In this work, we extend the context-aware idea of Boolean programs running by a fixed, finite number of threads and the ability to perform on-the-fly exploration and efficient SAT solvers.

Our main contributions include:
1. performing BWRA on-the-fly by operating directly on Boolean programs;
2. avoiding local state explosion with the aid of on-the-fly exploration and efficient SAT solvers;
3. optimizations to limit the size of obtained covering pre-images.

Algorithm On-the-fly Backward Exploration

Input: B: A Boolean program with the set of initial thread states I; T_{fin}: the set of target thread states G: An edge clause of the CFG constructed from B.

Output: Φ such that T_{fin} reachable?

1. $\Phi := \emptyset$
2. for each $e\in\{1,\ldots,k\}$ do:
 1. $\Phi := \emptyset$
 2. $\Phi := \emptyset$
 3. $\Phi := \emptyset$
 4. $\Phi := \emptyset$
3. return Φ

Procedure Cov-Predecessors(τ)

1. $\Phi := \emptyset$
2. for each $e\in\{1,\ldots,k\}$ do:
 1. $\Phi := \emptyset$
 2. $\Phi := \emptyset$
 3. $\Phi := \emptyset$
 4. $\Phi := \emptyset$
3. return Φ

Procedure Update-Counters(ℓ, ℓ')

1. $Z := \emptyset$
2. $Z := \emptyset$
3. $Z := \emptyset$
4. $Z := \emptyset$
5. $Z := \emptyset$
6. $Z := \emptyset$
7. return Z