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unsigned value, m = 0;
unsigned count () {
unsigned v = 0;

acquire (m);
if (value == Ou—1) {
release (m);

return 0;

else {
v = value;
value = v + 1;
release (m);
assert (value > v);
return v + 1;
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int main() {
while(...)
thread(&count) ;

inc.c
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void main () begin

11:
if 0 then goto 16; fi;
start-thread goto 12;
goto 15;

12:
atomic_begin;
assume (*) ;
atomic_end;
if ! (*) then goto 13; fi;
atomic_begin;
assume (*) ;
atomic_end;
goto 14;

13:
atomic.begin;
assume (*) ;
atomic-end;
assert (! (x));
goto 14;

14:
end-thread;

15:
goto 11;

16:

end

inc.bp
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Thread-Transition Systems (TTS)
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(s,!): shared s and local | component.
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Configurations of the form (s|¢1,...,¢,)
(0[0,0) = (2]1,0)
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Problem Statement
Given a target conf. vg = (sg|¢g), can the unbounded-thread
system reach a configuration of the form v = (sg|l1,...,¢F,...)7



The coverability problem for TTS

» Coverability is decidable for well-quasi ordered systems.
(Finkel and Schnoebelen '01, Abdulla '10)



The coverability problem for TTS

» Coverability is decidable for well-quasi ordered systems.
(Finkel and Schnoebelen '01, Abdulla '10)

» Complexity Issues: EXPSPACE-complete.
(Cardoza et al. '76, Rackoff '78)
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What if we over-approximate?
» Esparza et al. encoded the Petri net marking equation into
symbolic expressions to over-approximate coverability (CAV'14).

» Out-performed existing approaches with high rate of success
on uncoverable instances (inapplicable on coverable).



What if we over-approximate?
» Esparza et al. encoded the Petri net marking equation into
symbolic expressions to over-approximate coverability (CAV'14).

» Out-performed existing approaches with high rate of success
on uncoverable instances (inapplicable on coverable).

This work

> Set of equations for TTS expressed in the decidable theory of
ILA, whose inconsistency implies uncoverability of vg.

» Algorithm that uses the equations to often prove uncoverable
and coverable instances and detect spurious assignments.
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Thread and Transition Counting
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An example
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sat. assignment

Vast over-approximation
» Ordering is violated

» Shared state not utilized

2£(0) = £1(0) — ¢(0)
0 € (1) = r(0) — r(1)
= H er(2) =r(1)
e(2)>1
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A sequence of transitions forms a path p,
1. utilizing the transitions in the multiplicity given by r,
2. synchronizing on the shared states.

Observation
1 and 2 are satisfied iff p forms an Euler path in G|
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The Seven Bridges of Konigsberg

There exists an Euler path from s; to sg in G"S iff:

flow: each shared state except s; and sg is entered and exited
the same number of times, and

connectivity: the undirected subgraph of G"s is connected.
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Flow Condition
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A full example
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A full example
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Coverability via TSE



Algorithm

Input: TTS G; initial configuration vg; final configuration vg
Output: “uncoverable”, or “coverable” + witness path

@ :=CLNCF
while Im: m =
Nm =3 e 41(£)(m)
if Fss(G, ny,) = witness p
return “coverable” + p
w:=pA(n>npy)
return “uncoverable”

Noakwbdh
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Evaluation

» Compare against state-of-the-art unbounded-thread Boolean
program checkers
> Investigate relation to tools targeting Petri nets

» Conversion times from BP to Petri Nets ignored
» Experimented with multiple translators

Experimental Setup

» Benchmark set consisting of 339 concurrent Boolean programs
» 135 of the Boolean programs are safe (i.e. uncoverable)

» Timeout: 30 minutes
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Precision

Success rate on proving Boolean programs either safe or unsafe

wite tools TSE  Petrinizer BFC lig;_ IIC 1\&8;— EEC # instances
safe BP (%) 100 100 57.04 2.22 81.48 94.07 34.81 135
unsafe BP (%) 97.55 - 99.02 98.04 62.75 12.75 18.63 204
total (%) 98.53 82.60 59.88 70.21 45.13 25.07 339




Efficiency
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Summary

A coverability technique that
» Can verify very often safe instances efficiently

» Can prove coverability in many unsafe instances

TSE

» An incomplete yet practical method using symbolic and

explicit state techniques to verify safe and unsafe instances.

> http://www.ccs.neu.edu/home/lpzun/tse/
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