (%) 100 100 57.04 2.22 81.48 94.07 34.81 135
unsafe BP (%) 97.55 - 99.02 98.04 62.75 12.75 18.63 204
total (%) 98.53 82.60 59.88 70.21 45.13 25.07 339

Efficiency

BFC (sec.)

TO
103
10?
10!

100

Flo safe 1
E| x unsafe x El
E o E/
i g@ x 1
r o y 1
E 8 5 E
SR
Lo 8% 0y x X]
Fo go X X E|
r 0 % 'y x 1
§@Cp Lt E
123 ™ i Bl
O XOX X500 |]
E o x® wosx ! -
L |]
r % | 1

e v ol ol ol

10° 10 102 10® TO
TSE (sec.)

Petrinizer (sec.)

102

10!

100

E T
Flo safe
['| x unsafe
E o E!
= O
0]
s ocven 8592 %]
L Ll Ll ! \HHH; Lol IR
100 10!
TSE (sec.)

102

17

Summary

A coverability technique that
» Can verify very often safe instances efficiently

» Can prove coverability in many unsafe instances

TSE

» An incomplete yet practical method using symbolic and

explicit state techniques to verify safe and unsafe instances.

> http://www.ccs.neu.edu/home/lpzun/tse/

18

