
Concolic Unbounded-Thread Reachability via Loop Summaries 17

Appendix

A Uniqueness of the Initial State

It is inexpensive to enforce a unique initial thread state without a↵ecting thread
state reachability, provided the initial thread state set T of the given TTD P
satisfies the following “box” property:

8(s, t) 2 T, (s0, t0) 2 T : (s, t0) 2 T, (s0, t) 2 T . (5)

This holds if T is a singleton. More generally, it holds if all states in T have the
same shared state, and it holds if all states in T have the same local state. It
also holds of a set T whose elements form a complete rectangle in the graphical
representation of P.

To enforce a unique initial thread state, we build a new TTD P 0 that is
identical to P, except that it has a single initial thread state t

I

= (s
I

, l

I

) with
fresh shared and local states s

I

, l

I

, and the following additional edges:

(s
I

, l

I

) ! (s, l) such that (s, l) 2 T , and (6)

(s, l
I

) ! (s, l) such that (s, l) 2 T . (7)

Suppose now some thread state t0 = (s0, l0) is reachable in P
n

, for some n.
Then there exists a path from some global state (s

J

|l1, . . . , ln) such that (s
J

, l

i

) 2
T for all i, to a global state with shared component s0 and some thread in local
state l0. We can attach, to the front of this path, the prefix

(s
I

|l
I

, . . . , l

I

) ⇢ (s
J

|l1, lI , lI , . . . , lI)
⇢ (s

J

|l1, l2, lI , . . . , lI)
· · ·

⇢ (s
J

|l1, l2, l3, . . . , ln) ,

with the underlined symbols changed. The new path reaches t0 in P 0
n

.
Conversely, suppose some thread state t0 = (s0, l0) such that s0 6= s

I

, l0 6= l

I

is reachable in P 0
n

, for some n. Then there exists a path p

0 from {s
I

} ⇥ {l
I

}n
to a global state with shared component s0 and some thread in local state l0.
The very first transition of p0 is by some thread executing an edge of type (6),
since those are the only edges leaving the unique initial state (s

I

, l

I

). Let that
be thread number i, and let (s, l) 2 T be the new state of thread i.

Consider now an arbitrary thread j 2 {1, . . . , n} \ {i}; its local state after
the first transition along p

0 is l
I

.

• If thread j is never executed along p

0, we build a new path p

00 by inserting
edge (s, l

I

) ! (s, l), executed by thread j, right after the first transition in p

0.
This is a valid edge (of type (7)) since (s, l) 2 T . The edge moves thread j

into an initial thread state (s, l) 2 T . The modified state sequence remains a
valid path in P 0

n

since no shared states have been changed, and thread j is
inactive henceforth.



18 Peizun Liu and Thomas Wahl

• If thread j is executed along p

0, then the first edge it executes must be of type
(7), since again this is the only way to get out of local state l

I

. Let (s̄, l̄) 2 T

be the state of thread j after executing this first edge. Then (s, l
I

) ! (s, l̄) is a
valid edge (of type (7)): from (s, l) 2 T and (s̄, l̄) 2 T , we conclude (s, l̄) 2 T ,
by property (5). We now build a new path p

00, by removing from p

0 thread j’s
first transition, and instead inserting, right behind the first transition of p0, a
transition where thread j executes edge (s, l

I

) ! (s, l̄):

p

0 :: (s
I

, l

I

)
i! (s, t) , . . . , (s̄, l

I

)
j! (s̄, l̄)

becomes

p

00 :: (s
I

, l

I

)
i! (s, t) , (s, l

I

)
j! (s, l̄) , . . .

(here we add a thread index on top of an edge’s arrow, to indicate the identity
of the executing thread). The modified state sequence remains a valid path
in P 0

n

, since the shared states “match” and are not changed by any of the
removed or inserted edges. Moving the local state change of thread j (from l

I

to l̄) forward leaves the path intact, since the original edge (s̄, l
I

) ! (s̄, l̄) was
thread j’s first activity.

This procedure is applied to every thread j 6= i, with the result that, after the
first n transitions, all threads are in a state belonging to T . The su�x of p00

following these transitions reaches t0 in P
n

. 2

B Proof of Lemma 2

Lem. 2 If thread state t

F

is reachable in P1, then t

F

is also reachable in P.

Proof : We show that t
F

is reachable in P+; the fact that t
F

is reachable in P
then follows from standard properties of the SCC quotient graph.

Let t
F

= (s
F

, l

F

), and t

I

= (s
I

, l

I

) be the initial state. Since t

F

is reachable
in P1 = [1

n=1Pn

, let n be such that t
F

is reachable in P
n

via a witness path p:

p :: (s
I

| l
I

, . . . , l

I| {z }
n

) ⇢ · · · ⇢ (s
F

|l1, . . . , li�1, lF , li+1, . . . , ln). (8)

Let further (e
i

) := (e1, . . . , ez) be the sequence of TTD edges executed along p.
We drop all “horizontal” edges from (e

i

), i.e. edges of the form (s, ·) ! (s, ·), to
obtain a subsequence (g

i

) := (g1, . . . , gz0) (z0  z). Given (g
i

), we construct a
path � from t

I

to t

F

in P+, by processing the edges g

i

, defined recursively as
follows:

(1) Edge g1 is processed by copying it to �.
(2) Suppose edge g

k�1 has been processed, and suppose its target state is (s, l
i

).
Edge g

k

’s source state has shared component s as well, since edges g
k�1 and

g

k

are consecutive in p, except for some horizontal edges in between that



Concolic Unbounded-Thread Reachability via Loop Summaries 19

may have been dropped, but these do not change the shared state. So let
g

k

’s source state be (s, l
j

).
Edge g

k

is now processed as follows. If l
i

= l

j

, append g

k

to �. Otherwise,
first append (s, l

i

) 99K (s, l
j

) to �, then g

k

. Note that (s, l
i

) 99K (s, l
j

) is a
valid expansion edge in R

+, since there exist two non-horizontal edges, g
k�1

and g

k

, adjacent to the expansion edge’s source and target, respectively.

Step (2) is repeated until all edges g

i

have been processed. It is clear by con-
struction that � is a valid path in P+, and that it starts in t

I

= (s
I

, l

I

). We
finally have to show that it ends in t

F

= (s
F

, l

F

). It may in fact not: let (s
F

, l

f

)
be the target state of the final edge g

z

0 ; l
f

may or may not be equal to l

F

. If it
is not, we append an edge (s

F

, l

f

) 99K (s
F

, l

F

) to �. This is a valid expansion
edge by Def. 1, and � now ends in t

F

, which is hence reachable in P+. 2

C Proof of Theorem 3

Before we turn to this proof, we establish a lemma that uses the �

l

’s defined in
Sect. 5 to compactly determine local state l’s summary along �

+.

Lem. 3 Let b

l

= ⌃

l

(1) if l

k

= l (path �

+
ends in local state l), and b

l

= ⌃

l

(0)
otherwise. Then ⌃

l

(n
l

) = n

l

�
bl �l .

The lemma suggests: in order to determine local state l’s summary function in
compact form, first compute the constant ⌃

l

(1) (or ⌃
l

(0)) using Alg. 2. ⌃
l

(n
l

)
is then the formula as specified in the lemma.

Proof of Lem. 3: by induction on the number k of vertices of �+ = t1, . . . , tk.

k = 1: then �

+ has no edges, so ⌃

l

(n
l

) = n

l

, b
l

= 0, and �

l

= 0. Thus,
⌃

l

(n
l

) = n

l

= n

l

�
bl 0 = n

l

�
bl �l.

k ! k + 1: Suppose �

+ = t1, . . . , tk+1 has k + 1 vertices, and Lem. 3 holds
for all paths of k vertices. One such path is the su�x ⌧

+ = t2, . . . , tk+1 of �+. By
the induction hypothesis, ⌧+’s summary function T

l

satisfies T
l

(n
l

) = n

l

�
cl �l

for the real edge summary �

l

along ⌧

+, and c

l

= T
l

(1) if l
k+1 = l; otherwise

c

l

= T
l

(0). Note that ⌧+ and �

+ have the same final state t

k+1 = (s
k+1, lk+1).

We now distinguish what Alg. 2 does to the first edge e1 = (t1, t2) =
((s1, l1), (s2, l2)) of �+ (which is traversed last):

Case 1: e1 2 R and l1 = l: Then ⌃

l

(n
l

) = T
l

(n
l

)+1, �
l

= �

l

+1, and b

l

= c

l

+1.
Using the induction hypothesis (IH), we get ⌃

l

(n
l

) = n

l

�
cl (�l � 1) + 1.

– If n
l

+ �

l

� 1 � c

l

, then n

l

�
cl (�l � 1) + 1 = n

l

+ �

l

= n

l

�
bl �l since

n

l

+ �

l

� c

l

+ 1 = b

l

.
– If n

l

+ �

l

� 1 < c

l

, then n

l

�
cl (�l � 1) + 1 = c

l

+ 1 = b

l

= n

l

�
bl �l since

n

l

+ �

l

< c

l

+ 1 = b

l

.
Case 2: e1 2 R and l2 = l: This case is analogous to Case 1; for completeness,

we spell it out. We have ⌃

l

(n
l

) = T
l

(n
l

) � 1, �
l

= �

l

� 1, and b

l

= c

l

� 1.
Using the IH, we get ⌃

l

(n
l

) = n

l

�
cl (�l + 1)� 1.



20 Peizun Liu and Thomas Wahl

– If n
l

+ �

l

+ 1 � c

l

, then n

l

�
cl (�l + 1) � 1 = n

l

+ �

l

= n

l

�
bl �l since

n

l

+ �

l

� c

l

� 1 = b

l

.
– If n

l

+ �

l

+ 1 < c

l

, then n

l

�
cl (�l + 1)� 1 = c

l

� 1 = b

l

= n

l

�
bl �l since

n

l

+ �

l

< c

l

� 1 = b

l

.
Case 3: e1 2 R

+ \ R and l1 = l: Then ⌃

l

(n
l

) = T
l

(n
l

) ⌫ 1 + 1, �
l

= �

l

, and
b

l

= c

l

⌫ 1 + 1. Using the IH, we get ⌃
l

(n
l

) = n

l

�
cl �l ⌫ 1 + 1.

– If c
l

� 1, then b

l

= c

l

, so n

l

�
cl �l � c

l

� 1, hence n

l

�
cl �l ⌫ 1 + 1 =

n

l

�
cl �l = n

l

�
bl �l.

– If c
l

= 0, then b

l

= 1.
• If n

l

+�

l

� 1, then n

l

�
cl �l⌫1+1 = n

l

+�

l

⌫1+1 = n

l

+�

l

= n

l

�
bl �l.

• If n
l

+ �

l

 0, then n

l

�
cl �l ⌫ 1 + 1 = c

l

⌫ 1 + 1 = 1 = n

l

�
bl �l.

Case 4: none of the above. In this case e1 has no impact on the path summary
generated by Alg. 2. Thus, ⌃

l

(n
l

) = T
l

(n
l

); in particular we have b
l

= c

l

and

�

l

= �

l

. Further, ⌃
l

(n
l

) = T
l

(n
l

)
(IH)
= n

l

�
cl �l = n

l

�
bl �l. 2

We now turn to the main goal of this section, the proof of Thm. 3. We repeat
it here for convenience, except that, applying Lem. 3, we replace term n

l

�
bl �l

in the original theorem formulation by ⌃

l

(n
l

), which simplifies the proof.

Thm. 3 Let superscript

()
denote  function applications. Then, for  � 1,

⌃

l

()(n
l

) = ⌃

l

(n
l

) �
bl (� 1) · �

l

. (9)

Proof : by induction on . For  = 1, the right-hand side (rhs) of (9) equals
⌃

l

(n
l

) �
bl 0 = ⌃

l

(n
l

) since ⌃

l

(n
l

) + 0 = ⌃

l

(n
l

) � b

l

by Lem. 3.
Now suppose (9) holds. For the inductive step we obtain:

⌃

l

(+1)(n
l

) = ⌃

l

(⌃
l

()(n
l

))
(IH)
= ⌃

l

(⌃
l

(n
l

) �
bl (� 1) · �

l

)
(Lem. 3)
= (⌃

l

(n
l

) �
bl (� 1) · �

l

) �
bl �l . (10)

We now distinguish three cases (h . . . i below contains proof step justifications):
(1) If �

l

� 0:

(10)
= h (� 1) · �

l

� 0, ⌃
l

(n
l

) � b

l

, hence ⌃

l

(n
l

) + (� 1) · �
l

� b

l

i
(⌃

l

(n
l

) + (� 1) · �
l

) �
bl �l

= h �
l

� 0 i
(⌃

l

(n
l

) + (� 1) · �
l

) + �

l

=
⌃

l

(n
l

) +  · �
l

= h ⌃
l

(n
l

) +  · �
l

� b

l

i
⌃

l

(n
l

) �
bl  · �

l

,

the final expression being the rhs of (9), for  replaced by + 1.



Concolic Unbounded-Thread Reachability via Loop Summaries 21

(2) If �
l

< 0 and ⌃

l

(n
l

) + (� 1) · �
l

< b

l

, then also ⌃

l

(n
l

) +  · �
l

< b

l

, and:

(10)
= h ⌃

l

(n
l

) + (� 1) · �
l

< b

l

i
b

l

�
bl �l

= h �
l

< 0 i
b

l

= h ⌃
l

(n
l

) +  · �
l

< b

l

i
⌃

l

(n
l

) �
bl  · �

l

.

(3) If finally �

l

< 0 and ⌃

l

(n
l

) + ( � 1) · �
l

� b

l

, then (10) reduces to
(⌃

l

(n
l

) + (� 1) · �
l

) �
bl �l. To get an overview of what we need to prove, let

X = ⌃

l

(n
l

) + (� 1) · �
l

, X

0 = ⌃

l

(n
l

) ,
Y = �

l

, Y

0 =  · �
l

.

Then (the reduced) (10) equals X �
bl Y , and the rhs of (9) equals X

0 �
bl Y

0.
Further, observe that X + Y = X

0 + Y

0. This implies that X �
bl Y = X

0 �
bl Y

0,
which follows immediately by distinguishing whether X + Y � b

l

or not. The
equality X �

bl Y = X

0 �
bl Y

0 is what we needed to prove. 2


