
On Aspect-oriented Programming for Enforcing

Software Design Rules

A dissertation presented

by

Pengcheng Wu

to the Faculty of the Graduate School

of the College of Computer and Information Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Northeastern University

Boston, Massachusetts

May, 2010

i

ii

Copyright c© 2010 by Pengcheng Wu

All rights reserved.

Abstract

Software design rules are important in modern software develop-

ment, with significance in achieving high quality in many aspects of

software engineering including functional correctness, safety, perfor-

mance, reusability, and so on. The current practice of software engi-

neering tools to enforce software design rules has much to be desired.

They usually either can only check a pre-defined set of design rules

without allowing customization and extension, or even when cus-

tomization or extension is allowed, they require programmers to en-

code new design rules in low level primitives such as byte-code level

API, or force programmers to learn new domain specific languages or

new meta-models that programmers are not familiar with.

In this thesis work, we argue that the shadow model of AspectJ-

like Aspect-oriented programming languages is a useful and suitable

meta-model for building customizable software design rule static check-

ers for programs written in Java-like object-oriented languages. To

support this thesis, based on AspectJ’s shadow model and pointcut

language, we have built two compile time facilities, with which soft-

ware design rules can be encoded and enforced. The first facility

is called Statically Executable Advice, which allows programmers to

implement design rule checkers in advice-like constructs, but unlike

advice in AspectJ, they are advice that are defined on static shad-

ows, instead of on dynamic join points, and that they are executed

at compile time, instead of at run time. The second facility is a fur-

iii

iv

ther improvement of the idea, by featuring a Datalog based declara-

tive query mechanism on shadows, with a seamless integration with

AspectJ’s native pointcut expression language. When designing this

Datalog shadow query mechanism, we especially developed it with a

focus on performance and scalability. We present a Datalog represen-

tation of the shadow model of AspectJ so that we can leverage an in-

telligent data structure capable of dealing with large-scale relational

data with much redundancy, called Binary Decision Diagram (BDD).

We make use of an advanced third party BDD-based Datalog solver

called ”bddbddb” to solve design rule constraints encoded in Datalog

shadow queries in our system. We have evaluated our Datalog-based

approach for enforcing software design rules in terms of its effective-

ness, usability, and performance. The evaluation results show that the

system can describe and enforce a wide variety of industrial software

design rules, it is easier to use than writing queries on an alterna-

tive meta-model, i.e., the Abstract-Syntax-Tree based model, and the

system indeed can scale well to large size real world programs on

diversified queries.

Acknowledgement

First of all, I would like to thank my thesis advisor, Prof. Karl Lieber-

herr, for his direction and encouragement over the years, including

the years when I was at Northeastern University and the years when I

worked in industry while trying to reach this ultimate academic goal.

It is fair to say that without his support, I would not have been able

to finish this PhD work. I am also grateful to the rest of my thesis

committee members, including Professors Gene Cooperman, Shriram

Krishnamurthi, and Mitchell Wand, for their time and effort spent

on reading drafts of my dissertation, giving feedback and providing

helpful suggestions. In particular, I want to thank Prof. Wand for his

detailed comments and many useful suggestions on the Evaluation

chapter of the dissertation.

During my Northeastern years, I am also indebted to many peo-

ple, from whom I have learnt much. I had a collaboration with Prof.

David Lorenz and the collaboration has resulted in my first published

academic paper during Northeastern period, the AOSD’03 paper co-

authored with Karl and David. The main contents of the paper have

turned into Chapter 2 of this dissertation, and David has made signif-

icant contribution to it. In the summer of 2001 and summer of 2004,

I also had an honor to work with Dr. Dirk Riehle and Dr. Rajesh

Krishnan respectively as an intern in industry. I have tremendously

benefited from the working experience with them and I thank them

for treating me well. I am also grateful to Neeraj Sangal for allowing

v

vi

me to work with him in the summer of 2003. Neeraj’s entrepreneur-

ship spirit has always inspired me since then.

I am indebted to the contributors of the Eclipse AspectJ com-

piler, the BDD-based Datalog solver bddbddb, and the Eclipse plug-in

ASTView for making their software and source code available. Dif-

ference pieces of the software tools presented in this dissertation are

built on their software.

Over the years, I have made many friends at Northeastern, in the

Greater Boston area, and in China. They are too many to list here.

Chatting and playing with these friends have made life enjoyable and

colorful.

My family is always the most important aspect of my life. Words

cannot really express my gratitude to my wife, Xin, for her love, un-

derstanding, and encouragement along this journey. Even though still

a young kid, Ethan, my lovely son, has made contribution to this work

by being cooperative, cute and funny. This is for you, Xin and Ethan!

I thank my parents for their love and their appreciation for education,

which made this possible in the first place. I thank my sister for her

support and encouragement. My parents-in-law certainly deserve my

gratitude for believing that I can finish this PhD work. It is such a pity

that my mother-in-law was not able to see this happen eventually.

Contents

Contents vii

List of Figures xi

List of Tables xii

Listings xiv

1 Introduction 1

1.1 Examples of design rules 2

1.2 Current Design Rule Checking Practices and Deficien-

cies . 4

1.3 Our approach . 6

1.4 Thesis Contributions 9

1.5 Outline . 9

2 Dynamic Checkers for the Law of Demeter 11

2.1 The Definition of the Law of Demeter 11

2.2 Validating LoD in AspectJ 12

2.3 Dynamic Checker for OF in AspectJ 14

2.3.1 Implementation of the OF checker 14

2.4 Dynamic Checker for CF in AspectJ 20

2.4.1 Implementation of the dynamic CF checker . . 20

vii

viii CONTENTS

3 A Lightweight Extension to AspectJ: Statically Executable

Advice 29

3.1 Dynamic join point model and shadow model 29

3.2 Our representation of the shadow model 33

3.3 Statically Executable Advice 35

3.4 A Case Study: Class form LoD Static Checker in Stati-

cally Executable Advice 38

3.4.1 Observations about the checker 41

4 Datalog based Pointcuts for Design Rule Checking 45

4.1 A proposal for Datalog based pointcuts 46

4.2 Background Information about Datalog 46

4.3 Performance Consideration: BDD-based Representation

of Datalog relations 51

4.3.1 Background Information about BDD 51

4.3.2 Is There Much Redundancy Among Shadow Records? 56

4.4 The Design of Datalog-based Pointcut System 59

4.4.1 Shadow model in Datalog 59

4.4.2 Datalog-based Pointcuts and Integration with

AspectJ . 75

4.5 Case Studies . 82

4.5.1 Case Study 1: Java hashCode/equals Methods

Rule Checking 82

4.5.2 Case Study 2: Law of Demeter Static Checker 86

4.5.3 Case Study 3: Detect Recursive Calls in Pres-

ence of Polymorphism and Aspects 89

5 Evaluation 95

5.1 Effectiveness evaluation 95

5.1.1 Implement FxCop Design Rules 95

5.1.2 How hard is it to extend shadow model? . . . 104

ix

5.1.3 Implement FindBugs Design Rules 105

5.2 Usability evaluation 109

5.2.1 Case study: Consider passing base types as pa-

rameters . 112

5.2.2 Case study: Law of Demeter checker 115

5.2.3 Conclusions from the experiment 118

5.3 Performance evaluation 119

5.3.1 Performance of analyzing Java benchmarks . 120

5.3.2 Performance of running call graph analysis . . 125

5.3.3 Performance of earlier analysis tasks on woven

Java benchmarks 129

5.3.4 Conclusions from the experiment 131

6 Related Work 133

6.1 Datalog as Pointcut Designator Language 133

6.2 Static Aspect Languages for software style rule check-

ing . 134

6.3 Generic Code Query Systems 136

6.3.1 CTL for control flow path query 138

6.4 Datalog and BDD for Program Analysis Tasks 139

7 Concluding remarks and future work 143

7.1 Concluding remarks 143

7.1.1 Strengths and limitations of our system . . . 144

7.2 Future work . 146

7.2.1 Conflict between efficiency and usability . . . 146

7.2.2 Leverage type based optimizations 148

Bibliography 151

8 Appendix 161

8.1 FxCop rule implementations 161

x CONTENTS

8.2 FindBugs rule implementations 164

8.3 Predicate definitions for Abstract Syntax Tree based

model . 170

List of Figures

2.1 The UML diagram of the object form checker 15

2.2 The UML diagram of the class form checker 21

3.1 Static Shadow Model . 34

4.1 The relation encoded in a regular BDD 54

4.2 Two BDD reduction operations 55

4.3 The same relation encoded in ROBDD after reductions . 55

4.4 Method Resolution: case 1 72

4.5 Method Resolution: case 2 74

4.6 Overview of the Components of the Datalog pointcut sys-

tem and their roles in the AspectJ weaving 83

5.1 Chart of running time of queries on benchmarks 122

xi

List of Tables

2.1 The correspondences between object/class form checkers. 24

4.1 Exemplary relation of methods and their parameter type

signatures . 53

4.2 Top 5 frequent method parameter type signatures for jEdit 58

4.3 Top 5 frequent method parameter type signatures for Jig-

Saw . 58

5.1 Implemented design rules and number of literals needed 97

5.2 Rules that cannot be expressed using our approach and

why . 103

5.3 How FindBugs bug patterns can be implemented in our

approach . 107

5.4 Summary of the benchmarks 120

5.5 Summary of the queries 121

5.6 Running time of queries on benchmarks 122

5.7 Query speed up ratio when using explicit BDD variable

ordering . 123

5.8 Running time of query CF on benchmarks with different

memory limits . 125

5.9 Impact of the weaving on number of method calls 127

5.10 Benchmarks for infinite call chain analysis and running

time . 128

xii

xiii

5.11 Running time of queries on woven versions benchmarks 129

5.12 Ratios of query time increase on woven versions 130

Listings

1.1 A code example in FindBugs 5

2.1 LoD violation detection aspect 13

2.2 Util.java . 15

2.3 ObjectSupplier.java 16

2.4 Pertarget.java . 17

2.5 Percflow.java . 18

2.6 Check.java . 19

2.7 ClassSupplier.java . 21

2.8 Pertype.java . 22

2.9 Perscope.java . 23

2.10 Check.java . 25

2.11 DirectPart.java . 26

2.12 Arguments.java . 26

2.13 LocallyConstructed.java 26

2.14 ReturnTypes.java . 27

3.1 Access shadow information at runtime 32

3.2 Statically executable advice interface 37

3.3 Static LoD checker in statically executable advice . . 40

4.1 A simple Datalog program 48

4.2 An unsafe Datalog program 48

4.3 A non-converging Datalog program 48

4.4 Built-in super-type deduction rules 64

4.5 Pick up method calls on classes with logger field . . . 69

xiv

xv

4.6 Datalog query to simulate a simple AspectJ pointcut 70

4.7 ResolvesTo predicate: case 1 73

4.8 ResolvesTo predicate: case 2 74

4.9 Syntax of Datalog specification file 77

4.10 An Datalog pointcut example 79

4.11 An aspect using Datalog pointcut 80

4.12 Datalog pointcuts for equals/hashCode Design Rules 85

4.13 Aspect for Enforcing equals/hashCode Design Rules . 85

4.14 LoD checker in Datalog pointcuts 88

4.15 Dynamic LoD Checker Aspect 90

4.16 Datalog Checker for Recursive Call Chain 92

5.1 A reusable Java API method example 98

5.2 Identify methods that should have used base class as a

parameter . 99

5.3 A common method overriding mistake 101

5.4 Identify methods that hide base class’ methods . . . 102

5.5 Compute transitive closure of parent/child relationship 113

5.6 Passing base types as parameters checker in AST model 113

5.7 LoD checker in AST model 117

7.1 A lengthy Datalog query 147

7.2 A simplified Datalog query using native pointcut . . . 148

7.3 A type erasure example 149

7.4 A type specialization example 149

8.1 Abstract types should not have constructors 161

8.2 There should be no empty interface 161

8.3 Avoid excessive type parameters on generic types . . 162

8.4 Do not catch general exceptions 162

8.5 Avoid having static members in a generic type 162

8.6 Avoid having protected members in a final class . . . 162

8.7 Exceptions should be public 163

xvi LISTINGS

8.8 Avoid having visible instance fields 163

8.9 Class implements Cloneable but does not define clone

method . 164

8.10 Clone method does not call super.clone() 164

8.11 Class defines clone method without implementing Clone-

able . 165

8.12 Class defines covariant compareTo 165

8.13 Method might drop exception 166

8.14 Method might ignore exception 167

8.15 Do not use removeAll to clear a collection 167

8.16 Do not call a few dangerous methods on System class 167

8.17 Class defines compareTo but uses Object.equals() . . 168

8.18 Explicit invocation of finalizer should be prohibited . 169

8.19 AST Predicates . 170

CHAPTER 1

Introduction

Modern software systems rely on conformance to various type specifi-

cations, software design rules, architectural standards, and semantic

contracts for the whole system to be functional, robust, reliable, and

comprehensible. Automating checking of their conformance is of im-

portance to software quality.

While many software errors, in particular, non-conformance with

regard to type specifications, can be detected by modern program-

ming language compilers, a lot more are not being checked by com-

pilers. Just as an example, Java’s [20] java.lang.Object class has

two important methods that can be overridden by derived classes,

i.e., hashCode and equals, and to ensure those derived classes can

work properly with the hash table based collection classes, there are

important programming guidelines that the programmer must fol-

low, and that are statically checkable. In his well known book, Effec-

tive Java [8], Joshua Bloch synthesizes two Java programming guide-

lines that state one must always override hashCode when one overrides

equals and when they are both overridden, they should better use the

same set of fields. Following the two guidelines will help ensure the

program to obey the Object class’ important contract, which states

that when two objects are equal according to the equals method, then

calling hashCode on the two objects must return the same integer [57].

1

2 CHAPTER 1. INTRODUCTION

Failure to obey this contract has serious consequences,e.g., one will

not be able to retrieve back the object that she has just put into a

hash table, which is of course almost always undesirable. Despite

being such an important programming guideline for Java program-

mers, yet we are not aware of any compiler that checks programs’

conformance to it.

This kind of programming guidelines sometimes are also called

Software Design Rules.While there is no formal definition of the term,

informally it can be characterized as [49]: Software design rules con-

strain the structure or behavior of a program and express desirable pro-

gramming practices [49]. This thesis introduces a new way to build

static checkers to enforce Java program’s conformance to a set of de-

sign rules.

1.1 Examples of design rules

There are various reasons to impose design rule constraints on pro-

grams. We give some examples of software design rules grouped by

categories below. They are for facilitating discussions and motivating

our work, and so the list of the categories is not exhaustive.

• Design rules to ensure functional correctness

– Java classes’ equals methods must be defined on a param-

eter of type Object. Failure to obey this rule will result in

the class’ equals method not being called when interacting

with hash based collection classes, and thus the program

will behave incorrectly.

– A Java class providing a clone method definition should

implement the Cloneable interface. Failure to do so will

get a CloneNotSupportedException exception at run time.

1.1. EXAMPLES OF DESIGN RULES 3

• Design rules to ensure program safety

– Programs intended to be deployed to embedded systems

should avoid recursive call chains. Such an example exists

in the MISRA guidelines adopted by the automobile indus-

try [3]. The rule is intended to avoid programs running

out of stack space when the call chain gets too deep.

– Programs intended to be deployed as real-time embedded

systems should avoid using dynamic memory allocation.

An example of this rule can also be found in the MISRA

guidelines. The intent of the rule is to avoid running out

of memory at run time and the nondeterministic latency of

dynamic memory allocation that is unacceptable for real

time systems.

• Design rules to help boost program performance

– In Java, one should avoid using string concatenations in-

side a loop. In such a case, use the StringBuffer class in-

stead [8]. The reason for this rule is that Java strings are

immutable and thus when two strings are concatenated,

the two strings are actually copied into a newly created

dummy string object, which can be very inefficient if exe-

cuted frequently.

• Design rules to help boost reusability of methods

– Use an abstract type for a method parameter, if all of the

parameter access inside the method implementation can

be done through the abstract type [16]. This way, more

types of objects can be passed in as the parameter to the

method.

4 CHAPTER 1. INTRODUCTION

• Design rules to ensure architectural conformance

– The Law of Demeter [41] is such an example for the pur-

pose of decreasing coupling between modules.

1.2 Current Design Rule Checking Practices

and Deficiencies

Because software design rules usually are not checked by compilers,

users have to turn to specialized static checkers if they want to en-

force design rules on their programs. The current practices of design

rule checkers have much to be desired.

The first approach of achieving design rule checking is to use tools

like Lint [33]. Lint was a tool originally developed for checking le-

gal but suspicious constructs in C language source code, but later

the same idea has been applied and extended to other languages like

Java. Lint-like tools provide a rich set of questionable code patterns

that can be checked, but they lack the capability of letting users cus-

tomize and extend the rule set. Lacking this capability is a critical

deficiency, given no one can possibly foresee how many design rules

are out there or how many more will be coming out.

The second approach is exemplified by tools like FxCop [16] and

FindBugs [53]. FxCop is Microsoft’s .NET framework code assembly

static analyzing tool. It checks and reports information about a code

assembly, such as possible design, localization, performance, and se-

curity issues [16]. FindBugs [27, 53] is a popular bug finding tool

among Java programmers. Many bug patterns that it can detect are

related to design rule violations. Both tools provide rich sets of de-

sign rules or bug patterns that they can detect, and at the same time

they also allow users to add their customized ones by using the .NET

1.2. CURRENT DESIGN RULE CHECKING PRACTICES AND DEFICIENCIES 5

introspection APIs or Visitor pattern style APIs plus the Byte Code En-

gineering Library (BCEL) [2] respectively. It has been reported [49]

that this kind of extension approach is very difficult to use due to the

complexity of the APIs. For example, Listing 1.1 is an example [22] of

a Visitor method used by the FindBugs tool to identify all isLogging

method calls made on the Logger class in code. The reason that those

method calls are of interest is that logging calls are expensive to exe-

cute and thus they should be constrained from being used.

Listing 1.1: A code example in FindBugs

public void sawOpcode(int seen) {

if(‘‘cbg/app/Logger’’.equals(classConstant) &&

seen == INVOKESTATIC && ‘‘isLogging’’.equals(nameConstant) &&

‘‘()Z’’.equals(sigConstant)) {

seenGuardClauseAt = PC;

return;

}

}

When writing this code, the programmer first needs to understand

how the whole Visitor framework works. In particular, the program-

mer needs to know that sawOpcode is a method that can be overrid-

den and that will be called by FindBugs during a visit to the method

body of a method implementation, and the byte code symbol of the

operation visited will be passed in as the argument. Second, the pro-

grammer has to grasp the byte code manipulation APIs to understand

what a class constant is, what a name constant is, what a signature

constant is and what the instruction code is for each instruction

concerned, e.g., INVOKESTATIC is the instruction code symbol for a

static method call. It is clear that a more declarative and higher level

abstraction is needed and will be helpful.

As the third approach, users could turn to a general purpose code

6 CHAPTER 1. INTRODUCTION

query system to write queries against the underlying model and ex-

press the intended design rule or bug patterns. Examples of such

kind of code query systems include ASTLog [17], Java Tools Lan-

guage (JTL) [15], JQuery [31], and CodeQuest [23]. The problem

with this approach is that there is no unified underlying data model

that those query systems can operate on, and thus users will have to

learn each individual newly created data model and/or a new query

language.

1.3 Our approach

Our approach fits into the third approach category as discussed above,

but instead of building a new data model about the program, we

reuse AspectJ-like Aspect-oriented Programming (AOP) [36, 35] lan-

guages’ shadow model as the underlying data model, and extend its

pointcut expression query mechanism to enable expressive software

design rule checking.

Our thesis statement is that AspectJ-like Aspect-oriented Pro-

gramming (AOP) languages’ shadow model is a useful and suit-

able framework to build user customizable software design rule

static checkers. To support this thesis statement, we have designed

and implemented two linguistic query extensions based on AspectJ’s

shadow model. The first extension allows Visitor pattern style com-

pile time advice to be defined on selected program shadows, while

the second extension features a Datalog based pointcut query sys-

tem operating on a shadow database extracted from the underlying

program, with an intelligent data structure called Binary Decision Di-

agrams representing the queried shadows.

While more evidence need to be lay out to support the thesis

statement in the rest of the dissertation, the high level reason for

1.3. OUR APPROACH 7

this determination is that we believe there is an intrinsic connection

between AOP’s shadow model and what is needed for specifying con-

straints of software design rules. In particular, as a technique aimed at

improving modularity of software implementations with cross mod-

ule nature, AOP languages have provided linguistic mechanisms to

allow programmers to query or talk about programming elements

across modules and their relationships, which lend itself to being a

good basis of design rule specifications. Our earlier work [34] sug-

gests that AspectJ’s dynamic join point model, which is the run time

representation of the static shadow model, is able to capture the

essence of a design rule, i.e., the Law of Demeter. The benefits of

using the shadow model for a design rule checker implementation

include:

• It is a useful and rich abstraction of object-oriented program

structures, with less important syntactical details omitted;

• It can be ported to multiple base languages, as the shadow

model has been increasingly adopted by Aspect-oriented vari-

ations of C++ [58], C# [54], and MATLAB [61];

• It is familiar to average AOP programmers.

To support the thesis statement, we have designed and imple-

mented two linguistic query extensions to allow users to detect de-

sign rule violations. The first extension, called Static Executable Ad-

vice [34, 66], allows programmers to make use of the exposed com-

pile time shadow information to write customized design rule static

checkers in Java, running against program elements selected by us-

ing the regular AspectJ pointcut designator expressions. The user

supplied static checkers are attached to the AspectJ compiler to run

during the aspect weaving process.

8 CHAPTER 1. INTRODUCTION

More recently, we have designed and implemented a second ex-

tension, which we find more useful and usable. It features a Datalog-

based query language, operating on the extensional database (EDB)

of program shadow records, collected during the compilation process

of the AspectJ compiler. User supplied Datalog programs can be writ-

ten to capture static shadows satisfying the negation of a desired de-

sign rule constraint, which indicates that a violation of the design rule

has been found. As a strength of the logic programming paradigm,

the Datalog-based approach delivers declarativeness and succinctness

that are very desirable but are missing in imperative approaches.

In addition, when designing and implementing the Datalog-based

extension, one of our primary design considerations is that the ap-

proach and the implemented system should scale well to large real

world programs. We observed there exists redundant information

among program shadow records that can be leveraged by a new ad-

vanced Binary Decision Diagram (BDD) [11] based Datalog solver

bddbddb [65, 39], in the interest of boost the system’s scalability.

We have specially designed the Datalog extensional database schema

such that its structures are suitable for being represented using the

intelligent BDD data structure, and for the Datalog program to be

efficiently solved by bddbddb.

To evaluate the effectiveness, we apply the approach on many

practical software design rules to show customized static checkers

can be implemented. Our usability study shows that the approach is

superior to the alternative approach, i.e., writing Datalog queries on

the Abstract Syntax Tree based data model. Our performance study

also shows that the approach can indeed scale to large sizes of real

world applications.

1.4. THESIS CONTRIBUTIONS 9

1.4 Thesis Contributions

This dissertation makes the following contributions to the Aspect-

oriented programming area and to the software engineering area:

1. We identified AspectJ’s shadow model as a useful and suitable

underlying data model to build extensible software design rule

checkers.

2. We designed and implemented a system in the frame work of

the AspectJ language and its industrial strength compiler, the

Eclipse AspectJ compiler, to allow users to capture various de-

sign rule violations.

3. We identified that the BDD is a suitable representation of the

shadow model so that we can leverage an advanced BDD based

Datalog solver bddbddb to make the system scale to large size

of applications.

4. Together with others’ work [5], we proposed and argued for us-

ing Datalog as the query language on shadow model to achieve

declarative queries.

5. We conducted evaluations to show that our proposed approach

can be used to effectively implement real world design rule de-

tection algorithms, that the approach is more usable than query-

ing on the alternative data model, i.e., the Abstract Syntax Tree

model, and that the system indeed can deal with large size real

world programs.

1.5 Outline

The organization of the rest of this dissertation is as follows. Chapter

2 presents two AspectJ-based dynamic checkers for two variants of

10 CHAPTER 1. INTRODUCTION

the Law of Demeter, serving as motivational examples to show why

AOP languages are appropriate basis for developing program design

rule checkers. Chapter 3 briefly introduces the first proposed exten-

sion to the AspectJ language, Statically Executable Advice, and shows

how it can be used to solve the motivational example, but still has

much to be desired. Chapter 4 introduces the design and implementa-

tion of our second proposed extension to AspectJ, the Datalog-based

shadow query system, and shows how it can be used to implement

practical design rule checkers. Chapter 5 discusses the evaluations

that we carried out to validate our approach and system. Chapter 6

discusses the related work. Chapter 7 concludes the dissertation and

discusses possible future work.

CHAPTER 2

Dynamic Checkers for the Law of

Demeter

As examples to motivate our work, we present how we can imple-

ment dynamic checkers for two forms of one software design rule,

the Law of Demeter, in AspectJ. In particular, for one form that in

theory is statically checkable, we show that although the AspectJ’s

pointcut designator language is not expressive enough to support the

query that is necessary for implementing a static checker for it, the

information needed to implement such a checker is already present

in its shadow model. This finding suggests AspectJ’s shadow model

may serve as a good basis for building static checkers for software

design rules. Most of the material in this chapter has already been

presented in our published paper [34].

2.1 The Definition of the Law of Demeter

The Law of Demeter (LoD) is a design rule proposed to decrease cou-

pling between program components [42]. In this design rule, call

sites between OO components constitutes coupling between them.

The LoD states which couplings are acceptable and which are best

avoided. Informally, LoD states that an object or a class should only

11

12 CHAPTER 2. DYNAMIC CHECKERS FOR THE LAW OF DEMETER

talk to “closely related” objects or classes respectively, thus leading to

less coupled OO systems [28]. There have been two forms of the LoD

suggested, i.e., the object form (OF) and the class form (CF).

OF states that an object can only invoke method calls on: itself, the

arguments of the enclosing method context, its instance variables, a

locally constructed object within the enclosing method context, or a

returned object from a method call made to itself.

CF, on the other hand, states that in the implementation of a

class’s method, one should only call the class’s other methods or

methods of the classes of its arguments, instance variables, classes

used to locally instantiate instances, and the classes that are return

types of methods in the class. OF is intended to be more restrictive

than CF in the sense that OF cares about particular objects while CF

only cares about types.

In general, validating OF must be done dynamically, and validat-

ing CF can be done dynamically, or statically (by analyzing the source

code).

2.2 Validating LoD in AspectJ

We are first interested in using aspect-oriented programming (AOP)

techniques, especially AspectJ, to dynamically check a program’s con-

formance to LoD. There are three good reasons why one would want

to check LoD using AOP:

1. Detecting LoD violations is a cross-cutting concern, which is

the primary application area for AOP, as it involves checking

all method calls in a program. A non-AOP implementation of

such a dynamic checker would require invasive modifications to

the source code so that one can insert dynamic checking code

around each callsite.

2.2. VALIDATING LOD IN ASPECTJ 13

2. LoD is easy to express in the join point model of AspectJ, as will

be shown later.

3. Checking LoD violations is an interesting, non-trivial applica-

tion of AOP technology helping to drive it further.

Second, we would like to experiment with the AspectJ language to

see how close or how far away it is for us to develop a static checker

for the class form of LoD using its declare error mechanism, given

this form is statically checkable in theory. Ideally, we wish we were

able to express the detection of violations of the class form of LoD,

in AspectJ, as a pointcut named LoDViolation, and make use of the

AspectJ language’s declare error mechanism to report all the viola-

tions in the program when being compiled with the following aspect

in Listing 2.1. For those readers that are not familiar with AspectJ’s

declare error statement, it reports a compile time error if any pro-

gram element (shadow) being compiled matches with the specified

pointcut designator (PCD) expression. Since this is a compile time

detection, the specified PCD expression has to be statically deter-

minable, i.e., none of the pointcuts involving run time entities can

be used, and that includes cflow, cflowbelow, if, args, this and target

pointcuts.

Listing 2.1: LoD violation detection aspect

aspect CheckLoD {

pointcut CFLoDViolation(): SomeStaticPCDExpression;

declare error: CFLoDViolation():

"Class form LoD violation detected!";

}

Not surprisingly, this attempt is futile in the current implementa-

tion of AspectJ. The logic required to detect LoD violations cannot be

14 CHAPTER 2. DYNAMIC CHECKERS FOR THE LAW OF DEMETER

associated with a simple static PCD expression supported by the lan-

guage, not even for the LoD form which is statically checkable. This

checking requires a capability more than just statically determining

if a static PCD expression refers to the empty set. We would like to

investigate what is missing and what is present in the current AspectJ

language mechanism with regard to implementing a static checker

along this line.

2.3 Dynamic Checker for OF in AspectJ

When programming in AspectJ, programmers generally reason about

the problem by thinking about what the “advisable” join points are, so

that advice can be applied to the join points selected by the pointcut

expressions.

Listing 2.2 is a utility abstract class that defines all the pointcut ex-

pressions needed in this implementation (some of them are needed

later in the class form checker). Those pointcut expressions per-

vasively touch programs and make extensive use of property-based

pointcut designators. The scope() pointcut prevents the aspects from

advising the LoD checker code itself, which is generally desired to

avoid circular advice. The SelfCall pointcut captures the method

calls sent to this in a method. Other pointcuts are self-explanatory.

2.3.1 Implementation of the OF checker

The actual implementation of the OF checker uses three concrete as-

pects with one or two short advice each and a few auxiliary methods.

The design of the implementation is clean and easy to understand due

to the use of AspectJ’s dynamic join point model. Figure 2.1 shows

the UML diagram of the object form checker.

2.3. DYNAMIC CHECKER FOR OF IN ASPECTJ 15

Listing 2.2: Util.java

package lawOfDemeter;

public abstract class Util {

public pointcut scope(): !within(lawOfDemeter..*)

&& !cflow(withincode(* lawOfDemeter..*(..)));

public pointcut StaticInitialization(): scope()

&& staticinitialization(*);

public pointcut MethodCallSite(): scope()

&& call(* *(..));

public pointcut ConstructorCall(): scope()

&& call(*.new (..));

public pointcut MethodExecution(): scope()

&& execution(* *(..));

public pointcut MethodCall(Object thiz,

Object target): MethodCallSite()

&& this(thiz)

&& target(target);

public pointcut SelfCall(Object thiz,

Object target): MethodCall(thiz,target)

&& if(thiz == target);

public pointcut Set(Object value): scope()

&& set(* *.*) && args(value);

public pointcut Initialization(): scope()

&& initialization(*.new(..));

}

ObjectSupplier

<<aspect>>
Percflow

 Util
 Check

 <<aspect>> <<aspect>>

<<aspect>>
Pertarget

<<uses pointcut>>

<<uses pointcut>>

<<uses pointcut>>

Figure 2.1: The UML diagram of the object form checker

There are two tasks that need to be performed by the checker.

One is to collect all of the preferred supplier objects on which meth-

ods can be called from an object/context. The other is to verify that

each method call makes valid calls on a preferred supplier object of

the corresponding “this” object or the context. There are two cate-

gories of preferred supplier objects for an object. The first category

16 CHAPTER 2. DYNAMIC CHECKERS FOR THE LAW OF DEMETER

Listing 2.3: ObjectSupplier.java

abstract class ObjectSupplier {

protected boolean containsValue(Object supplier){

return targets.containsValue(supplier);

}

protected void add(Object key,Object value){

targets.put(key,value);

}

protected void addValue(Object supplier) {

add(supplier,supplier);

}

protected void addAll(Object[] suppliers) {

for(int i=0; i< suppliers.length; i++)

addValue(suppliers[i]);

}

private IdentityHashMap targets =

new IdentityHashMap();

}

is context-insensitive: in a method execution on an object, it is legal

to call a method on any instance variable of that object. The second

category is context-sensitive in that some objects are only preferred in

the scope of a method execution, for example, the method call on an

argument object is only legal within the method body of the enclosing

method.

The class ObjectSupplier in Listing 2.3 captures the notion of pre-

ferred supplier objects by defining a repository and a set of supporting

methods for looking up and adding preferred supplier objects to an

object, so that its two sub-aspects can access them.

The aspect Pertarget in Listing 2.4 implements the only context-

insensitive preferred object situation, i.e., instance variables of an

object, by advising the set join points. It is declared as pertarget

(Util.Initialization()) so that once a new object o is initialized,

an aspect instance of Pertarget will be created and associated with

o automatically, and each aspect instance can correctly maintain the

direct part relationship between the instance variables and their host-

ing object o. The before-advice on the set join points handles with

2.3. DYNAMIC CHECKER FOR OF IN ASPECTJ 17

this logic, in which the fieldIdentity method is used so that if an

object o1 has been set as a direct part of an object o2 through a field

f , and later o2’s f is set to another object o3, we can replace o1 with

o3 and always maintain the correct direct part relationships for the

hosting object o2.

Listing 2.4: Pertarget.java

public aspect Pertarget

extends ObjectSupplier

pertarget(Util.Initialization()) {

before(Object value): Util.Set(value) {

add(fieldIdentity(thisJoinPointStaticPart),

value);

}

public boolean contains(Object target) {

return containsValue(target);

}

private String fieldIdentity(JoinPoint.StaticPart

sp) {

String fieldName = sp.getSignature().

getDeclaringType().getName() + ":" +

sp.getSignature().getName();

if(fieldNames.containsKey(fieldName))

fieldName=(String)fieldNames.get(fieldName);

else

fieldNames.put(fieldName,fieldName);

return fieldName;

}

private static HashMap fieldNames =

new HashMap();

}

The aspect Percflow in Listing 2.5, on the other hand, implements

all the context-sensitive preferred object situations, by advising Util

.MethodExecution() to add this object and argument objects to the

18 CHAPTER 2. DYNAMIC CHECKERS FOR THE LAW OF DEMETER

context sensitive preferred suppliers, and examining results of Util

.SelfCall(Object,Object) or Util.ConstructorCall() to collect the

corresponding preferred supplier objects. Percflow is intentionally

declared as percflow(Util.MethodExecution()) to simulate the exe-

cution scope of a method, instead of requiring manual stack opera-

tions.

Listing 2.5: Percflow.java

aspect Percflow extends ObjectSupplier

percflow(Util.MethodExecution()){

before(): Util.MethodExecution() {

addValue(thisJoinPoint.getThis());

addAll(thisJoinPoint.getArgs());

}

after() returning (Object result):

Util.SelfCall(Object,Object)

|| Util.ConstructorCall() {

addValue(result);

}

}

Finally, the actual checking logic happens in the Check aspect in

Listing 2.6, which defines the after-advice on method call join points

and checks whether the target is a preferred supplier according to

LoD.

2.3. DYNAMIC CHECKER FOR OF IN ASPECTJ 19

Listing 2.6: Check.java

aspect Check {

private pointcut IgnoreCalls():

call(* java..*.*(..));

private pointcut IgnoreTargets():

get(static * java..*.*);

after() returning(Object o):IgnoreTargets() {

ignoredTargets.put(o,o);

}

after(Object thiz,Object target):

Util.MethodCall(thiz,target)

&& !IgnoreCalls() {

if (!ignoredTargets.containsKey(target) &&

!Pertarget.aspectOf(thiz).contains(target) &&

!Percflow.aspectOf().containsValue(target))

System.out.println(

" !! LoD Object Violation !! "

+ thisJoinPointStaticPart);

}

private IdentityHashMap

ignoredTargets = new IdentityHashMap();

}

Any design rule has exceptions, including LoD. To make the checker

be practically useful, the method calls on some specific objects should

be allowed in any situation, e.g., System.out.println(. . .) should be al-

lowed to be called anywhere. The IgnoreTargets pointcut defines this

logic by capturing all those kinds of objects, whose domain currently

includes all the public static variables declared in the classes in the

packages beginning with java. We don’t want to check method calls

on some stable types either, so we use pointcut IgnoreCalls to list

those method calls. The Check aspect uses the two pointcuts to ig-

nore checking in those two situations. Users can always change those

domains by customizing the pointcuts.

20 CHAPTER 2. DYNAMIC CHECKERS FOR THE LAW OF DEMETER

From this experiment, we can conclude that a dynamic checker for

the object form of the LoD can be elegantly implemented in AspectJ,

mostly due to the natural mapping between the dynamic join point

model of AspectJ and the definition of the design rule in question.

Implementing the same dynamic checker in a non-AOP approach will

certainly require significantly more effort.

2.4 Dynamic Checker for CF in AspectJ

As we mentioned earlier, the class form of the LoD is statically check-

able in theory, but we could not implement such a static checker

by simply using the declare error mechanism of the AspectJ, even

though this mechanism has been designed to help catch question-

able program elements (shadows) in the code. To gain some insights

about what is missing and what is present in the current AspectJ lan-

guage mechanism with regard to implementing a static class form

LoD checker, we have implemented a dynamic checker of it in As-

pectJ.

2.4.1 Implementation of the dynamic CF checker

The class form dynamic checker has a similar functional architecture

as the object form checker in that both of them use suppliers and a

checker that acts as the client of the suppliers. But from the design

point of view, our class form checker uses a different AOP design from

the object form checker’s. In the object form checker, for each sub-

rule, we have corresponding advice. In the class form checker, we

have used abstract aspects to specify that when some interesting sce-

nario, which is left unspecified, occurs, some advice will be executed.

The concrete sub-aspects reuse the advice defined in the super-aspect

by concretizing the interesting scenario. Of course, the concrete sub-

2.4. DYNAMIC CHECKER FOR CF IN ASPECTJ 21

<<uses pointcut>>

<<uses pointcut>>

<<uses pointcut>>

<<uses pointcut>>

<<uses pointcut>>

 Check
 <<aspect>>

 Util

 <<aspect>> <<aspect>>
 Arguments

Perscope

ReturnTypes

ClassSupplier

 <<aspect>>
DirectPart

<<uses pointcut>>

 <<aspect>>

Pertype

 <<aspect>>

 <<aspect>>
LocallyConstructed

<<aspect>>

Figure 2.2: The UML diagram of the class form checker

aspects can customize the process logic for their scenarios by overrid-

ing abstract methods. Figure 2.2 shows the UML diagram of the class

form checker.

Listing 2.7: ClassSupplier.java

abstract class ClassSupplier {

protected abstract List

getSuppliers(JoinPoint.StaticPart enclosingjsp,

JoinPoint.StaticPart jsp);

}

22 CHAPTER 2. DYNAMIC CHECKERS FOR THE LAW OF DEMETER

Listing 2.8: Pertype.java

abstract aspect Pertype extends ClassSupplier {

abstract pointcut Pertype();

before(): Pertype() {

targets.put(thisJoinPointStaticPart.

getSignature().getDeclaringType(),

getSuppliers(thisEnclosingJoinPointStaticPart,

thisJoinPointStaticPart));

}

protected static boolean contains(Class thisType,

Class targetType) {

if(targets.containsKey(thisType)) {

List alloweds = (List)targets.get(thisType);

Iterator it=alloweds.iterator();

while(it.hasNext()) {

if(targetType==it.next())

return true;

}

}

return false;

}

private static HashMap targets = new HashMap();

}

2.4. DYNAMIC CHECKER FOR CF IN ASPECTJ 23

Listing 2.9: Perscope.java

abstract aspect Perscope extends ClassSupplier {

abstract pointcut Perscope();

before() : Util.MethodExecution() {

st.push(new HashSet());

}

before() : Perscope() {

HashSet aSet = (HashSet) st.peek();

aSet.addAll(getSuppliers(

thisEnclosingJoinPointStaticPart,

thisJoinPointStaticPart));

}

after(): Util.MethodExecution() {

st.pop();

}

static boolean contains(Class targetType) {

HashSet innermost = (HashSet)Perscope.st.peek();

return innermost.contains(targetType);

}

private static Stack st = new Stack();

}

The classes and aspects: ClassSupplier in Listing 2.7, Pertype in

Listing 2.8, Perscope in Listing 2.9, and Check in Listing 2.10 make up

an aspect-oriented framework which defines the generic collecting

and checking behavior.

We have implemented Pertype and Perscope as abstract aspects,

each of which defines an abstract pointcut (with the same name as

the aspect) which is used to collect preferred supplier types. Similar

to the situations in the object form checker, the two abstract aspects

correspond to the two different situations in which the types are pre-

ferred. Table 2.1 lists the correspondences between the two checkers.

The first situation is the context-insensitive situation as defined

by Pertype, in which some types are always preferred for a given

24 CHAPTER 2. DYNAMIC CHECKERS FOR THE LAW OF DEMETER

aspect object class

context-insensitive Pertarget Pertype and subaspect

context-sensitive Percflow Perscope and subaspects

Table 2.1: The correspondences between object/class form checkers.

type. The only context-insensitive situation is the direct part situa-

tion, where the types of the instance variables of a class are always

preferred in any methods of the class. The second situation is the

context-sensitive situation as defined by Perscope, in which the types

are only preferred when the call sites are in the stack of a particular

method execution. (An example of that situation is the arguments

situation, where the types of arguments are only legal for the scope

of the method body.) All of the concrete aspects extending any of the

abstract aspects are supposed to give:

• a definition of the corresponding abstract pointcut to concretize

where the advice defined in the super-aspect should be invoked;

• an implementation of the abstract method getSuppliers de-

clared in class ClassSupplier to expose the preferred types for

its particular scenario.

2.4. DYNAMIC CHECKER FOR CF IN ASPECTJ 25

Listing 2.10: Check.java

aspect Check {

private pointcut IgnoreCalls():

call(* java..*.*(..));

after(): Util.MethodCallSite() && !IgnoreCalls() {

Class targetType = thisJoinPointStaticPart.

getSignature().getDeclaringType();

Class thisType =

thisEnclosingJoinPointStaticPart.

getSignature().getDeclaringType();

if(!Pertype.contains(thisType,targetType) &&

!Perscope.contains(targetType))

System.out.println(

" !! LoD Class Violation !! "

+ thisJoinPointStaticPart);

}

There are four concrete aspects extending Pertype or Perscope

aspect, which correspond to the four sub-rules of LoD (the “this”

class case is combined into the argument case, treating “this” as a

special argument) respectively, where a target type is preferred. The

implementations of the four concrete aspects are from Listing 2.11 to

Listing 2.14. We also allow exceptions to the class form of the LoD,

which is defined and configurable by pointcut Check.IgnoreCalls().

The Check aspect does the straightforward checking logic.

26 CHAPTER 2. DYNAMIC CHECKERS FOR THE LAW OF DEMETER

Listing 2.11: DirectPart.java

aspect DirectPart extends Pertype {

public pointcut Pertype():

Util.StaticInitialization();

protected List getSuppliers(JoinPoint.StaticPart

ejsp,JoinPoint.StaticPart jsp) {

List suppliers=new ArrayList();

Class currentClass =

jsp.getSignature().getDeclaringType();

Field[] fields =

currentClass.getDeclaredFields();

for(int i=0; i<fields.length; i++)

suppliers.add(fields[i].getType());

return suppliers;

}

}

Listing 2.12: Arguments.java

aspect Arguments extends Perscope {

pointcut Perscope(): Util.MethodExecution();

protected List

getSuppliers(JoinPoint.StaticPart ejsp,

JoinPoint.StaticPart jsp) {

Class thisClass =

jsp.getSignature().getDeclaringType();

List parameterTypes = new ArrayList();

parameterTypes.add(thisClass);

parameterTypes.addAll(

Arrays.asList(((CodeSignature)jsp.

getSignature()).getParameterTypes()));

return parameterTypes;

}

}

2.4. DYNAMIC CHECKER FOR CF IN ASPECTJ 27

Listing 2.13: LocallyConstructed.java

aspect LocallyConstructed extends Perscope {

pointcut Perscope():

Util.ConstructorCall();

protected List getSuppliers(JoinPoint.StaticPart

ejsp,JoinPoint.StaticPart jsp) {

List supplier = new ArrayList();

supplier.add(jsp.getSignature().

getDeclaringType());

return supplier;

}

}

Listing 2.14: ReturnTypes.java

aspect ReturnTypes extends Perscope {

pointcut Perscope(): Util.MethodCallSite();

protected List

getSuppliers(JoinPoint.StaticPart ejsp,

JoinPoint.StaticPart jsp) {

List supplier = new ArrayList();

if(ejsp.getSignature().getDeclaringType()!=

jsp.getSignature().getDeclaringType())

return supplier;

supplier.add(((MethodSignature)jsp.

getSignature()).getReturnType());

return supplier;

}

}

This implementation is a dynamic checker for CF. However, in

Listings 2.7 through 2.14, we only use static type information of

classes or methods, as evident from the code that: (1) all of the

getSuppliers methods are defined on arguments of type JoinPoint

.StaticPart, which is an AspectJ reflection interface to access the

28 CHAPTER 2. DYNAMIC CHECKERS FOR THE LAW OF DEMETER

static shadow information about a dynamic join point; (2) all of the

advice are defined on statically determinable pointcuts.

This finding suggests that the AspectJ language’s two major com-

ponents, i.e., the pointcut designator language to indicate the inter-

esting program elements to be processed, and the collected compile

time information about those elements (abstracted as the shadow

model) already have enough compile time information present for

statically checking the class form of the LoD, what is missing is just a

more expressive query mechanism to leverage this information. This

suggests that the shadow information could form a good basis for im-

plementing static checkers for design rules like the LoD, with some

extensions to the language and the compiler. This motivates our dis-

sertation work.

CHAPTER 3

A Lightweight Extension to AspectJ:

Statically Executable Advice

In this chapter, we would like to extend the AspectJ language so that

the static information about join points can be exposed to some com-

pile time facility that is more expressive than AspectJ’s declare error

statement. The goal is that a programmer can make use of this new

facility to implement design rule checking by accessing the exposed

shadow information.

In this chapter, we present one such compile time facility called,

Statically Executable Advice, which is a lightweight extension to the

AspectJ language. Most material in this chapter has been presented

in our published paper [66].

3.1 Dynamic join point model and shadow

model

In AspectJ-like AOP languages, join point model [35] is a term re-

ferring to language mechanisms to specify in a program execution,

what runtime events should be caught, and if they get caught, what

actions should be taken to change or enhance the behavior of the

29

30

CHAPTER 3. A LIGHTWEIGHT EXTENSION TO ASPECTJ: STATICALLY EXECUTABLE
ADVICE

program with regard to those events and the exposed context infor-

mation (dynamic and static) about those events. In AspectJ-like AOP

languages, the join point model generally includes a pointcut desig-

nator language, which is for specifying what runtime events need to

be caught, and a mechanism to define advice, which is for specify-

ing what actions need to be taken when an intended runtime event

does occur. The term, join point model, has dominantly had dynamic

nature, and many extensions have been proposed to enhance the dy-

namic join point model, e.g., [56, 51, 50, 25]. Less research attention,

however, has been given to the lexical counterpart of join points, i.e.,

the shadow model [46, 26].

For each runtime event (join point) in a program execution, there

must be a corresponding lexical program element in the code. For

example, for any method call event occurring at runtime, there must

be a method call node in the program source code. AspectJ and AOP

researchers [46, 26] use shadow as an abstraction to refer to the lex-

ical counterpart of a dynamic join point. Shadows contain rich static

information about the dynamic join points. As an example, a method

call shadow contains the name of the method, the static types of the

target object and the arguments, and in which method body (which

in turn is another shadow) this call is invoked. In AspectJ, there are

nine kinds of shadows in the AspectJ language and its compilers [26].

The most common ones are method (or constructor) execution shad-

ows, method (or constructor) call shadows, and field access shadows.

So far shadows have mainly served as internal implementation

constructs for building AOP language compilers and for explaining

the aspect weaving process [26, 46]. While the notion of shadow is

not directly visible or clearly defined for the end user, AspectJ does

allow the programmer to access some of those shadow information

at runtime in a rudimentary form.

3.1. DYNAMIC JOIN POINT MODEL AND SHADOW MODEL 31

Listing 3.1 is an example AspectJ program with three classes and a

logging aspect. Note that at line 21 (and line 22), there is a reference

to thisJoinPointStaticPart (and thisEnclosingJoinPointStaticPart

respectively). At runtime, within an AspectJ advice, the thisJoinPointStaticPart

implicit variable will be bound to the shadow object corresponding to

the current executing join point, and the thisEnclosingJoinPointStaticPart

implicit variable will be bound to the shadow object corresponding to

the enclosing join point, if there is any, of the current executing join

point. As their names have suggested, they provide static information

about those join points, and implementation wise, those information

has been collected at the compile time by the weaver.

32

CHAPTER 3. A LIGHTWEIGHT EXTENSION TO ASPECTJ: STATICALLY EXECUTABLE
ADVICE

Listing 3.1: Access shadow information at runtime

class Foo {

2 int compute(Foo a) {

return 0;

4 }

}

6 class Bar extends Foo {

void func() {

8 }

}

10 class Main {

public static void main() {

12 Foo f = new Bar();

Bar b = new Bar();

14 f.compute(b);

}

16 }

18 aspect Logging {

before():

20 call(int Foo.compute(..)) {

System.out.println(thisJoinPointStaticPart);

22 System.out.println(thisEnclosingJoinPointStaticPart);

}

24 }

Those shadow objects retain static information about join points,

and thus they provide a different perspective to view the dynamic

join points. For example, from the dynamic perspective, a method

call join point corresponding to code at line 14 has the signature of

int f:Bar.compute(b:Bar), which reflects the fact that the target object

is of type Bar, and the argument is of type Bar at runtime.However,

from the static perspective as offered by the shadow object at line

21, the same method call join point has the signature of int :Foo.

3.2. OUR REPRESENTATION OF THE SHADOW MODEL 33

compute(:Foo), which is consistent with the view of the code from the

Abstract Syntax Tree perspective.

The current AspectJ shadow notion is mainly for internal compiler

representation and for simple runtime queries, and thus it is not suit-

able for a direct exposure to be accessed by more expressive compile

time facilities. So we need to adapt and define this shadow model

more clearly.

3.2 Our representation of the shadow

model

Figure 3.1 is the UML diagram of our proposed abstraction of static

join point shadow model, adapted from the AspectJ compiler’s inter-

nal representation, but retaining the same amount information.

In this model, a program consists of a list of shadows, each of

which fits into one of the two categories: NonEnclosingShadow and

EnclosingShadow. An EnclosingShadow object may contain (lexically)

any number of NonEnclosingShadow objects while a NonEnclosing-

Shadow object is atomic.

Shadows are further classified according to their kinds. The nine

concrete classes 1 correspond to the nine kinds of shadows defined in

the AspectJ language. Some of the shadow classes implement a sig-

nature interface (indicated as circled lines in the figure) so that pro-

grammers can access the needed information through well-defined

APIs. Those signature interfaces conform to those that are defined in

AspectJ’s public reflective API package, org.aspectj.lang.reflect, except

that now we allow those interfaces to be accessible at compile time,

1Abstract class names are in the italic font, the circled lines represent interface

types and the dashed lines represent implementation relationships between classes
and interfaces.

34

CHAPTER 3. A LIGHTWEIGHT EXTENSION TO ASPECTJ: STATICALLY EXECUTABLE
ADVICE

������� ���	
��
������������������������������������
��� !
"#�$���	
� ����������%���������&������� !
"#�$���	
�'��������� '�������%()*�+, -.#
� /0121�314�21�05627�89:6;<21�0 =�0>2�<;2��9:6;<21�0

?���@�AB�

C8D1;69:6;<21�0 E2�21;/0121�314�21�0F�!!5627�8=�33 =�0>2�<;2��=�33 G#,!	H62 E62
I����@ ��J�B?���@�AB�K���%?���@�AB�L�%�?���@�AB�

M��N�%?���@�AB�

Figure 3.1: Static Shadow Model

instead of just run time in an aspect advice. Those interface APIs

should be familiar to average AspectJ programmers. In addition, we

have carefully designed the shadow classes so that each shadow class

implements the most specialized signature interface applicable. For

3.3. STATICALLY EXECUTABLE ADVICE 35

example, the MethodExecution and MethodCall shadow classes imple-

ment the MethodSignature interface, while the Field shadow class

implements the FieldSignature interface. This delivers a better API

usability to programmers, as it avoids many unnecessary type cast-

ings that are common in the usage of the current AspectJ language’s

runtime reflection APIs, where programmers only have direct access

to the generic Signature interface in advice, and they often have to

cast it down to more specialized interfaces after querying about the

kind of the current join point.

The signature interfaces lend the programmers the capability to

access type hierarchy information as well. The type information comes

from Java’s reflection system, where class Class provides entry points

to type information about a loaded class. In the next section, we will

see an example how to make use of the type information to reason

about a design rule checking problem at compile time.

3.3 Statically Executable Advice

AspectJ’s declare error/warning construct is a useful static checking

feature, but it is not expressive enough to check complex program

properties. Our goal is to make use of AspectJ’s declare mechanism

and to extend it so that more complex user-defined static checking

logic can be deployed to execute at compile time. This new proposed

language construct is called Statically Executable Advice, which can

be declared in an aspect definition, and which can access the newly

exposed shadow model. A statically executable advice is similar to

AspectJ’s current runtime advice, except that the former is executed

at compile time, and it only has access to statically available informa-

tion. The following is the syntax of it.

36

CHAPTER 3. A LIGHTWEIGHT EXTENSION TO ASPECTJ: STATICALLY EXECUTABLE
ADVICE

AspectDeclStat ::= ... | SEAdv.

SEAdv ::= declare advice : PCD : ClassName.

We add one declare statement kind, SEAdv, to the existing allowed

declare statements. A statically executable advice declaration,SEAdv,

is defined with a pointcut expression, PCD, and the name of a class.

The PCD pointcut expression can be any legal AspectJ pointcut expres-

sion as long as it is statically determinable, which means the pointcut

expression can be fully resolved at compile time [59]. The ClassName

must refer to a Java class that implements a static checking logic, and

for it to be able to be used against the exposed shadows, the class

must implement a pre-defined interface IStaticallyExecutableAdvice

as shown in Listing 3.2.

3.3. STATICALLY EXECUTABLE ADVICE 37

Listing 3.2: Statically executable advice interface

interface IStaticallyExecutableAdvice {

void before(Execution e);

void after(Execution e);

void before(Initialization ini);

void after(Initialization ini);

void on(Call c);

void on(FieldOp f);

void on(ExceptionHandler e);

void start();

void finish();

}

For each of the two direct subclasses of class EnclosingShadow

, namely Execution and Initialization, there are both before and

after methods declared, while for each of the three direct subclasses

of class NonEnclosingShadow there is only an on method. This is in-

tentionally designed to be this way so that we can mimic the lexical

scope of shadows. Also note that we do not provide static advice APIs

for all of the nine concrete shadow kinds, e.g., MethodExecution. This

is due to a design decision to free users from having to define many

empty dummy methods when implementing the interface, when they

only need to deal with few shadow kinds.

The idea is that for each of the declare advice statement, the

enhanced AspectJ compiler can load the class indicated by ClassName

and create an instance from it. During the pointcut matching phase, if

a shadow matches the specified pointcut expression PCD, which is stat-

ically determinable, the compiler will create a corresponding shadow

object and call the corresponding method on the instantiated instance

with the created shadow object as the argument, in a pre-defined or-

der as shown below (⇒ means “implies” and →֒ means “precedes”):

38

CHAPTER 3. A LIGHTWEIGHT EXTENSION TO ASPECTJ: STATICALLY EXECUTABLE
ADVICE

∀P1, P2, P1 = enclose(P2) ⇒ before(P1) →֒ on(P2) ∧

on(P2) →֒ after(P1)

Then there are two distinguished start and finish methods that

will be executed at the beginning and the end (respectively) of the

whole compilation process.

One of the major advantages of using the statically executable

advice construct is that one can make use of AspectJ’s pointcut desig-

nator selection mechanism to declaratively specify where in the pro-

gram she wants to apply the checking logic. Our class form Law of

Demeter static checker presented below demonstrates this feature.

3.4 A Case Study: Class form LoD Static

Checker in Statically Executable Advice

Listing 3.3 is our implementation of a static checker for detecting

class form LoD design rule violations in a Java program. Most part

of the implementation should be self explanatory, so we just briefly

explain some of the most salient features.

The pointcut expression appearing at line 2 and 3 defines the

shadows on which the statically executable advice should be applied,

and obviously it is statically determinable. This illustrates a strength

of the approach, in that the user can declaratively select the shadows

to be checked by leveraging the pointcut designator language, e.g., if

we only want to check LoD violations inside a particular Java pack-

age, P, we could just add a conjunction condition, within(P.*) to the

expression and then recompile the base program with the aspect.

3.4. A CASE STUDY: CLASS FORM LOD STATIC CHECKER IN STATICALLY EXECUTABLE
ADVICE 39

Note that at the end of the on(Call c) static advice, when we

have determined the method call is not invoked on one of the known

allowed target types at that point, we could not mark the call to be

a violating call immediately, instead, we could only mark it to be a

potential violating call. That is because later in the enclosing context

method body, there could well be some other constructor types or

return types that will be counted as allowed types, which will make

the call legitimate according to the LoD. We could only tell if a call is

a real violation for sure, when all of the shadows within the enclos-

ing method body have been encountered, and that is why we report

violations only in the after advice on Execution.

40

CHAPTER 3. A LIGHTWEIGHT EXTENSION TO ASPECTJ: STATICALLY EXECUTABLE
ADVICE

Listing 3.3: Static LoD checker in statically executable advice

aspect LoDCheckerAspect{

2 declare advice : (execution(* *.*(..)) || call(* *.*(..)) ||

call(*.new(..))) && withincode(* *.*(..))

4 : LoDChecker;

}

6

class LoDChecker implements IStaticallyExecutableAdvice {

8 HashSet contextAllowedTypes = new HashSet();

List potentialViolations = new ArrayList();

10 Class thisClass;

12 public void on(Call c) {

if(c instanceof ConstructorCall) {

14 //A constructor type called in context is an allowed type.

contextAllowedTypes.add(c.getDeclaringType());

16 return;

}

18 if(c instanceof MethodCall) {

if(c.getDeclaringType() == thisClass) {

20 //The return type from a method call on this class is an

//allowed type in context.

22 MethodCall mc = (MethodCall)c;

contextAllowedTypes.add(mc.getReturnType());

24 }

}

26 java.lang.reflect.Field[] fields = thisClass.getDeclaredFields();

for(int i=0; i<fields.length; i++) {

28 if(c.getDeclaringType() == fields[i].getType())

return;

30 }

if(contextAllowedTypes.contains(c.getDeclaringType()))

32 return;

potentialViolations.add(c);

34 }

public void before(Execution e) {

3.4. A CASE STUDY: CLASS FORM LOD STATIC CHECKER IN STATICALLY EXECUTABLE
ADVICE 41

36 contextAllowedTypes.clear();

thisClass = e.getDeclaringType();

38 //This class and argument types are allowed types in context

contextAllowedTypes.add(thisClass);

40 Class[] paraTypes = e.getParameterTypes();

for(int i=0; i<paraTypes.length; i++)

42 contextAllowedTypes.add(paraTypes[i]);

}

44 public void after(Execution e) {

Iterator it = potentiallyViolations.iterator();

46 while(it.hasNext()) {

Call c =(Call)it.next();

48 if(!contextAllowedTypes.contains(c.getDeclaringType()))

System.err.println("An LoD violation at: " +

50 c.getSourceLocation());

}

52 potentialViolations.clear();

}

54

// other empty methods are emitted.

56 }

3.4.1 Observations about the checker

In this section, we make some observations about the class form of

LoD static checker implemented using the statically executable ad-

vice. The observations are both positive and negative. The negative

observations motivate a newer and more preferred approach that will

be presented in the next chapter.

Using the statically executable advice approach, we could imple-

ment a static checker for the class form of LoD using only the statically

available shadow information, that was impossible to do by just using

AspectJ’s declare error statement. Here are some positive observa-

42

CHAPTER 3. A LIGHTWEIGHT EXTENSION TO ASPECTJ: STATICALLY EXECUTABLE
ADVICE

tions we can make about the checker implementation.

• The approach allows us to reason about the program structure

and the problem at a very high level, i.e., at the shadow level.

An alternative approach generally requires low level reasoning,

likely at the abstract syntax tree node level, or having to deal

with low level APIs such as Java class byte code manipulation

APIs.

• The pointcut designator language provides a declarative way to

select shadows to be checked.

• The approach is a modest extension to the existing AspectJ lan-

guage and constructs, with an easy integration with the AspectJ

programming model.

On the other hand, the approach has room for improvement due

to the following reasons:

• The approach is imperative by nature and a more declarative

approach is certainly desirable. This is evident from at least

two facts: (1) we had to deal with the subtlety of the visiting

sequence of shadows by first marking a method call a potential

violation and then confirming if it is real at the right spot of

another static advice; (2) by just looking at the implementation,

one could hardly connect the pieces of the implementation with

the original definition of the LoD.

• The approach assumes some shadow visiting order that may or

may not be the case if we are dealing with another implementa-

tion of the AspectJ compiler. For example, for the implementa-

tion to be correct, it must be the case that a method call shadow

is visited by the aspect weaver after its enclosing method exe-

3.4. A CASE STUDY: CLASS FORM LOD STATIC CHECKER IN STATICALLY EXECUTABLE
ADVICE 43

cution (definition) shadow is visited. This may not necessarily

be true on a different implementation of the compiler.

Realizing those problems, more recently, we have worked out a

more declarative approach based on a similar idea, which is presented

in the next chapter and is the main result of this dissertation work.

CHAPTER 4

Datalog based Pointcuts for Design Rule

Checking

While using the proposed statically executable advice approach pre-

sented in the previous chapter we could implement several interest-

ing program design rule checkers, we have found it has much to be

desired.

The first problem is that a static checker implementation using

that approach tends to be tedious and fragile, due to its imperative

nature. For example, by just looking at the design rule checker listed

in Listing 3.3, one can hardly recognize that it is to check the confor-

mance of LoD, and even if one can, she will likely have a hard time

to figure out which part of the implementation is for which sub-rule

(LoD itself has several sub-rules). In addition, the checker implemen-

tation is pretty fragile in that it relies on shadows being traversed

and processed in some assumed order, e.g., a MethodExec shadow has

to be processed before a MethodCall shadow contained in it can be

processed, which is not necessarily true in a different compiler im-

plementation. A more succinct and declarative approach is certainly

desirable.

The second problem of the statically executable advice is that al-

lowing programmers to attach Java code to run with the aspect weav-

45

46 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKING

ing process is dangerous, as the code may potentially do damages on

the compilation, e.g., it may even make the compilation fail to termi-

nate.

4.1 A proposal for Datalog based pointcuts

Realizing those problems, we turn to Datalog [63] as a query lan-

guage operating on the retrieved program shadow records, and pro-

pose to let programmers use Datalog to express design rule con-

straints. We believe Datalog is suitable for this task, because of its

declarativeness and its well balance of expressiveness, safety and ef-

ficiency.

The basic idea is that during the AspectJ program compilation,

all the relevant program type and shadow information, including call

graph information, would be collected and stored as Datalog relations

(also called Extensional Database, or EDB), and programmers can

write Datalog-based pointcuts, essentially Datalog inference rules, to

express constraints imposed on shadows that will be selected. Then

a Datalog solver is used to solve the constraints and return the set of

shadows that satisfy the constraints. Our design goal is that Datalog-

based pointcuts can be used in conjunction with native AspectJ lan-

guage pointcut designators using the common pointcut connectors,

such as &&, ||, !, and cflow etc., with Datalog-based pointcuts focus-

ing on expressing more semantic constraints and the regular native

AspectJ pointcuts focusing on expressing simpler syntax constraints.

4.2 Background Information about Datalog

Datalog [63] is a Prolog like logic language, but with more restric-

tions and far simpler semantics so that it can be evaluated relatively

4.2. BACKGROUND INFORMATION ABOUT DATALOG 47

efficiently. A Datalog program is a set of rules with the following

form:

P0 :− P1, ..., Pn .

Each rule can be divided into two parts, i.e., the rule head ,P0, and the

rule body on the right hand side of :−. The rule head, P0, must be of

the form R(−→x0), and each x in the argument list −→x0 must be a variable

in the corresponding domain. Each Pi(1 ≤ i ≤ n) in the rule body

is called an atom, which can be either of the form R(−→xi), or ¬R(−→xi)

(negated form). Those R are relations or predicates defined on the

domains of their attribute values. Each attribute in the argument list

of an atom can be a variable, a constant value of the corresponding

attribute domain, or “ ”, which stands for a value that we do not care.

The above rule should be read as: if a substitution of constants for the

variables of the rule makes each Pi in the body true, then the head P0

with this substitution is a true fact.

The rule body is optional. When a rule head P0 does not appear

in any rule with a body, the predicate represents known facts. All of

these kinds of predicates are collectively called extensional database

or EDB. On the other hand, predicates that at least appear once as a

head in a rule with a body are collectively called intensional database

or IDB.

Datalog is more expressive than relational algebra, since it allows

recursion [63]. A Datalog program is usually evaluated in a bottom-

up fashion [62] until a fixed-point is reached, i.e., the size of the IDB

no longer grows. To gain some intuition about the Datalog language,

Listing 4.1 is a simple Datalog program that computes the ancestor re-

lationship between two persons, based on the known parent relation-

ship. The parent predicate is a part of the EDB, and it represents the

parent/child relationship between two persons. The ancestor predi-

48 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKING

cate is a part of the IDB, and it computes the transitive closure of the

parent relation, which is the ancestor/descendant relation.

Listing 4.1: A simple Datalog program

parent(par:Person,chi:Person)

ancestor(anc:Person,des:Person)

parent(john,john jr.).

parent(tom,john).

ancestor(x,y) :- parent(x,y).

ancestor(x,y) :- parent(x,z), ancestor(z,y).

The evaluation of the Datalog program will result in the following

three ancestor records, on top of the two existing parent records.

ancestor(john,john jr.)

ancestor(tom,john)

ancestor(tom,john jr.)

While the semantics of the Datalog language is very intuitive, not

all Datalog programs have a meaningful semantics. Listing 4.2 is such

a Datalog program that does not make sense.

Listing 4.2: An unsafe Datalog program

S(x) :- R(y) .

This program will make every x in its domain satisfy S, since there

is not any positive constraint put on x on the antecedents of the rules.

This kind of program is almost certain to be undesirable. Just as

another example, Listing 4.3 demonstrates that a Datalog program

can end up never converging and thus will run forever.

Listing 4.3: A non-converging Datalog program

S(x) :- R(x) .

R(x) :- P(x), !S(x) .

P(john) .

4.2. BACKGROUND INFORMATION ABOUT DATALOG 49

One can convince oneself that the program will never terminate

by mentally running the program. In iteration 1, we will have

P(john) and R(john) in the result database since S(john) is not true.

In iteration 2, S(john) will be added to the database since R(john)

has been true since iteration 1. In iteration 3, however, we will have

to remove R(john) from the database since S(john) is now true. Then

in iteration 4, we have to remove S(john) since R(john) is no longer

true, and thus we get to the starting point with only P(john) being

true and the cycle starts again.

These two problems have been well known in the Datalog re-

search community and to overcome the problems, a restricted vari-

ant of Datalog language, called safe and stratifiable Datalog [13], has

been proposed. Specifically, a safe and stratifiable Datalog program

is a Datalog program such that:

• Any variable that appears in the head of a rule must also appear

in a non-negated predicate in the body.

• A predicate in negated form must not appear in a recursive rule

chain.

The first restriction is to avoid the case of every element in an

attribute domain satisfying a predicate trivially, while the second re-

striction is to avoid the case of the program not being able to con-

verge. In this dissertation, we only use this restricted form of Datalog

language, and unless we specify otherwise, we always mean the safe

and stratifiable Datalog subset when we use the term Datalog. It is

not just a coincidence that almost all of recent Datalog-based research

work [23, 5, 15] use this restricted form of the Datalog language.

Researchers have been using Datalog as a query language to solve

program analysis problems for a long time. Some examples are pre-

sented in [63, 55, 7]. More recently, it has been used to implement

50 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKING

a context-sensitive pointer alias analysis algorithm [65], to do pro-

gram security checking [39], and to define network access control

policies [52]. In a closer area relevant to this dissertation work, re-

searchers have used Datalog to build a code query system [23] and

to define the static semantics of the AspectJ pointcuts [5]. Datalog is

a natural choice for implementing many program analysis tasks, due

to its declarative nature and easiness of calculating transitive closures

from relations. Even in an apparently less likely area, researchers are

using Datalog to achieve declarative network routing in a distributed

network environment [43].

When using Datalog for program analysis, one usually starts by

retrieving the relevant program information from the source code

and storing it as relations or predicates in the EDB. Those relations

should abstract out unimportant program syntax details and should

be designed in such a way that is convenient for information retrieval

and further inference rule writing. Then problem specific Datalog

inference rules, which should encode the analysis logic presented as

predicates in the IDB, can be written to deduce the wanted results by

applying a Datalog solver on those EDB predicates and the inference

rules.

The stored EDB relation records and the computed IDB relation

records can potentially be huge for practical programs. For example,

in our system that will be presented later, to represent the relevant

program shadow and type information from a source program with

just 20K lines of code, we can get around 100K EDB relation records,

and depending on what kind of IDB inference rules we have, the

result database size can easily get to hundreds of thousands relation

records for such a moderate program. So it is important that we

can efficiently store and query those relations. The good news is

that there may be a lot of redundant information in program relation

4.3. PERFORMANCE CONSIDERATION: BDD-BASED REPRESENTATION OF DATALOG
RELATIONS 51

records, which can benefit from using an intelligent data structure,

Binary Decision Diagram (BDD).

4.3 Performance Consideration:

BDD-based Representation of Datalog

relations

While Datalog programs can be solved relatively efficiently in poly-

nomial time [64, 29], it still poses a performance concern when it

is applied to shadow relations generated from practical programs,

which can easily get to hundreds of thousands of records for even

a moderate program. Our observation is that although the relation

records generated from practical programs can be huge, there are a

lot of commonalities or redundancy among them too. So using an in-

telligent data structure, Binary Decision Diagram (BDD) [11] as the

underlying representation for shadow relations can greatly improve

the performance of Datalog solving. There is a BDD based Datalog

solver bddbddb [65, 39] that takes advantage of this optimization if

the underlying records are structured properly.

4.3.1 Background Information about BDD

The Binary Decision Diagrams (BDD) [11] were originally developed

by the model checking community, to efficiently store and manipulate

Boolean formulas.

To represent a Boolean formula, a BDD is designed to be a directed

acyclic graph with one root node and two terminal nodes, each of

which represents 0 or 1 respectively. Each of the non-terminal nodes

is labeled with a decision variable (corresponding to a Boolean vari-

able in the formula) whose value can be either 0 or 1. From each

52 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKING

of the non-terminal nodes, there are two outgoing edges, i.e., a high

edge and a low edge. To determine if an assignment of the Boolean

variables makes the Boolean formula true, one just starts with the

root node, follows the high edge if the corresponding decision vari-

able is 1 in the assignment, and the low edge if the corresponding

decision variable is 0 in the assignment. If the final reached terminal

node is the 1 node, then the Boolean formula is true, otherwise it is

false.

It is well known [65] that a Boolean formula and thus a BDD can

be used to represent a relation by following simple transform steps:

• Give each element in each attribute domain a unique binary

number with each bit corresponding to a decision variable. So

a domain with N elements will need ⌈lg N⌉ decision variables.

• Build up a truth table to reflect a record’s existence in the rela-

tion.

• Convert the truth table to a Boolean formula.

More formally, we want to represent a relation R(D1, D2, ..., Dn)

defined on domains Di(1 ≤ i ≤ n) with each domain’s size being

Ni =| Di | (1 ≤ i ≤ n). For each domain, we will need Bi =

⌈lg Ni⌉(1 ≤ i ≤ n) bits to represent elements in that domain and

each bit is called a decision variable. A Boolean formula f defined on

the decision variables is a true representation of relation R if:

f(x1, x2, ..., x(Σn
1
Bi)) = 1 iff

R(−−−−−→x1...xB1
,−−−−−−−−−−→xB1+1...xB1+B2

, ...,−−−−−−−−−−−−−−→x(Σn−1

1
Bi+1)...x(Σn

1
Bi)) = T

The BDD corresponding to f is a representation of relation records

in R. To see if a record belongs to R, we just feed the binary encoding

4.3. PERFORMANCE CONSIDERATION: BDD-BASED REPRESENTATION OF DATALOG
RELATIONS 53

of the record to the BDD, and trace a path from the root node to one

of the terminal nodes, following the high edge if the corresponding

decision variable is 1, and the low edge if it is 0. If the reached

terminal node is 1, then the record belongs to the relation; otherwise,

it does not.

To gain some intuition about how BDD is used to represent a rela-

tion, Table 4.1 is a relational table storing mappings between meth-

ods and their corresponding parameter type signatures. In the table,

there are eight methods, so accordingly, for the method domain, there

are lg 8 = 3 decision variables, which are x1, x2, and x3 respectively.

For the purpose of discussion, let’s say the parameter type signature

domain can hold up to four different parameter signatures. So ac-

cordingly, there are two decision variables for the domain, which are

y1 and y2 respectively. In this particular example as presented in the

table, the eight methods only have two different parameter signa-

tures, with dominantly most of them having a parameter signature

labeled as 10.

Method ID Param. Sig. ID

x1 x2 x3 y1 y2

0 0 0 1 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 0

Table 4.1: Exemplary relation of methods and their parameter type

signatures

Figure 4.1 illustrates how this relation is encoded in the BDD. In

the diagram, a solid line represents a high edge and a dashed line

represents a low edge.

54 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKINGOP OQOROS OS OSOS TRTRTRTRTRTRTRTRTQ TQ TQTQTQTQTQTQTQTQTQTQTQTQTQTQ
RU

Figure 4.1: The relation encoded in a regular BDD

A BDD itself does not save us any space when used to represent a

relation. A particularly useful variant of BDD that can save space is

called reduced ordered binary decision diagrams (ROBDD) [11], where

common BDD subgraphs can be reduced to a single subgraph and

the more redundancy there is in the original diagram, the greater

memory savings and query improvements the corresponding ROBDD

can deliver.

We can get to a ROBDD from a regular BDD by iteratively applying

one of the two reductions on the BDD [11] as illustrated in Figure 4.2.

The first reduction says that when two nodes having the same

decision variable label have the high and the low edges point to the

same node respectively, then the two nodes can be merged into one

node that will receive all of the incoming edges to the original two

nodes. The second reduction says that when the high edge and the

low edge of one node point to the same node, then the former node

can be removed from the diagram and all of the incoming edges to it

can be directly fed into the latter node.

Figure 4.3 is the result ROBDD after applying the standard reduc-

4.3. PERFORMANCE CONSIDERATION: BDD-BASED REPRESENTATION OF DATALOG
RELATIONS 55

X2

X4 X4

X2 X2 X2

X4 X4

X1

X2

Figure 4.2: Two BDD reduction operationsVW VXVX VYVYZ[ZX\ [
Z[ZX

Figure 4.3: The same relation encoded in ROBDD after reductions

tion optimizations on the original BDD in Figure 4.1. Again, a solid

line represents a high edge and a dashed line represents a low edge.

One can tell how much more compact the ROBDD representation is

in this case.

Besides the diagram is much smaller, the other salient feature we

observe about this diagram is that all of the paths reaching the ter-

minal node 1 via the 10(Y 1Y 2) sub-path (the edges in boldface) have

56 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKING

joined at the node with the Y 1 label (the node in boldface), and thus

the redundant decision paths have been eliminated. This is corre-

sponding to the fact in the original relation table that most of the

methods have the parameter type signature identified as 10, and this

characterization has contributed the most to the fact that the result

diagram is so compact compared with the original one.

The effectiveness of the reduction steps on a BDD is dependent on

two factors. The first factor is how much redundant information there

is in the original BDD. The more redundant information is there, the

more effective the reductions will be. The second factor is the or-

der of the decision variables, which can make an exponential differ-

ence between result ROBDD’s. Unfortunately, it has been known that

finding the optimal BDD decision variable order is an NP-complete

problem [9].

Our goal is to use ROBDD to represent a potentially huge num-

ber of Datalog AOP shadow EDB/IDB relation records and to use the

advanced BDD based Datalog solver bddbddb to solve the inference

rules. But the question is: is there much redundant information in

the AOP shadow model so that the reductions can be leveraged?

4.3.2 Is There Much Redundancy Among Shadow

Records?

The answer is that it depends on how we design the representation

of the shadow information, which will be presented a little later. But

conceptually, there is abundant redundancy among the program type

and shadow relations in which we are interested in the AOP shadow

model. For example, to encode program shadow relations, in the

EDB that will be generated from source programs, we need to store

an important relation that maps a method or a constructor to its cor-

4.3. PERFORMANCE CONSIDERATION: BDD-BASED REPRESENTATION OF DATALOG
RELATIONS 57

responding parameter type signature, which includes the number of

formal parameters, each formal parameter type and its position in

the argument list. In any real world program, the number of dif-

ferent method/constructor parameter type signatures could be big,

but it is typical that they are not uniformly distributed across meth-

ods/constructors. Instead, we will often find that the majority of the

methods/constructors take only few variants of parameter type signa-

tures. For example, the parameter type signature of zero parameter,

the signature of single parameter whose type is int, and the signa-

ture of single parameter whose type is java.lang.String appear far

more frequently than some other signatures. This kind of relation can

create many opportunities for the two BDD reductions to kick in, as

we have seen in the case of Table 4.1.

To show that this relation is indeed like what we have just de-

scribed in real world programs, we have collected the method and

parameter type signature relationship data from two real world pro-

grams available from sourceforge.net, which are jEdit and JigSaw. The

former is a Java based edit program, while the latter is a Java based

IDE program. Both of them have around 150K lines of code.

The jEdit benchmark has 5,016 method definitions with 793 dif-

ferent parameter type signatures, but the top 10% frequent signatures

already cover 76% of all methods, and especially the top 5 frequent

signatures cover 52.5% of all methods. Table 4.2 lists the top 5 fre-

quent signatures for the jEdit benchmark and their occurrences and

percentages among the methods.

It is a similar story for the JigSaw benchmark. It has 5,781 method

definitions with 690 different parameter type signatures, but the top

10% frequent signatures already cover 80% of all methods, and espe-

cially the top 5 frequent signatures cover 58.1% of all methods. Ta-

ble 4.3 lists the top 5 frequent signatures for the JigSaw benchmark

58 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKING

Signature pattern Occurrences Percentage

(void) 1,855 37%

(String) 351 7%

(int) 228 4.5%

(boolean) 109 2.2%

(ActionEvent) 88 1.8%

Total 52.5%

Table 4.2: Top 5 frequent method parameter type signatures for jEdit

and their occurrences and percentages among the methods.

Signature pattern Occurrences Percentage

(void) 2,385 41.3%

(String) 530 9.2%

(int) 182 3.2%

(Request) 131 2.3%

(Object) 123 2.1%

Total 58.1%

Table 4.3: Top 5 frequent method parameter type signatures for Jig-

Saw

Another example of this kind of relations is the relation to en-

code what fields a class has declared, and what their types and type

modifiers are. Some field types, e.g., Java primitive types and Java

utility collection classes, are much more common than other types.

In this relationship, the BDD would have many fields point to the

few field types and thus create abundant opportunities for the reduc-

tions to kick in. Another similar example is that some methods, e.g.,

those methods defined in Java collection classes, are invoked more

frequently across the program source code.

One more example that can be seen later is that in this work, we

also intend to store and infer the program call graph information,

where method calls belonging to the same generic function will be

statically resolved to a set of method definitions. Method calls with

similar receiver types and parameter type signatures will end up with

4.4. THE DESIGN OF DATALOG-BASED POINTCUT SYSTEM 59

a similar resolved method definition set, and this kind of commonal-

ities can be leveraged by the BDD reductions as well.

Those kinds of relations are ideal for being stored in the ROBDD

form. In reality, there are also enough recent research work [65, 6,

40] suggesting BDD indeed can help improve the scalability of pro-

gram analysis algorithms.

In addition, native BDD operations can be used to efficiently im-

plement relational algebra operations such as join and projection [65].

This is another reason to use BDD as the underlying representation

of the shadow relations.

4.4 The Design of Datalog-based Pointcut

System

4.4.1 Shadow model in Datalog

Datalog relations are defined on their attribute domains. We first

need to decide which domains that we are going to have and operate

on.

4.4.1.1 Shadow Domains

When making decisions about what domains we should have, we fol-

lowed two design principles. One is that we want to abstract out

commonly shared information to be a separate domain, so that we

can best leverage the underlying BDD data structure’s capability to

decrease memory footprint when values of this domain are associ-

ated with many records in a relation. The other principle is that we

should separate domains in such a way that we can present program

shadow relations that are similar to the AspectJ language’s join point

60 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKING

model, because it is the way how AspectJ programmers reason about

a programming task.

In this system, we have chosen to have the following domains:

T: Domain of types, including classes, interfaces, array types

and primitive types

SH: Domain of program shadows

Sig: Domain of program shadow signatures

PSig: Domain of method parameter type signatures

S: Domain of strings, including string literals and identifiers

Mod: Domain of type or construct modifiers

Z: Domain of finite integers

It should be obvious why we need most of the domains. The less

obvious ones are the domain of SIG and the domain of PSIG.

The domain of SIG contains the collection of records that char-

acterize the relevant static information about shadows, called signa-

tures. This domain abstraction is due to two reasons that correspond

to our two design principles. The first reason is that different shadows

that share the same static signature can just point to the same signa-

ture record, e.g., the same method called in different places in the

source code can share the same method shadow signature. The sec-

ond reason is that it has a natural mapping to the concept in the cur-

rent AspectJ language’s reflection API, which allows the programmer

to access the static shadow information about the current join point

at run time. In that API, the static shadow information is accessed

through various Signature interfaces depending on the shadow kinds,

which in our system will be reflected as a signature predicate can be

4.4. THE DESIGN OF DATALOG-BASED POINTCUT SYSTEM 61

further refined into more specific predicates depending on shadow

kinds, as will be shown later.

The domain of PSIG contains the collection of records that char-

acterize the static parameter type signature of methods and construc-

tors in the program, and it is specially designed to be a separate do-

main because we have observed earlier that few parameter type sig-

natures are referred to much more often than the rest of the majority

of the signatures. As a comparison, a similar previous work [5] does

not have these two abstractions. More difference between the two

systems is discussed in section 6.1.

4.4.1.2 Shadow Representation in EDB

Datalog Extensional DataBase (EDB) predicates reflect the known

facts that are relevant about a problem domain. In this work, we

are interested in presenting the AspectJ’s shadow model using a Dat-

alog EDB so that we can write interesting inference rules against this

EDB to find out if there is any program element violating a desirable

software design rule.

The idea is that the shadow EDB will be collected and emitted

from the source program being compiled, during an early stage of

the aspect weaving and compilation process. In AspectJ, only shad-

ows occurring in the base program and the input aspects are weav-

able and thus only those shadows are being collected and analyzed in

the compilation and weaving process. But in order to weave advice

correctly, an AspectJ compiler also needs to have access to types that

are accessed by the base program and the aspects, not just the types

that are defined by them. Following this convention, the EDB predi-

cates that we are interested in in this work fit into two categories: the

program type information and the shadow information. The former

62 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKING

provides the essential information about types that are defined in the

base program or the aspects, or that are used by the base program or

the aspects. The latter provides the essential information about the

shadows occurring in the base program or the aspects.

We have designed the following type related EDB predicates, whose

informal semantics are explained below.

TypeInfo(t:T, name:S). TypeInfo(t,name) is true iff the pro-

gram defines or accesses type t whose name is name.

TypeModifiers(t:T, mod:Mod). TypeModifiers(t,mod) is true

iff type t has type modifiers identified as mod. Modifier related

predicates will be presented later.

IsClass(t:T). IsClass(t) is true iff type t is a Java class.

IsInterface(t:T). IsInterface(t) is true iff type t is a Java

interface.

IsAspect(t:T). IsAspect(t) is true iff type t is an AspectJ

aspect.

Package(t:T, pname:S). Package(t,pname) is true iff type t is

defined in a package whose package name is pname.

IsNested(t:T). IsNested(t) is true iff type t is a nested type.

IsGeneric(t:T). IsGeneric(t) is true iff type t is a generic

type.

TypeParameter(t:T,pos:Z,tv:S). TypeParameter(t,pos,tv) is

true iff type t is a generic type and it has type parameter tv in

the position of pos in its type parameter list.

IsArray(t:T). IsArray(t) is true iff type t is an array type.

4.4. THE DESIGN OF DATALOG-BASED POINTCUT SYSTEM 63

ArrayComponentType(t:T,ct:T). ArrayComponentType(t,ct) is

true iff type t is an array type and its element type is ct.

DeclaresField(t:T,ft:T,fn:S,mod:Mod). DeclaresField(t,ft

,fn,mod) is true iff type t declares a field whose static type is

ft, whose name is fn and with modifiers identified as mod.

DeclaresMethod(t:T,rt:T,mn:S,mod:Mod,ps:PSig). DeclaresMethod

(t,rt,mn,mod,ps) is true iff type t declares a method whose

static return type is rt, whose name is mn with modifiers identi-

fied as mod and whose parameter type signature is identified as

ps.

DeclaresConstructor(t:T,mod:Mod,ps:PSig). DeclaresConstructor

(t,mod,ps) is true iff type t declares a constructor with modi-

fiers identified as mod and whose parameter type signature is

identified as ps. Note that a constructor does not have a return

type and it does not need to have a name, since it is implied by

the declaring type name.

CodeSignatureNumParams(ps:PSig,num:Z). CodeSignatureNumParams

(ps,num) is true iff parameter type signature ps has num param-

eters.

CodeSignatureParam(ps:PSig,pos:Z, pt:T). CodeSignatureParam

(ps,pos,pt) is true iff parameter type signature ps has a param-

eter with static type of pt in the position of pos in the parameter

list.

Extends(subT:T,supT:T). Extends(subT,supT) is true iff type

subT is a class or interface, type supT is a class or interface, and

type subT extends type supT.

64 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKING

Implements(subT:T,supT:T). Implements(subT,supT) is true

iff type subT is a class, type supT is an interface, and class subT

implements interface supT.

These type related EDB predicates capture the essence of the type

information available from the AspectJ shadow model. Besides the

type related EDB predicates, we also have two following built-in In-

tensional DataBase (IDB) inference rules, which can be used to de-

duce whether two types have super-type relationships, and which are

very useful when writing more complex queries.

SuperType(subT:T, supT:T). SuperType(subT,supT) is true iff

type subT is a proper sub-type of type supT.

SuperOrEqualType(subT:T, supT:T). SuperOrEqualType(subT,

supT) is true iff type subT is a proper sub-type of type supT, or

subT is supT itself.

Making use of the Datalog language’s transitive closure and transi-

tive reflective closure computation capability, the two predicates can

be easily implemented as the following program in Listing 4.4.

Listing 4.4: Built-in super-type deduction rules

SuperType(subT,supT) :- Extends(subT,supT).

SuperType(subT,supT) :- Implements(subT,supT).

SuperType(subT,supT) :- SuperType(subT,middleT),

SuperType(middleT,supT).

SuperOrEqualType(subT,supT) :- SuperType(subT,supT).

SuperOrEqualType(subT,supT) :- subT=supT.

There are a few type related predicates (and later on shadow

related predicates) referring to modifiers. To query the contents of

those modifiers, the user can use one or some of the following modi-

fier related predicates, whose informal semantics are given below.

4.4. THE DESIGN OF DATALOG-BASED POINTCUT SYSTEM 65

ModIsPublic(mod:Mod). ModIsPublic(mod) is true iff mod has

the public modifier.

ModIsProtected(mod:Mod). ModIsProtected(mod) is true iff mod

has the protected modifier.

ModIsPrivate(mod:Mod). ModIsPrivate(mod) is true iff mod has

the private modifier.

ModIsNative(mod:Mod). ModIsNative(mod) is true iff mod has

the native modifier.

ModIsVolatile(mod:Mod). ModIsVolatile(mod) is true iff mod

has the volatile modifier.

ModIsSynchronized(mod:Mod). ModIsSynchronized(mod) is true

iff mod has the synchronized modifier.

ModIsStatic(mod:Mod). ModIsStatic(mod) is true iff mod has

the static modifier.

ModIsAbstract(mod:Mod). ModIsAbstract(mod) is true iff mod

has the abstract modifier.

ModIsFinal(mod:Mod). ModIsFinal(mod) is true iff mod has the

final modifier.

Now we turn to the design of the Datalog representation of the

shadow information.

Shadow information comes from the program being woven with

aspects, or called the base program, and the aspects themselves. We

have designed a Datalog presentation for all of the commonly used

AspectJ shadows and their static signature information.

Below are these shadow EDB predicates and their informal se-

mantics.

66 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKING

FieldGet(sh:SH,sig:Sig,parent:SH). FieldGet(sh,sig,parent

) is true iff sh is a field get shadow, whose static signature is

identified as sig, and the shadow is lexically located within the

shadow identified as parent.

FieldSet(sh:SH,sig:Sig,parent:SH). FieldSet(sh,sig,parent

) is true iff sh is a field set shadow, whose static signature is

identified as sig, and the shadow is lexically located within the

shadow identified as parent.

ConstructorCall(sh:SH,sig:Sig,parent:SH). ConstructorCall

(sh,sig,parent) is true iff sh is a constructor call shadow, whose

static signature is identified as sig, and the shadow is lexically

located within the shadow identified as parent.

ConstructorExec(sh:SH,sig:Sig). ConstructorExec(sh,sig)

is true iff sh is a constructor execution shadow, whose static

signature is identified as sig.

MethodCall(sh:SH,sig:Sig,parent:SH). MethodCall(sh,sig,

parent) is true iff sh is a method call shadow, whose static sig-

nature is identified as sig, and the shadow is lexically located

within the shadow identified as parent.

MethodExec(sh:SH,sig:Sig). MethodExec(sh,sig) is true iff sh

is a method execution shadow, whose static signature is identi-

fied as sig.

AdviceExec(sh:SH,sig:Sig). AdviceExec(sh,sig) is true iff sh

is an advice execution shadow, whose static signature is identi-

fied as sig.

ExceptionHandler(sh:SH,ex:T,parent:SH). ExceptionHandler

(sh,ex,parent) is true iff sh is an exception handler shadow,

4.4. THE DESIGN OF DATALOG-BASED POINTCUT SYSTEM 67

which catches exceptions of type ex, and the shadow is lexically

located within the shadow identified as parent.

Almost all shadow predicates have a property from the domain of

Sig, which captures the most important static signature information

about the shadows. Shadow signature predicates, which will be pre-

sented below, are designed to be “layered” in a way that is similar to

the inheritance in object-oriented paradigm, since Datalog itself does

not directly support inheritance. The motivation of this layered de-

sign is that it is typical that at a given time, only a part of a shadow’s

signature information needs to be accessed, and so this design al-

lows the programmer to only use the predicates that are needed, and

thus decrease the size of the EDB that need to be fed into the Data-

log solver to boost the performance of the system. For example, at

a given time, for a method execution shadow, we may only want to

query which class has defined this method, but not what its second

parameter type is. The other benefit of this layered design is that it

allows us to do more sophisticated type checking on the user writ-

ten Datalog program to reject programs that do not make sense, if we

want to do that. For example, a program may have qualified a shadow

to be a method call shadow by using the MethodCall predicate, but at

the same time, it tries to access a field signature information through

the signature property from the method call predicate. This query

is guaranteed to always return the empty result, and thus should be

rejected.

The following are the shadow signature related predicates and

their informal semantics.

Signature(sig:Sig,dt:T,name:S,mod:Mod). Signature(sig,dt

,name,mod) is true iff sig is a shadow signature that has a declar-

ing type dt, its corresponding program element name is name,

68 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKING

and it has modifiers identified as mod. Following the AspectJ’s

convention, the declaring type refers to the type in which the

shadow member is declared.

FieldSignature(sig:Sig,ft:T). FieldSignature(sig,ft) is

true iff sig is a field get or set shadow signature whose cor-

responding field’s type is ft. Additional information about a

field signature should be accessed by using a relational join op-

eration with predicate Signature on the first attribute of the

predicates.

CodeSignature(sig:Sig,psig:PSig). CodeSignature(sig,psig

) is true iff sig is a constructor/method/advice shadow signa-

ture and its corresponding member’s parameter type signature

is identified as psig. Earlier, we have presented how PSig re-

lated predicates are defined. Additional information about a

code signature should be accessed by using a relational join op-

eration with predicate Signature and/or predicate MethodSignature

(presented below) on the first attribute of the predicates.

MethodSignature(sig:Sig,rt:T). MethodSignature(sig,rt) is

true iff sig is a method/advice shadow signature and its cor-

responding method/advice’s return type is rt. Constructors do

not have a return type so a signature associated with a construc-

tor shadow does not have a MethodSignature layer. Additional

information about a method signature should be accessed by us-

ing a relational join operation with predicate Signature and/or

predicate CodeSignature on the first attribute of the predicates.

With all those shadow related EDB predicates, now we can easily

write more complex queries that otherwise would be impossible to

express in AspectJ’s native pointcut languages. We will see plenty of

4.4. THE DESIGN OF DATALOG-BASED POINTCUT SYSTEM 69

examples later, but we just give a couple of examples here to facilitate

discussions.

In the JBoss AOP [32] system, after the designers realized that

using the native AspectJ-like pointcut language, it was impossible

to express pointcut queries that pick up method calls made on tar-

get classes that have specific fields, they came up with and added

one new native pointcut hasField to the existing supported point-

cuts. Although it is always possible to add this kind of new point-

cuts to an AOP language as requirements grow, each new pointcut to

be added requires advanced understanding about the compiler and

how the shadow matching and weaving process works, and thus an

average AOP programmer would not be able to do that. Using our ap-

proach, however, the programmer just writes a simple Datalog query

to express the constraint that she would like to impose on the shad-

ows, then our system, with the integration with the AspectJ’s shadow

matching and weaving process, which will be presented a little later,

can automatically pick up her query results.

As an example, Listing 4.5 is a simple Datalog query program to

pick up method calls made on target classes having a field named

logger,using the EDB predicates provided by our system. The built-in

predicates are highlighted with a underline for easy reading.

Listing 4.5: Pick up method calls on classes with logger field

WantedMethodCalls(sh) :- MethodCall(sh,sig,_),

Signature(sig,dt,_,_),

DeclaresField(dt,_,"logger",_) .

Of course, using our system, one can even express queries that can

already be done by using AspectJ’s native pointcuts, but it may not

be a good idea to do so from the usability perspective. For example,

using AspectJ’s native pointcuts, one can use execution(* A.compute

(int))) to pick up a method definition by class A, whose name is

70 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKING

compute and that has only one parameter with type int. If one has

to write the same query using our system, one would need to write a

Datalog program as listed in Listing 4.6.

Listing 4.6: Datalog query to simulate a simple AspectJ pointcut

WantedMethodExecs(sh) :- MethodExec(sh,sig),

Signature(sig,t,"compute",_),

TypeInfo(t,"A"), CodeSignature(sig,psig),

CodeSignatureNumParams(psig,1),

CodeSignatureParam(psig,0,intT),

TypeInfo(intT,"int") .

It is obvious that in this particular case, using the AspectJ’s native

pointcut would be preferred. This example demonstrates that each

query mechanism has its own strength, and ideally we should get

advantages from both sides, with AspectJ’s native pointcut language

focusing on simpler syntax pattern-based queries and with our Dat-

alog based query mechanism focusing on more complex queries that

are impossible to achieve by using the native pointcuts. This actually

is one of our primary design goals, and we will show how to achieve

this a little later.

4.4.1.3 Static Method Call Resolution Using

Shadows

To demonstrate that our Datalog based shadow EDB can indeed be

used to solve non-trivial program analysis problems, we have imple-

mented a static method call resolution algorithm based on Class Hi-

erarchy Analysis (CHA). In programs written in Object-oriented pro-

gramming languages like Java, the precise call graph is not known at

compile time. One of main reasons for this is that Java-like OO lan-

guages support dynamic binding that allows a method call site to pick

up a method definition to execute based on the run time type of the

4.4. THE DESIGN OF DATALOG-BASED POINTCUT SYSTEM 71

target object. Since at the compile time, we do not have the precise

run time type information about a target object, this posts challenges

to many program analysis tasks where a whole call graph is needed.

On the other hand, the static signature of a method call gives us very

useful information about predicating what method definitions may be

invoked by it at run time, and thus we can build an approximated call

graph from the input program.

To achieve this, we have implemented a Datalog program, which,

given a method call shadow, together with its static signature infor-

mation, can deduce the set of possible method execution shadows

that may potentially be invoked by it, by doing type hierarchy analy-

sis. It essentially simulates Java’s class method resolution algorithm

statically, and it is very useful when we want to discover the call

graph of the input program, in the presence of inheritance and poly-

morphism.

The key predicate of the program is ResolvesTo(call:SH,exec:SH

) that defines on two attributes in the domain of shadow. The first

attribute would be a method call shadow, and the second attribute

would be a corresponding method execution shadow that may be

invoked by the method call, based on the static signature information

about shadows and the types. Due to its general usefulness in call

graph analysis related problems, we have also incorporated it into

our system as one of the built-in predicates.

There are two cases to be analyzed. The first case where a method

execution can be invoked by a call is that the method execution has

the same method name and the same static parameter type signature

as the method call’s, and the method execution (definition) is pro-

vided by any sub-type of the static type of the method call’s target

object. This is because, at run time, the actual run time type of the

target object can be any sub-type of its static type, and thus any com-

72 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKING

Figure 4.4: Method Resolution: case 1

patible method implementation provided by those sub-types can be

invoked by the call. Figure 4.4 illustrates this scenario, and Listing 4.7

is the corresponding Datalog program to compute the ResolvesTo re-

lation in this case. The ResolvesTo relies on two helper predicates,

i.e., CallExecMatchSig and TypeHasTheImpl, to determine if one of the

method call target type’s sub-types has a method execution that has

the signature matching with the call’s.

4.4. THE DESIGN OF DATALOG-BASED POINTCUT SYSTEM 73

Listing 4.7: ResolvesTo predicate: case 1

CallExecMatchSig(c,e,tc,te,n,psig) :- MethodCall(c,sig,_),

Signature(sig,tc,n,_),

CodeSignature(sig,psig),

TypeHasTheImpl(te,e,n,psig) .

TypeHasTheImpl(t,e,n,psig) :- MethodExec(e,sig), Signature(sig,t,n,_),

CodeSignature(sig,psig) .

ResolvesTo(c,e) :- CallExecMatchSig(c,e,tc,te,_,_),

SuperOrEqualType(te,tc) .

The second case to be analyzed is a little more tricky. When one

method call is made on static target type t, if t itself does not have a

method implementation for it, a method execution (definition) pro-

vided by one of its super-types can be invoked. There may be more

than one super-types of it that actually provide an implementation of

such a method. However, only the one provided by the closest ances-

tor type can be invoked by the call, as the ones provided by the more

remote ancestors are hidden by the closest one. Figure 4.5 illustrates

such a scenario and Listing 4.8 is the Datalog program that actually

does the analysis for this case.

74 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKING

Figure 4.5: Method Resolution: case 2

Listing 4.8: ResolvesTo predicate: case 2

TypeHasAnImpl(t,n,psig) :- TypeHasTheImpl(t,_,n,psig) .

ThereIsCloserType(t_sofar,from_t,n,psig) :-

SuperType(from_t,better_t),

SuperType(better_t, t_sofar),

TypeHasAnImpl(better_t,n,psig).

IsClosestType(sup_t,curr_t,n,psig) :-

!ThereIsCloserType(sup_t,curr_t,n,psig),

SuperType(curr_t,sup_t),

TypeHasAnImpl(sup_t,n,psig) .

ResolvesTo(c,e) :- CallExecMatchSig(c,e,tc,te,n,psig),

!TypeHasAnImpl(tc,n,psig),

IsClosestType(te,tc,n,psig).

In a nutshell, the ResolvesTo predicate in Listing 4.8 makes use

of three helper predicates (one of them, CallExecMatchSig, has been

4.4. THE DESIGN OF DATALOG-BASED POINTCUT SYSTEM 75

presented earlier in Listing 4.7) to state that if a target method call

type tc itself does not have an appropriate implementation for the

method, then the call can potentially invoke the method implementa-

tion provided by the super-type that is closest to tc in the inheritance

chain, if there is any. As a side mark, this Datalog program demon-

strates one of the most visible inconveniences when programing with

Datalog, i.e., one won’t be able to directly express conditions quan-

tified with for all, like the IsClosestType predicate in the example.

Instead, one will have to express the negation of the condition as

a new predicate first, which is the there exists situation where the

condition does not hold, like the ThereIsCloserType predicate in the

example, and then gets the negation of the newly created predicate

to express the real intention.

4.4.2 Datalog-based Pointcuts and Integration with

AspectJ

Now we describe in our system, how we can allow programmers

to write pointcuts to capture design rules being interested, using

Datalog-based EDB and IDB predicates, and how it is integrated with

the AspectJ’s native pointcut language mechanism and the compiler.

As we have mentioned earlier, our design goal is that the Datalog-

based pointcut system can be used together with AspectJ’s native

pointcut designators, using the common pointcut connectors, such

as &&, ||, !, cflow, and cflowbelow. The idea is that the user can

continue to use AspectJ’s native pointcuts to express simpler syntax

pattern-based queries and use our Datalog based pointcuts or query

mechanism to express more complex queries that are impossible to

achieve by using the native pointcuts.

In our system, the user defines Datalog based pointcuts by supply-

76 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKING

ing one or more than one Datalog pointcut specification files, whose

syntax is defined below in Listing 4.9 presented in the EBNF meta-

language.

4.4. THE DESIGN OF DATALOG-BASED POINTCUT SYSTEM 77

Listing 4.9: Syntax of Datalog specification file

DatalogSpecification = "Declarations" Declarations "Definitions"

Rules .

Declarations = List(Declaration) .

Declaration: PCDDeclaration | RuleDeclaration .

PCDDeclaration = "pointcut" <pcdName> Ident "(" <boundJPName>

Ident ":" "SH" ")" "." .

RuleDeclaration = <ruleName> Ident "(" List(IdentDomainPair) ")"

[<output> Output] "." .

Output = "output" .

IdentDomainPair = Ident ":" Domain .

Domain : SH | T | Mod | S | Z | Sig | PSig .

SH = "SH" .

T = "T" .

Mod = "Mod" .

S = "S" .

Z = "Z" .

Sig = "Sig" .

PSig = "PSig" .

Rules = List(AbstractRule) .

AbstractRule : Fact | Rule .

Fact = <factName> Ident "(" List(Literal) ")" "." .

Literal : LitNumber | LitString .

LitNumber = Integer .

LitString = String .

Rule = Head ":-" Body "." .

Head = <ruleHeadName> Ident "(" List(Ident) ")" .

Body = List(AtomicOrNegation) .

AtomicOrNegation : Atomic | NegationAtomic .

Atomic = <usedRuleName> Ident "(" List(ArgOrWildcard) ")" .

NegationAtomic = "!" AtomicOrNegation .

ArgOrWildcard : Argument | WildCard .

WildCard = "_" .

Argument : Var | Num | Str | RegExp .

Var = Ident .

Num = Integer .

78 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKING

Str = String .

RegExp = "REGEXP" "(" <exp> String ")" .

A Datalog pointcut specification file must have two sections, which

are Declarations and Definitions sections respectively. The Declara-

tions section should provide type declarations for the new IDB pred-

icates that the user wants to introduce. Domains of the attributes of

the predicates must be among the domains defined earlier. A predi-

cate declaration can optionally have the pointcut annotation at the be-

ginning, which will make the predicate accessible as a Datalog point-

cut that can be used in an AspectJ aspect definition, and it must have

and only have one attribute whose domain is the shadow domain SH

. We also realize that in the interest of expressing design rules, not

all design rule violations can be characterized as an AspectJ shadow,

e.g., a violation may be the class declaration itself, which is not an

AspectJ shadow. To incorporate this kind of use cases, our system

allows the user to declare a Datalog predicate with the output anno-

tation in the end, and this annotation will instruct the Datalog solver

that the user does want to compute and output the result of the pred-

icate, even though it is not directly accessible from an aspect. All

other rules without the pointcut and the output annotations declare

intermediate IDB predicates that help define a pointcut predicate or

an output predicate.

The intention of the Declarations section is to allow us to run type

checking on user supplied IDB relations to reject illegal rules early

on, before they are fed into the Datalog solver. Examples of ill-typed

Datalog pointcut specification files include predicates using wrong

number of attributes in definitions than what have been declared,

the same variable being used inconsistently on domains in a IDB re-

lation definition, a used predicate is not declared, nor is it a built-in

predicate, a declared predicate does not have a corresponding defini-

4.4. THE DESIGN OF DATALOG-BASED POINTCUT SYSTEM 79

tion, and so on. Every predicate, except the built-in ones provided by

the system, must be declared before it can be defined or used in the

Definitions section.

The Definitions section should provide implementations of the de-

clared IDB predicates by using the built-in ones and the newly de-

clared ones.

Listing 4.10 is an example Datalog pointcut specification file that

defines a Datalog pointcut P that is built on another IDB predicate

ClassHasStaticField and some other built-in predicates in our pro-

posed Datalog-based approach. In the example, pointcut P selects

any method call shadow whose target type has a static field. This

kind of pointcut selection is not possible when using the native As-

pectJ pointcut designators.

Listing 4.10: An Datalog pointcut example

Declarations

pointcut P(s:SH) .

ClassHasStaticField(t:T) .

Definitions

ClassHasStaticField(t) :- IsClass(t),DeclaresField(t,_,_,mod),

ModIsStatic(mod) .

P(s) :- MethodCall(s,sig,_),Signature(sig,tt,_,_),

ClassHasStaticField(tt) .

Once a Datalog-based pointcut has been declared and implemented

in a pointcut specification file, in our system, it then can be used in

a regular aspect, just like native pointcut designators, but with a lit-

tle special syntax. Listing 4.11 is an example aspect that uses the

previously defined Datalog pointcut P.

80 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKING

Listing 4.11: An aspect using Datalog pointcut

aspect Example {

pointcut capture(): call(* *.run()) && ?P();

declare error: capture() :

"A run method is called on a class

with a static field";

}

}

The special symbol ? preceding P in Listing 4.11 indicates the

pointcut, P, is a Datalog-based pointcut so that during the pointcut

evaluation stage in our enhanced AspectJ compiler, the set of shad-

ows that are bound to the only attribute of P will be the result of

the evaluation of ?P(), which is further refined by the conjunction

of the native AspectJ pointcut expression, as shown in the example.

The pointcut capture() in the aspect in this example will find method

calls made to any method whose name is run and whose target type

is a class with at least one static field, and when it finds one, the As-

pectJ compiler will report an error with the associated shadow lexical

information.

Of course, when compiling this aspect, the user has to supply the

Datalog specification file, the aspect, and the base program to the

enhanced AspectJ compiler for compiling, weaving, and/or error re-

porting.

4.4.2.1 High-level overview of the Implementation

of the Datalog pointcut system

We have implemented the Datalog based pointcut evaluation system

by enhancing the industrial standard Eclipse AspectJ compiler (ver-

sion 1.5) and by making use of the Datalog solving functionality pro-

vided by the third party Datalog solver bddbddb that can leverage the

4.4. THE DESIGN OF DATALOG-BASED POINTCUT SYSTEM 81

power of BDD.

Figure 4.6 illustrates a high-level overview of the major compo-

nents in the implementation of our Datalog based pointcut system,

and each component’s role in the whole AspectJ compiler’s compi-

lation and weaving process. In the figure, the boxes with boldface

borders are new components that are added to the Eclipse AspectJ

compiler to address the need of bringing Datalog query capability to

the pointcut matching mechanism. The functionalities of those new

components are briefly explained below.

• Type checking. This component takes in a user-supplied Dat-

alog pointcut specification file and checks whether the specifi-

cation is well-typed. This includes making sure that: all user-

defined Datalog predicates are declared before being used, that

the usages of the user-defined predicates or the EDB/built-in

IDB predicates are consistent with their declarations in terms of

number of variables and the domains of the variables, and that

variables occurring more than once in a rule have consistent

domains.

• Dependency analysis. This component scans through the user-

supplied Datalog pointcut specification file to try to determine

what EDB predicates or built-in IDB predicates need to be in-

cluded in the input fed into the Datalog solver. Irrelevant EDB/built-

in IDB predicates will be pruned to speed up the Datalog solv-

ing.

• Create EDB/IDB. This component takes in a collection of weav-

able shadows from the earlier stage of the weaving, and the

dependency information got from the previous step, then it gen-

erates the EDB and IDB for solving. Meanwhile, this component

82 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKING

maintains the mappings between the shadows known to the As-

pectJ compiler and the corresponding Datalog objects defined

in the shadow domain in the generated EDB, so that later on we

can compose the solved shadow results from the Datalog solver

back into the AspectJ weaving process.

• Feed into BDDBDDB. This component feeds the generated ED-

B/IDB to the Datalog solver, bddbddb, to solve the constraints

to get the result shadows or output predicates.

• Compose. This component gets the resolved shadows from

the previous step, using the mapping information stored ear-

lier, and evaluate the composed pointcut expressions (including

both regular pointcuts and Datalog pointcuts) to get the final

pointcut matching results for weaving or reporting design rule

violations.

4.5 Case Studies

We have carried out a few case studies to evaluate the effectiveness of

our Datalog based pointcut system when being used to detect design

rule violations. Here we present three of them that we think can

best demonstrate the salient features of our system. More extensive

evaluation can be found in the evaluation chapter, Chapter 5.

4.5.1 Case Study 1: Java hashCode/equals Methods

Rule Checking

As we have explained in the introduction chapter, there are two im-

portant Java design rules with regard to how to override Object class’s

hashCode and equals methods in a derived class. The design rules

state that:

4.5. CASE STUDIES 83

 between Datalog objs and SJPs)

Create Initial Byte Code

declarations
Inter−type Pointcuts &

 Advice

weavable static join points
Populate Collection of

Enhanced
AspectJ
Compiler

woven classes

aspects

Preweaving

Datalog
pointcuts

.pcd file

Type checking

(what EDB rules/built−in)
IDB rules are needed)

Dependency Analysis

Regular Pointcut Matching for Solving
Feed into BDDBDDB

static join points

violating rules

Weaving

.java

Compose regular & Datalog pointcut results

Create EDB & IDB
(& maintain mapping

Form Classes

Figure 4.6: Overview of the Components of the Datalog pointcut sys-

tem and their roles in the AspectJ weaving

• In a Java class, when one overrides the equals method, one

should override the hashCode method as well, and

• when one does so, one should make sure the two methods are

using the same set of fields.

The design rules can be easily expressed using our Datalog-based

pointcut mechanism. The pointcut specification file in Listing 4.12 de-

fines two pointcuts, EqualsHasNoHashcode and HashcodeEqualsUseD-

iffFields. The aspect defined in Listing 4.13 uses the two Datalog

84 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKING

pointcuts in conjunction with a native pointcut, which selects all

equals execution shadows, to catch any violation of the two design

rules in the base program respectively.

4.5. CASE STUDIES 85

Listing 4.12: Datalog pointcuts for equals/hashCode Design Rules

Declarations

pointcut EqualsHasNoHashcode(eq:SH) .

EqualsHasHashcode(eq:SH,hc:SH) .

pointcut HashcodeEqualsUseDiffFields(eq:SH) .

EqualsUsesField(eq:SH, f:Sig) .

HashcodeUsesField(eq:SH, f:Sig) .

Definitions

EqualsHasHashcode(eq,hc) :- MethodExec(eq,s), Signature(s,t,_,_),

MethodExec(hc,s2),Signature(s2,t,"hashCode",_) .

EqualsHasNoHashcode(eq) :- MethodExec(eq,_),!EqualsHasHashcode(eq,_) .

EqualsUsesField(eq,f) :- FieldGet(_,f,eq) .

HashcodeUsesField(eq,f) :- EqualsHasHashcode(eq,hc),FieldGet(_,f,hc) .

HashcodeEqualsUseDiffFields(eq) :- EqualsUsesField(eq,f),

!HashcodeUsesField(eq,f),

EqualsHasHashcode(eq,_) .

HashcodeEqualsUseDiffFields(eq) :- EqualsHasHashcode(eq,_),

!EqualsUsesField(eq,f),

HashcodeUsesField(eq,f) .

Listing 4.13: Aspect for Enforcing equals/hashCode Design Rules

aspect HashEqChecker {

pointcut p1(): execution(boolean *.equals(Object)) &&

?EqualsHasNoHashcode() ;

declare error: p1() :

"Equals method has no corresponding hashCode method!";

pointcut p2(): execution(boolean *.equals(Object)) &&

?HashcodeEqualsUseDiffFields() ;

declare error: p2() :

"Hashcode and Equals should have used the same set of fields!";

}

In Listing 4.12, pointcut EqualsHasNoHashcode selects any class’s

equals method implementation that has no accompanying hashCode

86 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKING

implementation. Note that in the pointcut Datalog implementation it-

self, we do not actually explicitly specify the selected shadow must be

an equals method. This is because we know the pointcut will be fur-

ther refined when used in conjunction with the native pointcut in the

aspect, which only selects an equals method. This unique feature of

our system sometimes simplifies a Datalog pointcut implementation

since the native AspectJ pointcuts are good at picking up program

shadows based on syntax patterns.

Pointcut HashcodeEqualsUseDiffFieldsfinds any class’s equals method

implementation that uses a different set of fields than what is used

by its counterpart hashCode method, when both are present. Again,

in this pointcut Datalog implementation, we do not explicitly specify

the result shadow to be an equals method and leave it to the native

pointcut in the aspect. The overall Datalog implementation of the

two pointcuts is very succinct and is easy to understand.

4.5.2 Case Study 2: Law of Demeter Static Checker

As we have noted about our statically executable advice based Law

of Demeter (LoD) static checker implementation, it has at least two

problems: 1. It relies on an assumed order in which the program

shadows are visited, i.e., a method call execution shadow must be

visited by the aspect weaver before a method call shadow contained

in it is visited, which is not guaranteed to always be true for another

compiler implementation; 2. it is difficult to connect a LoD sub-rule

with the corresponding part of the implementation.

Thanks to the declarativeness of the Datalog language and our

Datalog based shadow representation, we are able to achieve a better

implementation of a LoD static checker for the class form LoD, as

listed in Listing 4.14. We omit the aspect that uses the Datalog point,

4.5. CASE STUDIES 87

as it simply just declares a declare error statement on the Datalog

pointcut and prints out an error message.

88 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKING

Listing 4.14: LoD checker in Datalog pointcuts

Declarations

2 pointcut LoDViolateCall(c:SH) .

LoDConform(c:SH) .

4 CallWithinClass(c:SH,t:T) .

CallWithTargetType(c:SH,t:T) .

6 ClassHasFieldType(t:T,ft:T) .

ContextHasArgType(exe:SH, at:T) .

8 ContextUsesConstruType(exe:SH, ct:T) .

ContextUsesReturnType(exe:SH, ct:T) .

10

Definitions

12 LoDViolateCall(c) :- MethodCall(c,_,_), !LoDConform(c) .

14 CallWithTargetType(c,t) :- MethodCall(c,sig,_),Signature(sig,t,_,_) .

16 CallWithinClass(c,t) :- MethodCall(c,_,caller),

MethodExec(caller,sig),

18 Signature(sig,t,_,_) .

LoDConform(c) :- CallWithTargetType(c,t), CallWithinClass(c,t) .

20

ClassHasFieldType(t,ft) :- DeclaresField(t,ft,_,_) .

22 LoDConform(c) :- CallWithTargetType(c,ct), CallWithinClass(c,t),

ClassHasFieldType(t,ct) .

24

ContextHasArgType(exe,at) :- MethodExec(exe,sig),

26 CodeSignature(sig,csig),

CodeSignatureParam(csig,_,at) .

28 LoDConform(c) :- CallWithTargetType(c,t), MethodCall(c,_,caller),

ContextHasArgType(caller,t) .

30

ContextUsesConstruType(exec,ct) :- ConstructorCall(_,sig,exec),

32 Signature(sig,ct,_,_) .

LoDConform(c) :- CallWithTargetType(c,t), MethodCall(c,_,caller),

34 ContextUsesConstruType(caller,t) .

4.5. CASE STUDIES 89

36 ContextUsesReturnType(exec,rt) :- MethodCall(_,sig,exec),

MethodSignature(sig,rt) .

38 LoDConform(c) :- CallWithTargetType(c,t), MethodCall(c,_,caller),

ContextUsesReturnType(caller,t) .

Inside the pointcut specification file, the pointcut predicate LoDConform

is the key predicate that captures the five cases where a target type

is allowed by the LoD: the hosting this class itself, the field types of

the this class, the argument types of the enclosing method body, the

classes whose constructors have been used by the enclosing method

body, and the return types of the used method calls within the enclos-

ing method body. The key advantage of this implementation can be

seen by noting the five inference rules of the LoDConform predicate (it

appears five times as a rule head in the file) have the exact mappings

to the corresponding five cases of the LoD definition. Furthermore,

there is no need to assume any traversal order or evaluation order of

shadows, so the implementation is still correct if we have a different

implementation strategy of the AspectJ compiler.

4.5.3 Case Study 3: Detect Recursive Calls in

Presence of Polymorphism and Aspects

Recursive call chain is not always allowed in programs. For example,

in embedded systems, recursion generally is disallowed in production

code, due to safety requirements.

Detecting recursive call chain in programs written in object-oriented

programming languages is challenging because of the polymorphism.

The presence of AOP aspects further complicates the issue because

they can change the call graph in implicit ways. This case study of

writing a static checker to report recursive call chains in AOP pro-

grams is also motivated by a real bug we encountered when imple-

90 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKING

menting an AspectJ based dynamic checker for the object form of the

LoD as a part of work for [34]. The bug was so subtle that it took us

a few days before we eventually figured out what the issue was. Ac-

cording to our experience, this kind of bugs are not uncommon when

programming in AspectJ.

To understand what the problem was, Listing 4.15 is a simplified

version of our aspect that tries to dynamically detect the object form

of LoD violations in the program execution. The aspect advises exe-

cutions of all methods by maintaining a stack that stores the allowed

target objects in each execution context. It also advises all method

calls to check if the target objects are among the allowed ones in the

context, and then reports a run time error if the target object is not

an allowed one.

Listing 4.15: Dynamic LoD Checker Aspect

aspect SimpleLoDChecker {

java.util.Stack stacks = new java.util.Stack();

before(): execution(* *.*(..)) && !within(SimpleLoDChecker) {

java.util.HashSet set = new java.util.HashSet();

stacks.push(set);

set.add(thisJoinPoint.getTarget());

}

after(): execution(* *.*(..)) && !within(SimpleLoDChecker) {

stacks.pop();

}

before(): call(* *.*(..)) && !within(SimpleLoDChecker) {

java.util.HashSet set = (java.util.HashSet)stacks.peek();

if(!set.contains(thisJoinPoint.getTarget()))

System.out.println("Violating LoD!");

}

}

4.5. CASE STUDIES 91

When writing aspect code, one commonly made mistake is that

an aspect inadvertently advises the code of the aspect itself, and thus

creates an infinite call chain in the call graph. We indeed were aware

of this issue when writing the aspect, as evident from the fact that

all of the pointcut expressions have a conjunction condition !within

(SimpleLoDChecker), which instructs the AspectJ compiler to not to

insert advice to shadows occurring in the aspect itself. Surprisingly,

when we applied this version of the aspect to one of the test bench-

marks, the woven code still hit an infinite recursive call chain and

ran out of stack space. When we ran the test benchmark alone, with-

out the aspect, the problem went away. Even more surprisingly, for

all other test benchmarks, there was no such an issue. We wished

we had a tool to help us identify which advice had caused such a

problem, as it took us a few days to eventually figure out what went

wrong.

Using our Datalog based system, we are now able to write a static

checker to report which method calls within the aspect can poten-

tially create a recursive call chains, in the presence of inheritance,

polymorphism, and aspects. Listing 4.16 is our Datalog implementa-

tion of such a checker.

92 CHAPTER 4. DATALOG BASED POINTCUTS FOR DESIGN RULE CHECKING

Listing 4.16: Datalog Checker for Recursive Call Chain

Declarations

pointcut LoopStartingFrom(jp:SH) .

MaybeReachableByShadow(jpTo:SH, jpFrom: SH) .

MaybeReachableByShadowBase(jpTo:SH, jpFrom: SH) .

AspectLoop(t: T) .

Definitions

MaybeReachableByShadowBase(jpTo, jpFrom) :- MethodExec(jpFrom,_),

MethodCall(jpTo,_,jpFrom) .

MaybeReachableByShadowBase(jpTo, jpFrom) :- AdviceExec(jpFrom,_),

MethodCall(jpTo,_,jpFrom) .

MaybeReachableByShadowBase(jpTo, jpFrom) :- MethodCall(jpFrom,_,_),

ResolvesTo(jpFrom,jpTo),

MethodExec(jpTo,_) .

MaybeReachableByShadowBase(jpTo, jpFrom) :- MethodCall(jpFrom,sig,_),

AdviceExec(jpTo,sig) .

MaybeReachableByShadow(jpTo, jpFrom) :-

MaybeReachableByShadowBase(jpTo,jpFrom) .

MaybeReachableByShadow(jpTo, jpFrom) :-

MaybeReachableByShadowBase(jpTo,jpTo1),

MaybeReachableByShadow(jpTo1,jpFrom).

AspectLoop(t) :- IsAspect(t), TypeInfo(t,"SimpleLoDChecker")

LoopStartingFrom(from) :- MethodCall(from,_,theExec),

AspectLoop(aspT),

AdviceExec(theExec,sig2),

Signature(sig2,aspT,_,_),

MaybeReachableByShadow(to,from),

from=to .

Datalog pointcut LoopStartingFrom returns the result method call

shadows within the aspect that may potentially create a recursive call

chain in the woven code. It relies on a helper predicate MaybeReachableByShadow

to calculate the transitive closure of the reachability relationship be-

tween method calls, method executions, and advice executions, by

4.5. CASE STUDIES 93

applying the base case predicate MaybeReachableByShadowBase. The

base case predicate defines four cases where one of those method-

/advice shadows can reach another, with one of them utilizing our

ResolvesTo predicate that statically approximate the set of method

executions that may be invoked by a method call.

Using this static checker on the woven code for the problematic

benchmark, we are able to identify the causing method call in the

aspect, given by the result returned by the Datalog pointcut

LoopStartingFrom. It is method call set.add in the aspect that is the

source of the infinite call chain. It turns out that in that test bench-

mark, there is one class that overrides the hashCode method, which is

being advised by the before advice on method execution join points.

The set.add method within the advice, however, needs to call the ar-

gument object’s hashCode method to calculate the object’s hash value,

which thus results in an infinite call chain. So in the original as-

pect definition, the !within(SimpleLoDChecker) pointcut is not strong

enough to prevent this from happening, as the aspect indeed did not

advise the code of itself. To fix this problem, we should use !cflow

(within(SimpleLoDChecker)) as the conjunction condition in each of

the pointcut definitions in the original aspect.

CHAPTER 5

Evaluation

We carry out a few experiments to evaluate our approach. The eval-

uation is focused on the following three aspects of our approach and

the implementation: its effectiveness of describing software design

rules and detecting violations, its usability by comparing it with an

alternative approach, and its performance and scalability with regard

to program sizes.

5.1 Effectiveness evaluation

The effectiveness evaluation is carried out by implementing and an-

alyzing the software design rule sets coming from two prominent

Object-oriented software static checkers, which are Microsoft’s Fx-

Cop [16] and an open source Java bug finding tool called FindBugs [27,

53]. The goal is to find out that among the identified design rules,

what rules can be captured by our approach and tool, and what can-

not be. Through this process, we also wish to know if there is any

lesson that can be learned from implementing those design rules.

5.1.1 Implement FxCop Design Rules

FxCop is Microsoft’s .NET framework code assembly static analyzing

tool. It checks and reports information about a code assembly, such as

95

96 CHAPTER 5. EVALUATION

possible design, localization, performance, and security issues [16].

Besides the rule checkers shipped with FxCop by default, it allows

advanced programmers to use complicated .NET introspection API to

write their customized rule checkers. According to the 1.35 version

we have today, the default rule checkers check nine categories of soft-

ware issues. In this particular evaluation, we are only interested in

the category of Design Rules, as it is most relevant to the work being

presented here.

FxCop has 60 design rules, among which there are 32 rules that

are concerned with .NET specific features, and so those rules are not

applicable in this study. After analyzing the rest of 28 rules, includ-

ing actually implementing 10 of them, we conclude that 25 of them

can be implemented using our aspect shadow model based approach,

with pretty low implementation effort for each. Among the 3 rules

that we are not able to capture, 2 of them are due to the aspect

shadow model is not expressive enough, and the remaining one is

due to the design rule description itself is not clear enough to make

the determination. At the end of the section, we have a table sum-

marizing why each of the 2 rules cannot be implemented using our

approach.

Among the 10 design rules that we have actually implemented,

most of them only need to use a few Datalog literals, thanks to the

shadow model and the declarative nature of the Datalog language.

For the rest of the other 15 rules that we did not actually implement,

we did analysis on each rule, and the conclusion was that they were

more aligned with the easier ones among the 10 implemented rules,

and going ahead to actually implement them won’t provide much

more insights to us. Table 5.1 summarizes the 10 rules that we have

implemented and the number of literals needed for each implementa-

tion. We use the total number of literals appearing on the right hand

5.1. EFFECTIVENESS EVALUATION 97

sides of inference rules as a measure of the complexity of a Datalog

query.

Rule abstract Number of literals

used

Abstract types should not have constructors 6

There should be no empty interface 3

Avoid excessive parameters on generic types 4

Do not catch general exceptions 6

Avoid having static members in a generic type 8

Consider passing base types as parameters 20

Avoid having protected members in a final class 5

Exceptions should be public 10

Avoid having visible instance fields 5

Do not hide base class methods 18

Table 5.1: Implemented design rules and number of literals needed

Two of the rule implementations are relatively more interesting

than others. So we explain them a little here. For the rest of the eight

rule implementations, interested readers can find them in Section 8.1

of the Appendix.

5.1.1.1 Case study: Consider passing base types as

parameters

FxCop has this design rule to encourage wider reuse of an API method.

The idea is that using base types as parameters to methods improves re-

use of these methods if you only use methods and properties from the

parameter’s base class [16]. Both FxCop and FindBugs use this kind

of informal statements to describe desirable design rules or program-

ming styles. They can be better understood via examples. Below is a

Java example to illustrate the particular design rule in question here:

98 CHAPTER 5. EVALUATION

Listing 5.1: A reusable Java API method example

class Foo {

public void API(Vector v) {

v.add(this);

}

}

In Listing 5.1, the method named API takes in a parameter of

type Vector, where it could have taken in a parameter of interface

Collection, given the add method is the only method called inside

the method body and it is being declared in the type of Collection,

which is a super type of Vector. Had the programmer done so, the

API method could have been used in more contexts, rather than just

in the context of a Vector parameter.

Listing 5.2 is our implementation to identify all method defini-

tions whose one or more parameters could have used more abstract

types. The essence of the algorithm is represented in the predicate

TypeCantBeMoreAbstract which has two inference rules at line 20 and

line 23 respectively. Inference rule at line 20 says that a parameter

type t for a method execution join point jp cannot be made more

abstract, because the method execution makes a call to a method on

t, and the latter method is not declared in any of the super types of

t. So using the specific type of t is justified in such a case. Inference

rule at line 23 is similar except it tries to identify such a scenario in

fields accesses. Then the main output predicate MethodShouldUseBase

just uses the negation of predicate TypeCantBeMoreAbstract and a few

other helper predicates to identify violating method definitions.

5.1. EFFECTIVENESS EVALUATION 99

Listing 5.2: Identify methods that should have used base class as a

parameter

Declarations

2 #Domains: SH shadows

T types

4 # S strings/identifiers

Sig shadow signatures

6 # PSig method/constructor parameter signatures

pointcut MethodShouldUseBase(jp:SH) .

8 MethodParamTypes(j:SH,ps:PSig,t:T) .

TypeCantBeMoreAbstract(j:SH,t:T) .

10 SuperTypeHasMDeclaration(t:T,n:S,psig:PSig) .

FieldAccess(jp:SH,f:Sig) .

12 ClassOrInterface(t:T) .

Definitions

14 MethodShouldUseBase(jp) :- MethodParamTypes(jp,_,pt),

ClassOrInterface(pt),

16 !TypeCantBeMoreAbstract(jp,pt).

ClassOrInterface(t) :- IsClass(t) .

18 ClassOrInterface(t) :- IsInterface(t) .

MethodParamTypes(jp,psig,pt) :- MethodExec(jp,sig),

20 CodeSignature(sig,psig),

CodeSignatureParam(psig,_,pt) .

22 TypeCantBeMoreAbstract(jp,t) :- MethodExec(jp,_),MethodCall(_,sig,jp),

Signature(sig,t,n,_),

24 CodeSignature(sig,psig),

!SuperTypeHasMDeclaration(t,n,psig) .

26 TypeCantBeMoreAbstract(jp,t) :- MethodExec(jp,_),FieldAccess(jp,f),

Signature(f,t,_,_).

28 SuperTypeHasMDeclaration(t,n,psig) :- SuperType(t,tsup),

DeclaresMethod(tsup,_,n,_,psig) .

30 FieldAccess(jp,f) :- FieldGet(_,f,jp) .

FieldAccess(jp,f) :- FieldSet(_,f,jp) .

While the implementation is declarative and succinct, it is worth-

while to point out one important limitation of our approach, which

100 CHAPTER 5. EVALUATION

is also a limitation shared with the FxCop tool. Since our approach

is based on the shadow model, it is object insensitive in nature. For

example, in the inference rule at line 20, the rule does not and cannot

distinguish a method call on type t with the target object being one

of the parameters or an alias of one of the parameters, and a method

call also on type t, but with the target object being an object created

locally. In the latter case, the parameter’s type could still be made

more abstract and thus could promote more reusability. Being able

to distinguish the two cases would identify more reuse opportunities

but requires more semantics based data flow analysis. Our approach

is conservative in the sense when it finds a violation, then it must have

been a true violation, however, it may miss violations that otherwise

would be picked up by using object sensitive analyzing techniques.

The same limitation applies to the FxCop tool.

5.1.1.2 Case study: Do not hide base class methods

This design rule describes a common programming error when over-

riding a method that has been defined by a super class. A classical

corresponding example in the Java world in Listing 5.3 illustrates the

problem.

5.1. EFFECTIVENESS EVALUATION 101

Listing 5.3: A common method overriding mistake

class Bar {

public boolean equals(Bar obj) {

// equals logic

}

}

The programmer intends to provide a Bar specific equality com-

parison logic by providing its own equals method, which is common

and justified. The problem is, however, that the equals method here

is defined on the parameter of type Bar, which will hide the equals

method defined on class Object, because the latter takes in a parame-

ter of type Object. The consequence is that when you put a Bar object

into a hash table based collection, you will never be able to retrieve it

back, since the collection uses Object’s equals method to determine

the equality of two objects. The equals method defined in Bar fails to

override Object class’s equals, and it should have been defined on a

parameter of type Object instead.

Listing 5.4 is our implementation to identify such kind of violating

methods.

102 CHAPTER 5. EVALUATION

Listing 5.4: Identify methods that hide base class’ methods

Declarations

2 #Domains: SH shadows

T types

4 # PSig method/constructor parameter signatures

pointcut MethodHidesBase(jp:SH) .

6 IncompatibleType(t1:T,t2:T) .

InCompatibleSignature(s1:PSig,s2:PSig) .

8 Definitions

MethodHidesBase(jp) :- MethodExec(jp,sig), Signature(sig,t,n,_),

10 CodeSignature(sig,psig), CodeSignatureNumParams(psig,num),

SuperType(t,tsup), DeclaresMethod(tsup,_,n,_,psig2),

12 CodeSignatureNumParams(psig2,num),

!InCompatibleSignature(psig,psig2),

14 CodeSignatureParam(psig,pos,pt1),

CodeSignatureParam(psig2,pos,pt2),

16 SuperType(pt1,pt2) .

IncompatibleType(t1,t2) :- TypeInfo(t1,_),TypeInfo(t2,_),

18 !SuperOrEqualType(t1,t2),!SuperOrEqualType(t2,t1) .

InCompatibleSignature(s1,s2) :- CodeSignatureParam(s1,pos,pt1),

20 CodeSignatureParam(s2,pos,pt2),

IncompatibleType(pt1,pt2) .

Note the usage of the negation of predicate IncompatiableSignature

at line 13. This is needed to avoid mistakenly picking up a completely

irrelevant method in a subclass, just because the method happens to

have used the same method name as its super-class’ method, and to

have had one parameter’ type be a subtype of the same parameter of

the super-class’ method. Although the implementation is still short

enough, we wish we could avoid using this kind of negation. Accord-

ing to our experience, this is one of the most visible inconvenience

when programing with Datalog, i.e., you won’t be able to directly

express conditions quantified with for all. Instead, one will have to

express the negation of the condition as a new predicate first, which

5.1. EFFECTIVENESS EVALUATION 103

is the there exists situation where the condition does not hold, and

then use the negation of this newly created predicate.

5.1.1.3 Rules that cannot be expressed

As mentioned earlier, among the 28 rules, there were 2 rules that

could not be expressed using our approach. Table 5.2 is the table

summarizing the two rules and why they could not be expressed.

Rule abstract Reason that it cannot be implemented

Generic method’s type Shadow lacks generic methods’ type

parameter should be parameter information, which is

inferable from its essential to implement this rule. In

parameters’ types. AspectJ, shadow/pointcut matching is

based only on information after the

type erasure process that gets rid of

type parameters.

All reference arguments Shadow does not have runtime

passed to public methods object/data value information, nor does

should be tested against it have full control flow information.

null before usage.

Table 5.2: Rules that cannot be expressed using our approach and

why

The first row is about a commonly recognized programming prac-

tice when using generic methods in both Java and C#. A generic

method has one or more than one type parameters that serve as type

place holders and that can be instantiated to actual types when the

method is invoked. If the type parameters are inferable from the

method’s formal argument types, then the user does not bear the

burden of having to pass in actual type arguments when invoking the

method, as the compiler is able to automatically infer them from the

method arguments. Otherwise, the user will have to use a special syn-

tax to supply actual type arguments in each place where the method

is invoked.

104 CHAPTER 5. EVALUATION

The second row in the table is consistent with what we have ex-

plained in the section of discussing the implementation of “Consider

passing base types as parameters”. In cases where object sensitivity

and flow sensitivity is important, we will need to rely on some other

data flow analysis based tools to find programming errors.

5.1.2 How hard is it to extend shadow model?

It is natural to ask how hard it would be if one has to extend the

shadow model so that it contains information useful for solving a

particular program analysis problem or for solving other computation

problems.

First of all, extending the shadow model is generally a challenging

task. It requires a careful design about how to present the structure

of the new shadow kind, what context information should be exposed

and how it affects the pointcut expression language and the join point

reflection API. On top of that, to implement such an extended shadow

model, one also needs to be an expert on the aspect compiler ar-

chitecture, understanding the shadow matching process and being

proficient with library APIs dealing with low level language syntax

elements such as types, control flow graphs, Java bytecodes, and etc.

Just as a concrete example, it takes an AOSD paper [25] to explain

how to add the loop shadow to AspectJ’s shadow model, with many

subtle cases having to be considered both at the design level and the

implementation level. In fact, the work presented in that paper be-

comes the central part of the first author’s PhD dissertation [24].

Now let’s go back to the two concrete cases presented in Table 5.2,

where a shadow model based checker could not be implemented due

to the lack of information. The second case would require the shadow

model to have access to information that is only available at runtime,

5.1. EFFECTIVENESS EVALUATION 105

i.e., method parameter objects and null, and thus it does not make

sense to add them to the shadow model that is static by nature. How-

ever, it would be possible to extend the shadow model for the purpose

of implementing a checker for the first case. More specifically, at the

design level, such a extension does not pose much challenge, while

at the implementation level, this requires shadows be created at an

even earlier stage where type parameter information is still present,

before the type erasure process has occurred. Although possible to

do so, this implementation change would be a dramatic change to

the compiler/weaver architecture, and thus calls for a non-trivial ef-

fort.

5.1.2.1 Conclusions from the experiment

This effectiveness evaluation experiment shows that our approach is

very effective for enforcing the FxCop design rule set. In particular,

25 of the 28 applicable FxCop design rules can be enforced in our

approach, giving us a success rate of 89.3%. Furthermore, using our

approach, each design rule checker only requires a low implementa-

tion effort and thus the tool is very usable.

5.1.3 Implement FindBugs Design Rules

FindBugs [27, 53] is a popular bug finding tool among Java program-

mers. According to its web site, as of July of 2008, it had been down-

loaded more than 700,000 times. It has more than 350 bug patterns

that are categorized into nine categories. Besides, users can write

their customized bug pattern detection algorithms by using a Visitor

pattern approach by traversing the Abstract Syntax Tree.

Among the nine provided bug pattern categories, the most rele-

vant category to this study is the Bad practice category, which has 84

106 CHAPTER 5. EVALUATION

bug patterns that it can detect. We pick up the first 20 bug patterns,

with some of almost identical ones combined, to try to implement

them to see how many of them can be implemented using our ap-

proach.

After experiments, we find out that among the picked up 20 bug

patterns, we could implement and have actually implemented bug

detection analyzers for 11 of them. Table 5.3 summarizes what bug

patterns can be detected using our approach and what cannot and

why.

5.1. EFFECTIVENESS EVALUATION 107

Pattern abstract Reason that it cannot be implemented

’Y’ if it can be implemented

Empty jar file entry Lack of information in shadow model

Equals method should return false if Lack of control flow and object

argument is not the type of this. specific information in shadow model

Random object created and used only Same as above

once

Check for sign of bitwise operations Bitwise operation expression is not

part of shadow model

Class implements Cloneable but does not Y

define clone method

clone method does not call super.clone() Y

Class defines clone without implementing Y

Clonneable

Class defines covariant comapreTo Y

Method might drop exception Y

Method might ignore exception Y

Don’t use removeAll to clear a collection Y

Some methods should only be invoked Lack of information in

inside doPrivileged block shadow model

Method invokes dangerous methods on Y

System class such as System.exit(...)

String comparison using == or != No operator usage information

present in shadow model.

Equals checks for noncompatible operand instanceof operator is not

present in shadow model.

Class defines compareTo but uses Y

Object.equals()

equals method should fail for subtypes No == operator usage

information present in shadow model.

Covariant equals() method defined Y

Empty finalizer should be deleted Could only tell if a method does not

have any shadow; could not tell if it

does not have anything

Explicit invocation of finalizer Y

Table 5.3: How FindBugs bug patterns can be implemented in our

approach

For the 11 bug patterns that can be implemented using our ap-

proach, the implementations do not require much effort. Interested

readers can find the source code of those implementations in Sec-

108 CHAPTER 5. EVALUATION

tion 8.2 in the Appendix.

For the remaining 9 bug patterns that cannot be implemented us-

ing our approach, the majority of them are due to some particular

information not being present in the shadow model. For example,

those built-in operator expressions are not weavable in the current

AspectJ programming model, and so they are not part of the shadow

model. It is not clear at this moment if the AspectJ language will

make these kinds of expressions weavable or not in the future, but if

it does, the shadow model must be extended too, and at that time,

our approach can be applied to those currently unsupported cases

too.

5.1.3.1 Conclusions from the experiment

This effectiveness experiment shows that for detecting bug patterns

in FindBugs’ pattern set, our approach is not as effective as it is for

enforcing the FxCop design rule set. But among the 20 selected bad

practice bug patterns, 11 of them still can be detected using our ap-

proach. That gives us a 55% success rate. For the ones that can be

detected in our approach, the needed implementation effort is low.

For the ones that our approach cannot implement, majority of them

are due to the lack of particular information in the shadow model.

Unfortunately, as discussed earlier, to enhance the shadow model to

contain more information is a non-trivial task, as it requires a care-

ful design of the proposed new shadow structure and the context

information that it should expose, a thorough understanding of the

underlying AOP compiler implementation, and the low level library

APIs dealing with base language constructs.

5.2. USABILITY EVALUATION 109

5.2 Usability evaluation

We carry out an experiment to evaluate the usability of our approach.

The experiment tries to answer this question: Since one can build

another similar system that is not based on AOP’s shadow model, e.g.,

by basing on the Abstract Syntax Tree model, is our model better or

worse when compared with the alternative model?

Given the thesis statement argues for using AOP’s shadow model

as the meta model for query, to support this thesis, we need to keep

the query mechanism, i.e., Datalog, unchanged, while changing the

underlying model. So in this experiment, we have prototyped another

Abstract Syntax Tree (AST) based system, where the AST extracted

from a Java program can be converted into a Datalog Extensional

DataBase (EDB), and then problem specific Datalog programs can be

written against this EDB to find design rule violations in the under-

lying Java program. We choose AST as the alternative meta model

because it is widely used in program analysis tasks.

The first step of the experiment is to build a system to convert

the AST from a Java program into an EDB. It turns out that this task

is more difficult than it appears to be. Initially we started with us-

ing a Demeter style approach traversing a parsed Java syntax tree

and emitting the EDB during the traversal. But we soon realized

that näıvely doing a simple traversal won’t work. The main chal-

lenge comes from the fact that the type information is not immedi-

ately available from a syntax tree, and without the type information,

it is almost useless. Examples of those type information include but

not limited to: when a variable is accessed, what type of this vari-

able is, is it a local variable, or a field (instance or static), and if it

is a field, which class declares it; when a method is invoked, what

method this invocation is calling, given the static information of the

110 CHAPTER 5. EVALUATION

call site. Getting those kind of information ready means one has to

mimic what a Java compiler type checking is doing, which requires

huge implementation effort and even if one does that, it is unlikely he

or she can get everything right. Just as an example, it takes the Java

language specification [20] a few pages just to explain the algorithm

to determine which method should be called by an invocation, with

many cases having to be considered.

After some research, we decided to build up this prototype system

based up on an Eclipse plugin, called AST View [45], which in turn

is based on the Eclipse Java Development Tools (JDT) [60]. The

nice thing about this AST View tool is that it can extract AST from a

Java compilation unit, and also attach the relevant type information,

called bindings, to the corresponding AST nodes, by leveraging the

deep type analysis capability provided by JDT. Bindings can be shared

among different AST nodes, if several nodes happen to have the same

type. So strictly speaking, this AST is no longer a tree.

We start with this AST, and then convert it into a Datalog EDB

representation. Algorithm 5.1 below is our recursive algorithm that

does this conversion. To do the actual conversion, one just need to

call convert(root), where root is the root node of an AST.

5.2. USABILITY EVALUATION 111

Algorithm 5.1: Convert (N) (N is an AST node)

id← GetID(N)

predicateName← Label(N)

fields← [id]
for all p in properties of N do
{for a property representing a binding, p will be the correspond-

ing binding id}
append p to fields

end for
insert predicate predicateName(fields) into EDB

for all e in outgoing edges from N do
edgePredicateName← Label(N) Label(e)

if e is a repetitive edge then
num← Arrity(e)

for all c in child end of e do

insert predicate edgePredicateName(id,Position(c),GetID(c),num)

into EDB

convert(c)

end for
else

c← child end of e

insert predicate edgePredicateName(id,GetID(c)) into EDB

convert(c)

end if
end for

if n is root then
Dump all bindings as predicates into EDB

end if

An EDB converted from an AST contains almost all of the syntax

information about the underlying Java program, and thus the EDB

can be big even for a small program. For example, for a simple Java

test program with about 100 lines of code, the generated EDB has

more than 150 different kinds of predicates, and the number of all of

the EDB predicates reaches more than 2,200. For a reference to all

the different predicates that can be generated, interested readers can

find them in Section 8.3 in the Appendix.

We carried out two case studies to use this AST-based model to

implement two of the design rule checkers that we have also im-

112 CHAPTER 5. EVALUATION

plemented using our approach, and compared the implementations

respectively.

5.2.1 Case study: Consider passing base types as

parameters

The first case study is to experiment with implementing the FxCop

design rule concerning with the reusability of an API method that

we have discussed in Section 5.1.1.1. To facilitate the comparison

between the two implementations, we intentionally use the same al-

gorithm as we have used earlier.

Recall that the core of the algorithm was to develop a predicate

called TypeCantBeMoreAbstract that tries to find a method call in-

side a method body implementation such that the invoked method

is not declared by any super type of a parameter type. Very soon

we hit the first difficulty when implementing this predicate using the

AST model, which did not exist when using our shadow based ap-

proach. The problem is how we can find a method call invoked inside

a method body. Sure, each AST edge predicate has the information

about which node is the parent node and which are children nodes.

But using this information to find a method invoked by a method

body means we have to exhaustively iterate all possible edge paths

from a MethodDeclaration node to a MethodInvocation node, which

is impossible to do given we have more than 150 different kinds of

predicates and the depth of the AST is unbounded.

To overcome this, we had to go back to the AST to EDB conver-

sion algorithm to generate a new predicate called HasChild(parent:

ID, child:ID) that records all of the parent/child relationships. The

reason this will help is that now we can write a new predicate as in

Listing 5.5 to compute the transitive closure of it and thus can find all

5.2. USABILITY EVALUATION 113

method calls beneath.

Listing 5.5: Compute transitive closure of parent/child relationship

CanReach(parent,child) :- HasChild(parent, child) .

CanReach(parent,child) :- HasChild(parent, middle),

CanReach(middle,child) .

It is worthwhile pointing out that even this is not exactly right. In

this particular case, CanReach will find more method invocations than

necessary since it follows every edge, e.g., it will mistakenly pick up

a method call invoked inside an inner class defined within the source

method implementation body, and this is wrong. In this case study,

we use CanReach as an estimate of the precise result and ignore such

kinds of edge cases.

After we get this issue resolved, implementing this design rule

checker amounts to figuring out the right predicates to use among

the over 150 different kinds of predicates. Our experience suggests

this is much more challenging than using our shadow model based

approach. Listing 5.6 is the code that implements this checker.

Listing 5.6: Passing base types as parameters checker in AST model

MethodParamTypeAt(m,p,t) :- MethodDeclaration_PARAMETERS(m,p,arg,_),

2 SingleVariableDeclaration(arg,m,_,_,_),

SVD_TypeBinding(arg,t) .

4 SVD_TypeBinding(arg,t) :- SingleVariableDeclaration_TYPE(arg,at),

SimpleType(at,_,t) .

6 MethodParameterTypes(m,t) :- MethodParamTypeAt(m,_,t) .

TypeCantBeMoreAbstract(m,t) :- MethodDeclaration(m,_,_,_,_),

8 CanReach(m,call), MethodInvocation(call,_,_,b),

MethodBinding(b,_,_,_,_,tb,_,_,_,_,_),

10 MethodDeclaration(callee,_,b,_,_),

TypeDeclaration(t,_,tb,_),

12 !SuperTypeHasDeclaration(t,callee) .

TypeCantBeMoreAbstract(m,t) :- MethodDeclaration(m,_,_,_,_),

14 CanReach(m,v),

114 CHAPTER 5. EVALUATION

VariableBinding(v,_,_,1,_,_,_,_,_,t,_) .

16 SuperTypeHasDeclaration(t,m) :- TypeDeclaration(t,_,tb,_),

SuperType(tb,tsupb),

18 TypeDeclaration(t2,_,tsupb,_),

CanReach(t2,m2), MethodDeclaration(m2,_,_,_,_),

20 MethodsMatchSig(m,m2) .

22 MethodsMatchSig(m1,m2) :- MethodDeclaration(m1,_,b1,0,_),

MethodDeclaration(m2,_,b2,0,_),

24 MethodBinding(b1,n,_,_,_,_,_,_,_,_,_),

MethodBinding(b2,n,_,_,_,_,_,_,_,_,_),

26 !NotMatchSig(m1,m2), !EQID(m1,m2) .

NotMatchSig(m1,m2) :- MethodDeclaration_PARAMETERS(m1,_,_,n1),

28 MethodDeclaration_PARAMETERS(m2,_,_,n2),

!EQNUM(n1,n2) .

30 NotMatchSig(m1,m2) :- MethodParamTypeAt(m1,p,t1),

MethodParamTypeAt(m2,p,t2),

32 !EQID(t1,t2) .

MethodShouldUseBase(m) :- MethodParameterTypes(m,t),

34 !TypeCantBeMoreAbstract(m,t),ClassOrInterface(t) .

The implementation basically keeps the same algorithm structure

as we have used in our shadow based implementation. But we think

readers will agree that this implementation is much harder to under-

stand than our earlier solution, as there are much detailed predicates

that need to be grasped. We just point out a few important points to

help readers digest this.

The implementation relies heavily on several binding predicates to

retrieve important type related information. For example, MethodBinding

predicates tell us which method an invocation is calling and which

method declaration has declared it; the VariableBinding predicate

tells us if a variable access is actually accessing a field, and if so,

which class has declared it.

When comparing this implementation with our earlier shadow

5.2. USABILITY EVALUATION 115

based implementation, besides this one is harder to understand, it

is also obvious that it is much longer. This implementation has used

37 Datalog literals on the right hand sides of the inference symbols,

while our earlier solution only used 20 Datalog literals. Also when

writing this implementation, it was annoying to us that we had to

deal with a lot of syntax details that are not directly relevant to the

checking logic. For example, to define the predicate at line 1, we had

to figure out we needed to go through the SingleVariableDeclaration

node to get the type of one method parameter.

5.2.2 Case study: Law of Demeter checker

The second case usability comparison is done through implementing

the static Law of Demeter (LoD) checker using the AST based model

and compare it with the implementation using our proposed solution

presented earlier. Again, to facilitate the comparison between the

two implementations, we intentionally use the same algorithm as we

have used earlier.

To make it convenient for readers to understand the code while

connecting it with the LoD, we incorporate the definition of the static

form of LoD here.

The static form of the LoD states that in the interest of decreasing

coupling between classes, in the implementation of a method of a

class, one can only call methods on the following set of types:

• the class itself;

• the types of the class’s fields;

• the types of the method’s formal parameters;

• the classes whose constructors are invoked in the method im-

plementation;

116 CHAPTER 5. EVALUATION

• the return types of the methods called by the method.

Listing 5.7 is our Datalog implementation of the LoD checker bas-

ing on the AST model.

5.2. USABILITY EVALUATION 117

Listing 5.7: LoD checker in AST model

LoDViolate(c) :- MethodInvocation(c,_,_), !LoDConform(c) .

2 TargetType(target,t) :- SimpleName(target,t,_,_) .

TargetType(target,t) :- ThisExpression(target,t) .

4 CallWithTargetType(c,t) :- MethodInvocation(c,_,_),

MethodInvocation_EXPRESSION(c,target),

6 TargetType(target,t) .

CallWithinClass(c,t) :- MethodInvocation(c,_,_), CanReach(td,c),

8 TypeDeclaration(td,t,_) .

LoDConform(c) :- CallWithTargetType(c,t), CallWithinClass(c,t) .

10 ClassHasFieldType(t,ft) :- TypeDeclaration(td,t,_),

TypeDeclaration_BODY_DECLARATIONS(td,_,fd,_),

12 FieldDeclaration(fd),SimpleType(st,ft),

FieldDeclaration_TYPE(fd,st).

14 LoDConform(c) :- CallWithTargetType(c,t), CallWithinClass(c,ct),

ClassHasFieldType(ct,t) .

16 CallWithinMethod(c,md) :- MethodInvocation(c,_,_), CanReach(md,c),

MethodDeclaration(md,_,_,_) .

18 ContextHasArgType(md,at) :- MethodDeclaration(md,_,_,_),

MethodDeclaration_PARAMETERS(md,_,arg,_),

20 SingleVariableDeclaration(arg,_,_,_),

SingleVariableDeclaration_TYPE(arg,st),

22 SimpleType(st,at) .

LoDConform(c) :- CallWithinMethod(c,md), CallWithTargetType(c,t),

24 ContextHasArgType(md,t).

ContextUsesCType(md,ct) :- MethodDeclaration(md,_,_,_),

26 CanReach(md,constr),

ClassInstanceCreation(constr,_,mb),SimpleType(st,ct),

28 MethodBinding(mb,_,_,1,_,_,_,_,_,_,_),

ClassInstanceCreation_TYPE(constr,st).

30 LoDConform(c) :- CallWithinMethod(c,md),CallWithTargetType(c,t),

ContextUsesCType(md,t) .

32 ContextUsesReturnType(md,rt) :- CallWithinMethod(c,md),

MethodInvocation(c,rt,_) .

34 LoDConform(c) :- CallWithinMethod(c,md),CallWithTargetType(c,t),

ContextUsesReturnType(md,t) .

118 CHAPTER 5. EVALUATION

In the code, the five LoDConform predicate definitions appearing at

line 9, 14, 23, 29, and 33 correspond to the five cases of the allowed

LoD target types respectively.

The code uses 43 Datalog literals on the right hand sides of the

inference symbols, and our implementation based on shadow model

uses 29 literals. More importantly, as it is also evident from the pre-

vious case study, the AST based approach forces the user to take care

of tiny syntactical details, which makes it harder to program and er-

ror prone. As such a concrete example, in our first version of this

implementation, we did not have the second TargetType predicate at

line 3. The checker failed to mark a method call on this type as an

allowed call, even though we had the case be allowed as encoded

in the LodConform predicate at line 9. Only after a careful study of

the tree structure again, did we find out that an access to the this

variable has a different expression node representation than a regu-

lar variable access. The latter is being presented as a node with label

SimpleName, and the former is being presented as a node with label

ThisExpression. It was necessary to add the second TargetType rule

to accommodate this scenario.

An important implication of having to take care of syntactical de-

tails is that when we want to make queries to access information by

doing joins on a few predicates, the exact traversal paths have to be

right. When we programmed under this model, we had to frequently

check the AST tree structure to make sure everything is right.

5.2.3 Conclusions from the experiment

Through the usability experiment, we conclude that the implementa-

tion by using our proposed approach is superior to the implementa-

5.3. PERFORMANCE EVALUATION 119

tion by using the AST based approach in the following aspects:

• Our implementations tend to be more succinct and easier to

understand. In particular, in the two case studies, using our

approach, the implementations of the checkers respectively use

66% and 38% less Datalog literals than the checkers in the AST

based approach.

• Our approach lets users focus on algorithm development other

than on syntactical details.

• It is a challenging task to figure out which predicates one should

use among more than 150 different AST-based predicate kinds.

• It is a challenging task to write queries against complicated AST

structures.

We have to point out, however, that since the AST model pro-

vides richer information than what the shadow model presents, it

can enable more design rule checker implementations than other-

wise possible. For example, the some methods should only be invoked

inside doPrivileged block rule checker that is in the FindBugs evalua-

tion study could not be done by using our approach, but one should

be able to implement such a checker using the AST based approach.

But those object/flow sensitive analysis still could not be done by sim-

ply querying the AST based model, which has the same limitation as

our approach on this aspect. The user will have to switch to more

semantic based data/control flow analysis tools to achieve this kinds

of tasks.

5.3 Performance evaluation

Performance/scalability was one of the main design considerations

when we started to build the system. It is important to evaluate the

120 CHAPTER 5. EVALUATION

performance of the system and how well it can scale to large real

world program sizes.

5.3.1 Performance of analyzing Java benchmarks

We measure the performance of the system by running a few queries

on the following 8 benchmarks. The benchmarks are real world Java

applications in the form of JAR files that we downloaded from Source-

Forge.net or from Eclipse.org. Table 5.4 lists the 8 benchmarks and

their sizes, ordered by the lines of code (LOC). The number of meth-

ods is the number of the method definitions (with method bodies)

that a benchmark provides. The sizes vary from 929 methods to

18,221 methods, and in terms of the lines of code, they vary from

10KLOC to 505KLOC.

Benchmark Abstract Number of Lines of Code

methods (KLOC)

JUnit Unit testing framework 928 10

PdfSam PDF split/merge tool 1012 45

iText Java PDF library 4603 136

FindBugs Bug finding tool 9077 186

jFreeChart Java chart library 7045 217

Saxon-HE XSLT/XQuery Processor 10268 265

JDT-core JDT core library 16302 435

Weka A machine learning tool 18233 505

Table 5.4: Summary of the benchmarks

Table 5.5 lists the queries that we run against the benchmarks and

their abstracts. Each query is given a short-name code so that we can

refer them later in tables.

5.3. PERFORMANCE EVALUATION 121

Query (code) Abstract

CheckHashEq (CH) Query to see if every equals method has an

accompanying hashCode method

CheckFields (CF) Query to see if every couple of equals/hashCode

uses the same set of fields

HideBase (HB) Query to see if a subclass’s method will hide a

superclass’ method

PassBase (PB) Query to see if a method parameter’s type can

be more abstract

LoD (LoD) The Law of Demeter query

AspectJQ (AQ) A query equivalent of AspectJ pointcut

execution(* Collection.add*(..))

Table 5.5: Summary of the queries

Our tool is integrated with the whole AspectJ compiler compila-

tion and weaving process, but in this evaluation, we are primarily

interested in the running time of the Datalog solving part itself. So in

the experiment, we isolate the Datalog solving part from the rest of

the compilation process, and the running time presented here is refer-

ring to the time for the Datalog solver to solve the generated shadow

database and to compute the results. The benchmarks were run on an

Intel Pentium-4 3.0GHz single processor machine running the Linux

operating system and the JRE 1.6 with 1GB of physical memory. Un-

less otherwise specified, the JVM is started with 1GB memory as the

maximum allowed heap space.

Table 5.6 lists the running time of each query on every benchmark.

Due to the space constraint, the queries are identified using the codes

listed in Table 5.5. Figure 5.1 is the chart to visualize the same data.

From those experiments, we conclude that our approach can indeed

scale to large real world applications. Earlier similar work [5] only

established running time on benchmarks up to 100K lines of code, on

less diversified queries.

122 CHAPTER 5. EVALUATION

Benchmark
Size Running Time for Query (s)

(KLOC) CH CF HB∗ PB∗ LoD∗ AQ∗

JUnit 10 1.4 1.6 5.7 2.9 2.9 1.5

PdfSam 45 1.4 2.5 8.6 6.7 5.4 2.6

iText 136 3.6 10.3 28.9 14.6 18.1 6.9

FindBugs 186 7.0 14.2 100.2 34.9 37.4 20.2

JFreeChart 217 7.9 11.1 48.1 20.3 21.3 10.3

Saxon-HE 265 8.0 15.9 56.4 26.0 33.0 13.4

JDT core 435 12.0 45.2 177.1 59.5 95.4 31.1

Weka 505 13.8 38.8 172.0 74.4 346.4 37.2

Table 5.6: Running time of queries on benchmarks

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

JUnit
PdfSam iText

FindBugs JFreeChart
Saxon−HE JDT core

Weka

size of benchmark (in KLOC)

R
un

ni
ng

 ti
m

e
(in

 s
ec

on
ds

)

CheckHash
CheckFields
HideBase
PassBase
LoD
AspectJQ

Figure 5.1: Chart of running time of queries on benchmarks

In Table 5.6, there are four queries that are marked with ∗, which

indicates that we have used explicit BDD variable orders in the exper-

iments, instead of using the default one determined by the bddbddb

solver. As we know that BDD variable ordering has significant im-

pacts on the size of the result BDD diagrams, yet determining the

5.3. PERFORMANCE EVALUATION 123

optimal order is an NP-complete problem [9] unfortunately. Several

heuristics about variable ordering have been suggested to help speed

up the solving [1, 12]. We found one heuristic to be particularly ef-

fective in our experiments, i.e., when there are equality relations on

fields, their variable encoding should be interleaved. This applies to

many join operations that we have in those four queries.

5.3.1.1 Performance impact of BDD variable

ordering

As having been mentioned earlier, we have used explicit BDD variable

orderings in 4 queries in this performance study. In all of the 4 cases,

the variable orderings involve interleaving the bits of the variables

between which there is an equality relationship, such as there is a

relational join operation on them. The performance impact of using

this particular ordering technique is significant, as evident from the

following table. Table 5.7 summarizes the query speed up ratios for

the 4 queries on the 8 benchmarks after using explicit BDD variable

orderings. For each query, let the query time when using explicit

ordering be TO, and the query time without using explicit ordering

be TNO, the query speed up ratio is
1/TO−1/TNO

1/TNO
= TNO−TO

TO
.

Benchmark
Size Speed up ratio

(KLOC) HB PB LoD AQ

JUnit 10 1.8% 186.2% 82.8% 146.7%
PdfSam 45 15.1% 177.6% 107.4% 207.7%
iText 136 144.6% 559.6% 242.5% 558.0%
FindBugs 186 202.3% 1422.3% 767.9% 910.9%
JFreeChart 217 205.2% 931.0% 331.5% 640.8%
Saxon-HE 265 445.0% 1346.9% 513.3% 952.2%
JDT core 435 338.9% 1858.5% 412.6% 1463.0%
Weka 505 436.3% 1517.5% 178.9% 1623.7%

Table 5.7: Query speed up ratio when using explicit BDD variable

ordering

124 CHAPTER 5. EVALUATION

As can be seen from the table, after using the explicit variable

ordering technique, the queries typically run several times faster than

using the default orderings determined by the solver. In the best case

of query PB on benchmark JDT core, the explicit ordering delivers a

speed up ratio of more than 18 times!

5.3.1.2 Performance impact of memory made

available

In Table 5.6, the running time have been collected with the Datalog

solver being allowed to use up to 1GB memory, as this is the memory

size suggested by the solver (bddbddb). It is interesting to see how a

query time changes, if there is any change, when the Datalog solver is

given different memory upper bounds. To see it, we have chosen one

query, i.e., query CF, and collect the running time of the query on the

8 benchmarks above, under the conditions of the Datalog solver being

given different memory limits. In this study, the given memory limits

are 64MB, 128MB, 256MB, 512MB, and 1GB respectively. Table 5.8

summarizes the running time of query CF on the benchmarks under

different memory conditions. In the table, OOM stands for the query

for the given benchmark running out of the memory limit.

5.3. PERFORMANCE EVALUATION 125

Benchmark
Size Running Time for Query CF

with various memory limits (s)

(KLOC) 64MB 128MB 256MB 512MB 1GB

JUnit 10 1.7 1.7 1.7 1.7 1.7

PdfSam 45 2.8 2.8 2.8 2.8 2.8

iText 136 OOM 10.3 10.4 10.3 10.4

FindBugs 186 OOM 20.7 14.7 14.7 14.6

JFreeChart 217 OOM 11.7 11.1 11.1 11.1

Saxon-HE 265 OOM 28.0 16.6 16.6 16.6

JDT core 435 OOM OOM OOM 42.1 40.0

Weka 505 OOM OOM 102.0 35.9 35.8

Table 5.8: Running time of query CF on benchmarks with different

memory limits

The impacts of the memory made available on the query time are

twofold. First of all, the Datalog solver could run out of memory when

the given memory limit is insufficient. Second, increase of memory

limit can improve the query time, but the improvement typically is not

very significant. In Table 5.8, except those OOM cases, there are only

three cases where the increase of memory limit notably decreases the

query time (with the query time difference being bigger than 10%).

In those three cases, from the debugging information available from

the Datalog solver, it appears that more time are spent on garbage

collection activities when the memory limit is lower.

5.3.2 Performance of running call graph analysis

There is one kind of queries that are particularly expensive to run,

that is the queries that involve call graph reachability analysis that

we have presented earlier. We have shown that our approach could

be used to find subtle infinite call chain bug introduced by careless

aspects. So in this experiment, we evaluate the scalability of this kind

of queries separately.

The methodology used in this study is as follows. We first weave

126 CHAPTER 5. EVALUATION

a simplified version of our AspectJ based Law of Demeter dynamic

checker, which we have presented earlier in Listing 4.15, into the

benchmarks used in the previous sub-section, so that we can apply

our infinite call chain detection algorithm on programs advised by

the aspect. Then we run our shadow model based infinite call chain

static detector on the woven applications plus the accessed Java sys-

tem classes. The running time of the infinite call chain detection

algorithm is collected.

Among the 8 benchmarks presented earlier, we were only able

to weave the LoD dynamic checker aspect into 5 of them, which are

JUnit, PdfSam, iText, JFreeChart, and Weka. We could not weave the

aspect into benchmark FindBugs because it refers to classes provided

by Apple’s Java Extensions library that we do not have access to.

When weaving an aspect into a base program, the AspectJ compiler

requires all classes referred by the base program be accessible in the

class searching path. We could not weave the aspect into benchmark

Saxon-HE and benchmark JDT-core because in both cases, the weav-

ing (using Eclipse AspectJ version 1.5) stopped prematurely, citing it

has hit the code size limit when generating methods, which is due to

a technical limitation of AspectJ’s bytecode weaving approach. The

woven version of benchmark Weka is so big that it won’t terminate

just to use our tool to count the number of method calls in it, let-

ting alone doing any other analysis. So in this study, we only use the

woven versions of the rest 4 benchmarks to carry out the evaluation.

5.3.2.1 Code size impact of the weaving

The LoD dynamic checker aspect makes invasive code changes to

the base programs, as it advises every method execution and every

method call. For each shadow that it advises, the compiler generates

5.3. PERFORMANCE EVALUATION 127

a few utility method calls for housekeeping purposes, such as creat-

ing runtime join point objects, creating join point signature objects,

and determining if an aspect instance is present for a given target or

hosting object, etc. So in the woven versions of the 4 benchmarks, the

numbers of method call-sites are a few times more than in the origi-

nal benchmarks. The number of method definitions has little change

before and after weaving for each benchmark, with only 3 methods

being added to each benchmark after weaving. Table 5.9 summarizes

the number of method calls before and after weaving respectively for

the 4 benchmarks, and the number of method call increase ratios for

them. The lines of code for the woven versions are not available as

the weaving is done at the byte code level.

Benchmark Num of method Num of method Num of method

calls(pre-weaving) calls(post-weaving) calls increases by

JUnit 2573 23450 811.4%
PdfSam 6014 45224 652.1%
iText 23928 177946 643.7%
JFreeChart 26917 230362 755.8%

Table 5.9: Impact of the weaving on number of method calls

5.3.2.2 Call graph analysis performance

Then we run our shadow model based infinite call chain static detec-

tor on the woven applications plus part of the Java run time library

classes, which include the classes within the package of java.lang

and the accessed classes within the package of java.util, so that we

have the whole call graphs.

Table 5.10 lists the sizes of the four analyzed benchmarks in terms

of the number of method definitions and the number of method calls,

and the running time of each benchmark by applying the infinite

call chain detection algorithm on it. Note that for each benchmark,

128 CHAPTER 5. EVALUATION

the number of method calls includes the corresponding number of

method calls in Table 5.9 and the number of method calls in the

aforementioned Java system library classes that are analyzed by the

checker altogether. The meaning of the number of method definitions

is similar. The lines of code measurement for each benchmark is not

available as the benchmarks have been advised by the dynamic LoD

checker aspect at the byte code level.

Benchmark Num of method Num of Running

(woven+system classes) definitions method calls time (s)

JUnit 1912 25914 64.4

PdfSam 1996 47688 76.1

iText 5587 180410 1172.2

JFreeChart 8029 232826 > 4h

Table 5.10: Benchmarks for infinite call chain analysis and running

time

It is clear from the table that the call graph reachability analysis

takes much longer to run than other analysis that we have experi-

mented with earlier. But the table also shows that it is feasible to do

so for non-trivial size of applications.

We did not use explicit BDD variable ordering when collecting

the running time for this experiment. One might wonder if explicit

BDD variable ordering might help in this case. Unfortunately, we

have tried the heuristic that worked well in the previous experiment,

not only it could not help in this experiment, but it made it worse.

For example, the checking of the second benchmark was not able

to finish when using the explicit ordering, as it ran out of memory.

This suggests that a heuristic working well for one query does not

necessarily work well for another.

5.3. PERFORMANCE EVALUATION 129

5.3.3 Performance of earlier analysis tasks on

woven Java benchmarks

We are interested in knowing how bad an aspect can affect the perfor-

mance of the analysis tasks that we have done in the first sub-section

of this performance evaluation. With those woven versions of bench-

marks presented in the previous sub-section, we have an opportunity

to carry out such an evaluation. We have applied those 6 analyses

presented in the first performance evaluation experiment on the 4

woven versions of benchmarks, and we have collected the running

time of each analysis. The result is presented in Table 5.11.

In the table, again, the four queries that are marked with ∗ are

queries for which we have used explicit BDD variable orders, instead

of using the default one determined by the bddbddb solver. The lines

of code measurements are not available since the benchmarks are

woven versions, but the number of method calls in each benchmark

is available from Table 5.9.

Benchmark (woven)
Running Time for Query (s)

CH CF HB∗ PB∗ LoD∗ AQ∗

JUnit 1.4 1.7 6 7.4 9.5 5.6

PdfSam 1.5 2.8 8.9 16.3 17.8 9.9

iText 4.0 10.6 32.8 71.7 327.2 43.5

JFreeChart 10.5 11.8 52.8 121.5 > 4h 77.9

Table 5.11: Running time of queries on woven versions benchmarks

To evaluate the impact of the dynamic LoD checker aspect weav-

ing on the query time, we compare the running time of each query

in Table 5.11 with the running time of the same query on the corre-

sponding pre-woven versions of the benchmarks listed in Table 5.6.

The number of method call difference between the respective pre-

and post-woven versions of the benchmarks has been presented in

Table 5.9, and there is little change in the numbers of method defini-

130 CHAPTER 5. EVALUATION

tions before and after weaving (each woven version only gets 3 more

method definitions than before weaving). Table 5.12 summarizes the

ratios of running time increase for each case.

Benchmark
Increase ratio

(woven) CH CF HB∗ PB∗ LoD∗ AQ∗

JUnit 0.0% 10.0% 5.3% 155.2% 227.6% 273.3%
PdfSam 7.1% 12.0% 3.5% 143.3% 229.6% 280.8%
iText 11.1% 2.9% 13.5% 391.1% 1706.7% 530.4%
JFreeChart 32.9% 6.3% 9.8% 498.5% > 67500.0% 656.3%

Table 5.12: Ratios of query time increase on woven versions

From the table, we can tell that the impact of an aspect on an anal-

ysis depends on the nature of the aspect and the analysis. In this par-

ticular study, the dynamic LoD checker aspect results in a big change

on the number of method call-sites in the woven program, and so it

has a dramatic impact on the analyses that are sensitive to method

calls. This is evident from the running time increases of queries PB,

LoD, and AQ. In those three queries, the running time increases by

143.3% at the lower end and by 1706.7% at the higher end. In the

extreme case of the LoD query, benchmark JFreeChart even fails to

terminate after 4 hours of running while the same query on the pre-

woven version of the benchmark could finish in tens of seconds. On

the other hand, the aspect has little impact on the analysis time of the

other three queries that are not sensitive to method calls, which are

queries CH, CF, and HB. They are sensitive to the number of method

definitions and/or the number of field access shadows, instead. Most

of the running time for those three queries on the benchmarks re-

main very close to the previous numbers. Even in the worst case of

query CH on benchmark JFreeChart, the running time only increases

by 32.9%.

5.3. PERFORMANCE EVALUATION 131

5.3.4 Conclusions from the experiment

This performance evaluation experiment suggests that our approach

and the system indeed can scale well to large size real world programs

on non-trivial queries.

In particular, we have established the query running time on bench-

marks of up to 500KLOC, while the earlier similar work [5] only es-

tablished running time on benchmarks of up to 100K lines of code.

In addition, we have evaluated the performance on more diversi-

fied queries, including a call graph analysis query, while the queries

experimented by the earlier similar work [5] were all focused on

the queries that are expressible in the AspectJ native pointcut lan-

guage, like query AQ presented in this study. For the call graph anal-

ysis, which is more expensive in general, we show that our system

can scale to reasonably big programs, such as a program with 180K

method call-sites. The impact of the aspect weaving on analyses

largely depends on the nature of the aspects and the analyses.

CHAPTER 6

Related Work

In this chapter, we go over the existing research work that is related

to this dissertation work.

6.1 Datalog as Pointcut Designator

Language

To our knowledge, the work [5] by Avgustinov et. al. is the only other

work that suggests to use Datalog as a pointcut language, and they

were the first to make such a proposal. In [5], they show that Datalog

is a suitable intermediate language to interpret the semantics of the

existing AspectJ’s native static pointcut designators by translating the

latter to appropriate Datalog queries. Their design goal is different

from ours in that we wanted to leverage Datalog’s query power to ex-

tend AspectJ’s pointcut specification and evaluation mechanism for

the purpose of capturing various software design rule constraints. At

the design and implementation level, the differences between the two

systems include: (1) our Datalog based system is integrated with the

existing AspectJ pointcut evaluation mechanism so that we can bring

in the solved Datalog shadow results and use them to refine the re-

sults of the native pointcut expressions, while their system lacks this

133

134 CHAPTER 6. RELATED WORK

capability; (2) the concrete designs of the Datalog shadow represen-

tation are different as a result of our intention to leverage the reduc-

tion power of the BDD operations; (3) at the implementation level,

their system relies on a relational database to solve Datalog queries,

while our system uses an advanced BDD-based Datalog solver to do

so. Their work demonstrates it is feasible to write Datalog queries to

interpret native AspectJ pointcuts for programs of up to 100K LOC.

Our evaluation shows that our system can scale well to programs of

up to 505KLOC for customized queries (typically in-expressible in and

more complex than AspectJ native pointcuts).

6.2 Static Aspect Languages for software

style rule checking

There are at least two static aspect language work [4, 49] aiming

at enforcing software style or design rules, directly based on AOP’s

language model, inspired by our earlier work of [34] and [66].

In [4], Aotani and Masuhara present an AOP compiler called SCoPE.

It extends AspectJ language’s conditional pointcut, i.e., the if point-

cut, by allowing the expressions within the if pointcut to have access

to the compile time reflective information to carry the computation.

Then the compiler does an analysis trying to determine whether only

statically evaluable expressions are being used within an if pointcut

and if it is so, the compiler directly evaluates the if pointcut statically,

instead of emitting a runtime test code, as a regular AspectJ compiler

would do. It has been shown that this way, a few program style rules

can be statically enforced. Their work is very similar to our Statically

Executable Advice (SEA) approach in that both are built up on the

existing AspectJ language’s static shadow model and are extensions

to the compiler without drastic changes to the language itself. Our

6.2. STATIC ASPECT LANGUAGES FOR SOFTWARE STYLE RULE CHECKING 135

SEA approach differs from theirs in that our approach allows static

checking logic to be defined on ordered compile time shadow events

that is more aligned with the commonly used Abstract Syntax Tree

traversal approach. Their approach, on the contrary, supports static

checking logic defined on each isolated static join point, which makes

it difficult to encode those design rules that are concerned with rela-

tionships between static shadows. As an example, in their implemen-

tation of the static checker for the LoD (as Figure 4 in their paper),

they omit the sub-rule related to constructors, and it is not clear how

an implementation in their approach would look like if that sub-rule

were to be enforced. On top of that, our Datalog based approach has

additional advantages over their approach (and our SEA approach

too) primarily thanks to the declarativeness of the query language.

Morgan, De Volder, and Wohlstadter [49] present a domain spe-

cific static aspect language called Program Description Logic (PDL)

for implementing customized design rule checkers, also within the

framework of the AspectJ language. Realizing AspectJ’s existing point-

cut designators are not sufficient for capturing many important de-

sign rules, they introduce a set of new pointcut primitives that are

specially designed for encoding design rules. We believe our ap-

proach has a better integration with the current AOP languages be-

cause it is directly based on the existing shadow model and only

extends the query mechanism. In addition, similar to the problem

associated with Aotani and Masuhara’s approach, it is hard, if not

impossible at all, to use their approach to encode design rules that

are concerned with relationships between static shadows, such as the

LoD design rule and the hashCode/equals rule presented earlier.

136 CHAPTER 6. RELATED WORK

6.3 Generic Code Query Systems

This dissertation work is also related to generic code query systems,

which could also be used to detect software design rule violations,

among other things. There has been a long history of research effort

in this area, and it is not possible to cover all of them here. So we

only review the most relevant ones published in recent years. The dif-

ference between our approach/system and all other systems is char-

acterized by our thesis statement: our system operates on the existing

AspectJ’s shadow model that is well defined and is familiar by AOP

programmers, and our system has a tight integration with the AspectJ

language and the compiler.

Crew has designed and implemented a C++ source code query

system called ASTLog [17]. It supports queries in Prolog-like logic

programming languages over an abstract syntax tree constructed by

compiling C++ source code. It has been reported that queries written

in this system can scale reasonably well to real world program sizes.

The system is operating on the abstract syntax tree model, whose

detail is not completely revealed. But according to our experience

from the usability study in the evaluation chapter, it could be painful

to implement many software design rule checkers in this approach,

as one has to deal with much low level syntactical details present in

an AST.

Jazen, McCormick, and Volder [31, 48] have designed the JQuery

system, a Java source code query plugin for Eclipse. A nice feature

about their system is that they allow the user to customize the Eclipse

code navigation operations by associating a menu item with a rule

written in a logic programming language named TyRuBa, which es-

sentially is a query over a code database. The queries are operating

on a data model that they specially designed for the system, and the

6.3. GENERIC CODE QUERY SYSTEMS 137

data are generated dynamically by calling Eclipse APIs to retrieve

from the IDE.

In [23], Hajiyev, Verbaere, and Moor presented a Java source code

query system called CodeQuest, which uses Datalog as the query lan-

guage due to the need to write recursive queries and the desire to

have the guarantee of termination. The program database to be

queried against is stored with commercial relational DBMS systems

and a Datalog query is translated into the corresponding SQL state-

ments with some special optimizations. The details of the data model

on which those queries operate on, however, are not published.

The Java Tools Language (JTL) [15] is yet another Java code

query system. It features a specially designed surface language, JTL,

similar to the Java language syntax itself, with Datalog under the

hood serving as the query engine. This surface language is one of

the most visible strengths of the system, as the queries written in this

language just look like Java code, and this would be very attractive

to Java programmers that do not want deal with Datalog directly. On

the other hand, this surface language also makes it cumbersome to

express some operations that are natural to do in Datalog, such as

the join operation. Another limitation of their system is that it lacks

information within a method body, and thus any query that needs

this information, e.g., which methods have been called by method

foo, cannot be supported.

More recently, Moor et. al. have presented a new code query

system, based on a domain specific language named .QL [19] that

they have designed. It is a SQL like language, but with some Object-

oriented features, including methods, inheritance and dynamic bind-

ing. The OO features are for the purpose of reusing queries that have

already been written. The language is actually a surface language

with the queries delegated to Datalog behind the scene, to narrow

138 CHAPTER 6. RELATED WORK

the gap between Datalog and the user community. They have also

developed a proprietary Datalog optimization technique [18] based

on type inference and type erasure and specialization. We believe

that as a future work, our system can also benefit from this particu-

lar optimization. We discuss some of the details in the future work

section of the concluding chapter.

6.3.1 CTL for control flow path query

Work on program control flow path query is relatively rare compared

to the work on program structural queries. Recently researchers have

proposed to use variants of Computational Tree Logic (CTL) to im-

plement control flow path queries [10]. CTL [14] is a well known

temporal logic specification language designed for model checking,

and it has been used to model check properties ranging from hard-

ware verification to program analysis.

In [10], Brunel et. al. proposed an extension of CTL, called CTL-

VW, as a pattern matching language for control flow paths to facilitate

program transformations, based on earlier work of CTL-FV and CTL-

V [38, 37]. CTL-FV and CTL-V allow CTL formulas to have free vari-

ables and existentially quantified variables respectively, so that they

have a richer semantics for control flow path matching. On top of

that, CTL-VW allows the bindings of the existentially quantified vari-

ables to be preserved, instead of being discarded after matching, so

that the bindings can be used by a transformer to refer to program el-

ements mapped to by meta-variables in the bindings. Typically, such

a transformer needs to modify a program’s control flow logic when a

pattern specified in CTL-VW is matched.

Similar to our work, their work is also about reasoning about pro-

gram structures, in particular, control flow path structures in their

6.4. DATALOG AND BDD FOR PROGRAM ANALYSIS TASKS 139

case. There is a particular relevance, since people have shown CTL

can be expressed by a proper subset of stratified Datalog, called Datalog-

LITE [21].

6.4 Datalog and BDD for Program Analysis

Tasks

Datalog was originally invented by the Database community [63].

While it has not been very successful among commercial database

systems, it has found many applications outside of the database area,

primarily for program analysis tasks.

Researchers have been using Datalog as a query language to solve

program analysis problems for long time. Some examples are pre-

sented in [47, 63, 55, 7]. More recently, it has drawn more research

attention, partly because of the work of Whaley et.al. [65, 39, 1].

In [65], Whaley and Lam have shown Datalog can be used to

model the context-sensitive pointer alias analysis problem, and more

importantly, by leveraging the optimization techniques offered by

BDD, they show the approach can scale to large size real world pro-

grams. Context-sensitive pointer alias analysis is generally considered

a hard problem in the program analysis community, due to the huge

number of contexts that need to be handled. In their benchmarks,

they show their approach can scale to programs with up to 1014 con-

texts. As a result of this work, they have also delivered a practi-

cally useful generic BDD based Datalog solver named bddbddb [1],

on which the main part of this dissertation work is based.

In [39], Whaley et.al. show the same technique can be used to

help discover security issues in Database applications [39].

In the previous section, we have found that a few code query sys-

tems are also using Datalog as the query language.

140 CHAPTER 6. RELATED WORK

There is also a progress in the complexity analysis of Datalog

evaluation recently. In [47], McAllester has shown that while the

commonly recognized datalog program running time complexity of

O(nk), where k is the largest number of variables in any single rule,

and n is the size of the EDB, is true, the real complexity could be

more refined and more efficient. The key observation is that variable

counting, which is how the O(nk) complexity is determined, is too

crude for many algorithms. A new notion of prefix firing is defined

and it is shown that the running time complexity is bound by the size

of EDB plus the number of prefix firings that is more refined than

simply O(nk). The paper also argues that bottom-up logic program

presentations of static analysis algorithms are clearer and simpler to

analyze, by doing several case studies of static analysis algorithms.

This finding is also echoed by the popularity of Datalog in program

analysis tasks and code query systems.

Outside of the program analysis area, Ou [52] has used Datalog

to model the network security and access control problem and shows

it is feasible and desirable to do this way. Even in an apparently

unlikely area, Loo et. al. have used Datalog to model distributed

network routing protocols [44] as an alternative to the traditional

approaches and have shown the protocols expressed in their approach

are compact, clean and easier to adopt optimizations.

Using BDD for program analysis problems has been rare, but there

is a growing interests of doing this recently, mostly due to its capabil-

ity to compactly represent large relation sets, and its direct support of

many relational operations. Whaley et. al. have used BDD to speed

up Datalog program evaluation to solve the context-sensitive pointer

alias problem by leveraging BDD’s excellent capability to handle with

relations with much redundant information. To our knowledge, the

idea of using BDD to speed up logic program evaluation can be traced

6.4. DATALOG AND BDD FOR PROGRAM ANALYSIS TASKS 141

back to the work of Iwaihara and Inoue [30] in 1995.

Berndl et. al. [6] have reported positive experience of model-

ing program analysis problems like subset-based points-to analysis by

using BDD operations through a Java wrapper. They show the ap-

proach can scale well to large programs thanks to BDD’s effectiveness

of handling large relation sets. Realizing directly operating on BDD

diagrams is too low level, and thus is difficult for understanding and

is error prone, Lhoták and Hendren developed a higher level domain

specific language called Jedd [40] to abstract BDDs as database style

relations and to provide static type rules to make sure relational op-

erations are used consistently with regard to the typing.

Zhang, Gupta and Zhang [67] store dynamic slices of program

execution for debugging, which require large space, in BDDs. They

show that after using the BDD representation, the space needed is

greatly reduced.

CHAPTER 7

Concluding remarks and future work

7.1 Concluding remarks

This dissertation argues for using the shadow model of AspectJ-like

Aspect-oriented programming (AOP) languages as the meta-model

to build software static checkers to enforce software design rules to

address the problems of the existing approaches. The existing ap-

proaches fall short due to one or more than one of the following rea-

sons: (1) Specialized static checkers can only check a pre-defined rule

set, lacking the capability for customization; (2) Specialized static

checkers allow some customizations, but a customization is generally

very difficult as the programmers have to use low level introspection

APIs; (3) Generic code query systems tend to require the user to get

familiar with the tool specific data models and/or the tool specific

query languages.

To carry out the dissertation research, we started with implement-

ing two AspectJ based dynamic checkers for two forms of the Law of

Demeter, a software design rule. Through the experiment, we assess

that the AspectJ language’s two major components, i.e., the pointcut

designator language and the shadow information made available to

runtime advice, have already had sufficient support for one to imple-

143

144 CHAPTER 7. CONCLUDING REMARKS AND FUTURE WORK

ment a static checker for the statically checkable form of LoD, and

what is missing is just a more expressive query mechanism.

To support our thesis, we go on presenting two shadow model

based language extensions to AspectJ, i.e., a lightweight extension

called statically executable advice, and a more ambitious Datalog-based

pointcut evaluation system, with the focus on the latter system. Be-

sides based on the shadow model that is familiar by AOP program-

mers, our Datalog-based system features a support of logic style declar-

ative queries, a tight integration with the existing AspectJ native

pointcut evaluation process, and a BDD based underlying shadow

representation.

Finally, through the evaluation we show that our system can in-

deed be used to enforce a wide variety of real world software design

rules, its usability is superior to a system built on an alternative meta-

model, i.e., the Abstract Syntax Tree model, and it can scale well to

real world program sizes.

7.1.1 Strengths and limitations of our system

The strengths of our system include:

• The underlying query data model is based on AspectJ’s shadow

model that average AOP programmers are already familiar with.

This not only will make it easier for the programmers to write

queries, but also will make it easier to port the system to Aspect-

oriented variants of other languages, like C#,C++, etc., given

the AspectJ programming model is widely adopted in the com-

munity.

• Using the shadow model as the query meta-model also helps

implementing software design rule checkers as it allows higher

7.1. CONCLUDING REMARKS 145

level abstraction than alternative models, such as the abstract

syntax tree model.

• The system’s tight integration with the AspectJ compiler frame-

work makes it convenient to use our tool in their usual devel-

opment workflow, as it is a natural enhancement to the existing

AspectJ’s declare error mechanism that was designed for sim-

ple static checking tasks.

• The support of the integration of logic style Datalog declara-

tive queries and the AspectJ’s native pointcut language make

it possible for programmers to get benefits from both camps.

They can use the Datalog approach to express more complex

structural queries and use the native pointcuts to conveniently

express syntax pattern based selection and then combine the

results together.

• The special performance design choice for the system makes it

scale well to real world program sizes.

The most visible limitation of our system is that its expressiveness

is limited to design rule problems that the given shadow model can

express. And extending the AspectJ’s shadow model is a non-trivial

task that involves a careful design and significant implementation ef-

fort even for a person familiar with the AspectJ compiler implemen-

tation. As we have shown in the evaluation, there are some real

world design rules that do require information that is not present

in the AspectJ’s shadow model. Under such circumstances, the user

would have to turn to other approaches or tools to enforce those de-

sign rules. Another limitation of our system is that for programmers

that are not used to the Datalog syntax, they may find a specially de-

signed surface language would be desirable. One possible solution is

146 CHAPTER 7. CONCLUDING REMARKS AND FUTURE WORK

to adopt a surface syntax of other systems like the .QL’s [19], but still

operating on the shadow meta-model.

7.2 Future work

We propose some future work to extend our system.

7.2.1 Conflict between efficiency and usability

Recall that earlier that we have specially designed the Datalog shadow

representation in the interest of taking advantage of the reduction

power of the BDD. One such an example is that we abstract out the

method/constructor parameter type signatures into a separate do-

main, PSig. A design that is in favor of the performance is not neces-

sarily in favor of the usability. Just as an example, in our system, one

would have to write the following lengthy program in Listing 7.1, if

she needs to write a query to retrieve all method calls that are within

the shadow represented by the AspectJ native pointcut execution(

void A.compute(int,boolean)), which captures any method defini-

tion provided by class A, whose name is compute, whose return type

is void, which has two parameters with the type of int and boolean

respectively.

7.2. FUTURE WORK 147

Listing 7.1: A lengthy Datalog query

Declarations

pointcut returnCalls(sh:SH) .

methodDef(sh:SH) .

Definitions

methodDef(sh) :- MethodExec(sh,sig),Signature(sig,"A","compute",_),

CodeSignature(sig,psig),

CodeSignatureNumParams(psig,2),

CodeSignatureParam(psig,0,intT),

TypeInfo(intT,"int"),

CodeSignatureParam(psig,1,boolT),

TypeInfo(boolT,"boolean"),

MethodSignature(sig,voidT), TypeInfo(voidT,"void") .

returnCall(sh) :- MethodCall(sh,_,enclosing),methodDef(enclosing) .

In methodDef, it takes 10 predicates to capture what could be eas-

ily described in a short phrase in the native pointcut, with 6 of them

dealing with the PSig domain. Note that our earlier claim that the

integration of native pointcuts and the Datalog pointcuts would im-

prove the usability does not help in this particular case, as the integra-

tion mechanism would only help when there is a logical interaction

between a native pointcut expression and a Datalog pointcut expres-

sion. In this particular case, however, the methodDef predicate is just

an interim predicate, only visible to another Datalog predicate.

This conflict between the efficiency and the usability could be

much improved by introducing a lightweight domain specific lan-

guage that can be embedded in a Datalog program, which can be

done as a future work. In particular, for a query that is better done in

native pointcuts, we could allow the user to use native pointcuts, and

then bind the results to some Datalog “variable” that can be referred

to by other Datalog pointcuts. For example, in our vision, with this

new mechanism, the aforementioned query could be much simplified

148 CHAPTER 7. CONCLUDING REMARKS AND FUTURE WORK

into the following code in Listing 7.2:

Listing 7.2: A simplified Datalog query using native pointcut

Declarations

pointcut returnCalls(sh:SH) .

Definitions

returnCall(sh) :- MethodCall(sh,_,?enclosing) where

?enclosing=execution(void A.compute(int,boolean)).

In a nutshell, we can introduce a where clause in a Datalog query,

which can introduce a variable binding (with the ? mark to flag it is a

special binding) with a native pointcut. The special variable binding

can be used anywhere that a regular Datalog variable can be used.

Then in our system, we can introduce a preprocessing stage, where

such an embedded native expression will be translated into the cor-

responding Datalog predicates like we have seen in Listing 7.1. This

translation should not be hard to implement.

7.2.2 Leverage type based optimizations

Moor et. al. have developed some proprietary Datalog optimization

techniques [18] based on type inference algorithms. We feel there are

cases in programs written in our system that can benefit from their

optimization techniques, especially the type erasure and type special-

ization optimizations. This should be an interesting and worthwhile

future work.

Let’s look at two code examples in Listing 7.3 and Listing 7.4 be-

low, which respectively represents a case that can be optimized by

using type erasure, and a case that can be optimized by using type

specialization.

7.2. FUTURE WORK 149

Listing 7.3: A type erasure example

Declarations

pointcut return(sh:SH) .

helper(sh:SH, sig:Sig) .

Definitions

helper(sh,sig) :- MethodCall(sh,sig,_),Signature(sig,t,"foo",_),

IsClass(t) .

return(sh) :- MethodCall(sh,_,_), helper(sh,_) .

The program in Listing 7.3 tries to find and return any method

call shadow that is invoked on a method named "foo" and on a target

type that is a class. The program is legal but it is clear that the sec-

ond MethodCall predicate that is used for defining the return pointcut

is redundant, as the helper predicate has already checked this, and

there is only one disjunction case for the helper predicate. By using

their type erasure optimization, we should be able to optimize out

the second MethodCall predicate from the program, and thus boost

the performance.

Listing 7.4: A type specialization example

Declarations

pointcut return(sh:SH) .

helper(sh:SH, sig:Sig) .

Definitions

helper(sh,sig) :- MethodCall(sh,sig,_),Signature(sig,t,"foo",_),

IsClass(t) .

helper(sh,sig) :- ConstructorCall(sh,sig,_),Signature(sig,t,_,_),

IsClass(t) .

return(sh) :- MethodCall(sh,_,_), helper(sh,_) .

On the other hand, the program in Listing 7.4 would return the

same result as the previous program, however, the helper predicate

has the second disjunction now, which requires a call be a construc-

tor call made on a class. Certainly the second disjunction of predicate

150 CHAPTER 7. CONCLUDING REMARKS AND FUTURE WORK

helper is a useless computation, as the final return predicate requires

the returned shadow be a method call shadow and thus will never sat-

isfy it. Using their type specialization optimization, we should be able

to optimize out the whole second disjunction of the helper predicate

from the program, and thus boost the performance.

Bibliography

[1] bddbddb home page at sourceforge.

http://bddbddb.sourceforge.net.

[2] The Byte Code Engineering Library.

http://jakarta.apache.org/bcel/.

[3] The Motor Industry Software Reliability Association.

http://www.misra.org.uk/. Continuously updated.

[4] Tomoyuki Aotani and Hidehiko Masuhara. Scope: an aspectj

compiler for supporting user-defined analysis-based pointcuts.

In AOSD ’07: Proceedings of the 6th international conference

on Aspect-oriented software development, pages 161–172, New

York, NY, USA, 2007. ACM.

[5] Pavel Avgustinov, Elnar Hajiyev, Neil Ongkingco, Oege de Moor,

Damien Sereni, Julian Tibble, and Mathieu Verbaere. Seman-

tics of static pointcuts in AspectJ. In Matthias Felleisen, editor,

Principles of Programming Languages (POPL). ACM Press, 2007.

[6] Marc Berndl, Ondrej Lhoták, Feng Qian, Laurie Hendren, and

Navindra Umanee. Points-to analysis using bdds. In PLDI ’03:

Proceedings of the ACM SIGPLAN 2003 conference on Program-

ming language design and implementation, pages 103–114, New

York, NY, USA, 2003. ACM.

151

152 BIBLIOGRAPHY

[7] F. Besson and T. Jensen. Modular class analysis with Datalog.

In SAS ’03: Proceedings of the 10th International Symposium on

Static Analysis. Springer, 2003.

[8] Joshua Bloch. Effective Java Programming Language Guide. Sun

Microsystems Inc., 2001. Pages 36-41.

[9] Bollig and Wegener. Improving the variable ordering of OBDDs

is NP-complete. IEEETC: IEEE Transactions on Computers, 45,

1996.

[10] Julien Brunel, Damien Doligez, René Rydhof Hansen, Julia L.

Lawall, and Gilles Muller. A foundation for flow-based program

matching: using temporal logic and model checking. In POPL

’09: Proceedings of the 36th annual ACM SIGPLAN-SIGACT sym-

posium on Principles of programming languages, pages 114–126,

New York, NY, USA, 2009. ACM.

[11] Randal E. Bryant. Graph-based algorithms for boolean function

manipulation. IEEE Trans. Comput., 35(8):677–691, 1986.

[12] Michael Carbin. Learning effective bdd variable orders for bdd-

based program analysis. Master thesis at the Stanford Univer-

sity, May 2006.

[13] A. Chandra and D. Harel. Horn clauses and generalizations. In

Journal of Logic Programming, volume 2(1), pages 1–15, 1985.

[14] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verifi-

cation of finite-state concurrent systems using temporal logic

specifications. ACM Transactions on Programming Languages

and Systems, 8(2):244–263, April 1986.

[15] Tal Cohen, Joseph (Yossi) Gil, and Itay Maman. Jtl: the java

tools language. In OOPSLA ’06: Proceedings of the 21st annual

153

ACM SIGPLAN conference on Object-oriented programming sys-

tems, languages, and applications, pages 89–108, New York, NY,

USA, 2006. ACM.

[16] Microsoft Corp. FxCop home

page. http://msdn2.microsoft.com/en-

us/library/bb429476(vs.80).aspx.

[17] Roger F. Crew. Astlog: A language for examining abstract syn-

tax trees. In USENIX Conference on Domain Specific Languages,

pages 229–241, Santa Barbara, 1997.

[18] Oege de Moor, Damien Sereni, Pavel Avgustinov, and Math-

ieu Verbaere. Type inference for datalog and its application to

query optimisation. In PODS ’08: Proceedings of the twenty-

seventh ACM SIGMOD-SIGACT-SIGART symposium on Principles

of database systems, pages 291–300, New York, NY, USA, 2008.

ACM.

[19] Oege de Moor, Mathieu Verbaere, Elnar Hajiyev, Pavel Avgusti-

nov, Torbjörn Ekman, Neil Ongkingco, Damien Sereni, and Ju-

lian Tibble. Keynote address:.QL for source code analysis. In

IEEE International Working Conference on Source Code Analysis

and Manipulation, pages 3–16. IEEE, 2007.

[20] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java

Language Specification. Addison-Wesley, 2000. Second edition.

[21] Georg Gottlob, Erich Grädel, and Helmut Veith. Datalog LITE:

a deductive query language with linear time model checking.

ACM Trans. Comput. Logic, 3(1):42–79, 2002.

154 BIBLIOGRAPHY

[22] Chris Grindstaff. FindBugs, Part 2: Writing custom de-

tectors. http://www.ibm.com/developerworks/java/library/j-

findbug2/.

[23] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. Codequest:

Scalable source code queries with datalog. In Dave Thomas, ed-

itor, ECOOP’06: Proceedings of the 20th European Conference on

Object-Oriented Programming, volume 4067 of Lecture Notes in

Computer Science, pages 2–27, Berlin, Germany, 2006. Springer.

[24] Bruno Harbulot. Separating concerns in scientific software us-

ing aspect-oriented programming. PhD Dissertation, School of

Computer Science, University of Manchester, UK, 2006.

[25] Bruno Harbulot and John R. Gurd. A join point for loops in

aspectj. In AOSD ’06: Proceedings of the 5th international confer-

ence on Aspect-oriented software development, pages 63–74, New

York, NY, USA, 2006. ACM.

[26] Erik Hilsdale and Jim Hugunin. Advice weaving in AspectJ. In

Proceedings of the 3rd international conference on Aspect-oriented

software development, pages 26–35. ACM Press, 2004.

[27] David Hovemeyer and William Pugh. Finding bugs is easy. SIG-

PLAN Not., 39(12):92–106, 2004.

[28] Andrew Hunt and David Thomas. The Pragmatic Programmer.

Addison-Wesley, 2000.

[29] Neil Immerman. Relational queries computable in polynomial

time (extended abstract). In ACM Symposium on Theory of Com-

puting, pages 147–152, 1982.

[30] Mizuho Iwaihara and Yusaku Inoue. Bottom-up evaluation of

logic programs using binary decision diagrams. In ICDE ’95:

155

Proceedings of the Eleventh International Conference on Data En-

gineering, pages 467–474, Washington, DC, USA, 1995. IEEE

Computer Society.

[31] Doug Janzen and Kris De Volder. Navigating and querying code

without getting lost. In AOSD ’03: Proceedings of the 2nd in-

ternational conference on Aspect-oriented software development,

pages 178–187, New York, NY, USA, 2003. ACM.

[32] JBoss Inc. JBoss AOP. http://www.jboss.org.

[33] Johnson, S. C. LINT : A C program checker. In UNIX Program-

mer Manual. BELL Labs., 7th edition, 1979.

[34] Karl Lieberherr and David H. Lorenz and Pengcheng Wu. A Case

for Statically Executable Advice: checking the Law of Deme-

ter with AspectJ. In Proceedings of the 2nd international confer-

ence on Aspect-oriented software development, pages 40–49. ACM

Press, 2003.

[35] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mike Kersten, Jef-

frey Palm, and William Griswold. An Overview of AspectJ. In

Jorgen Knudsen, editor, European Conference on Object-Oriented

Programming, pages 327–353, Budapest, 2001. Springer Verlag.

[36] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris

Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin.

Aspect-oriented programming. In European Conference on

Object-Oriented Programming, pages 220–242. Springer Verlag,

1997.

[37] David Lacey. Program transformation using temporal logic spec-

ifications. PhD thesis, Oxford University Computing Laboratory,

2003.

156 BIBLIOGRAPHY

[38] David Lacey, Neil D. Jones, Eric Van Wyk, and Carl Christian

Frederiksen. Compiler optimization correctness by temporal

logic. Higher Order Symbol. Comput., 17(3):173–206, 2004.

[39] Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C.

Martin, Dzintars Avots, Michael Carbin, and Christopher Un-

kel. Context-sensitive program analysis as database queries.

In PODS ’05: Proceedings of the twenty-fourth ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems,

pages 1–12, New York, NY, USA, 2005. ACM.

[40] Ondřej Lhoták and Laurie Hendren. Jedd: a bdd-based rela-

tional extension of java. In PLDI ’04: Proceedings of the ACM SIG-

PLAN 2004 conference on Programming language design and im-

plementation, pages 158–169, New York, NY, USA, 2004. ACM.

[41] Karl J. Lieberherr and Ian Holland. Assuring good style for

object-oriented programs. IEEE Software, pages 38–48, Septem-

ber 1989.

[42] Karl J. Lieberherr and Ian Holland. Formulations and Benefits

of the Law of Demeter. SIGPLAN Notices, 24(3):67–78, March

1989.

[43] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu

Ramakrishnan. Declarative routing: extensible routing with

declarative queries. In SIGCOMM ’05: Proceedings of the 2005

conference on Applications, technologies, architectures, and pro-

tocols for computer communications, pages 289–300, New York,

NY, USA, 2005. ACM.

[44] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu

Ramakrishnan. Declarative routing: extensible routing with

157

declarative queries. In SIGCOMM ’05: Proceedings of the 2005

conference on Applications, technologies, architectures, and pro-

tocols for computer communications, pages 289–300, New York,

NY, USA, 2005. ACM.

[45] Martin Aeschlimann and others. Eclipse AST View home page.

http://www.eclipse.org/jdt/ut/astview.

[46] Hidehiko Masuhara, Gregor Kiczales, and Chris Dutchyn. Com-

pilation and optimization model for aspect-oriented programs.

In Proceedings of Compiler Construction (CC2003), pages 46–60.

LNCS, 2003.

[47] David McAllester. On the complexity analysis of static analyses.

J. ACM, 49(4):512–537, 2002.

[48] Edward McCormick and Kris De Volder. Jquery: finding your

way through tangled code. In OOPSLA ’04: Companion to

the 19th annual ACM SIGPLAN conference on Object-oriented

programming systems, languages, and applications, pages 9–10,

New York, NY, USA, 2004. ACM.

[49] Clint Morgan, Kris De Volder, and Eric Wohlstadter. A static

aspect language for checking design rules. In AOSD ’07: Pro-

ceedings of the 6th international conference on Aspect-oriented

software development, pages 63–72, New York, NY, USA, 2007.

ACM.

[50] Luis Daniel Benavides Navarro, Mario Südholt, Wim Vanderper-

ren, Bruno De Fraine, and Davy Suvée. Explicitly distributed

aop using awed. In AOSD ’06: Proceedings of the 5th interna-

tional conference on Aspect-oriented software development, pages

51–62, New York, NY, USA, 2006. ACM.

158 BIBLIOGRAPHY

[51] Muga Nishizawa, Shigeru Chiba, and Michiaki Tatsubori. Re-

mote pointcut: a language construct for distributed aop. In

AOSD ’04: Proceedings of the 3rd international conference on

Aspect-oriented software development, pages 7–15, New York,

NY, USA, 2004. ACM.

[52] Xinming Ou. A logic-programming approach to network secu-

rity analysis. PhD Dissertation, Princeton University, September

2005.

[53] William Pugh et al. FindBugs home page at sourceforge.

http://findbugs.sourceforge.net.

[54] Hridesh Rajan and Kevin Sullivan. Eos: instance-level aspects

for integrated system design. In ESEC/FSE-11: Proceedings of

the 9th European software engineering conference held jointly

with 11th ACM SIGSOFT international symposium on Founda-

tions of software engineering, pages 297–306, New York, NY,

USA, 2003. ACM Press.

[55] T. Reps. Demand interprocedural program analysis using logic

databases. 1994.

[56] Kouhei Sakurai, Hidehiko Masuhara, Naoyasu Ubayashi, Saeko

Matsuura, and Seiichi Komiya. Association aspects. In AOSD

’04: Proceedings of the 3rd international conference on Aspect-

oriented software development, pages 16–25, New York, NY,

USA, 2004. ACM.

[57] Sun Microsystems, Inc. The offi-

cial document for class java.lang.Object.

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html.

159

[58] AspectC++ Team. AspectC++ home page.

http://www.aspectc.org. Continuously updated.

[59] AspectJ Team. AspectJ home page.

http://www.eclipse.org/aspectj. Continuously updated.

[60] The Eclipse JDT team. Eclipse Java Development Tools home

page. http://www.eclipse.org/jdt/.

[61] Anton Dubrau Toheed Aslam, Jesse Doherty and Laurie Hen-

dren. Aosd2010 paper - aspectmatlab: An aspect-oriented scien-

tific programming language. In AOSD ’10:Proceedings of 9th In-

ternational Conference on Aspect-Oriented Software Development,

March 2010. To appear.

[62] J. D. Ullman. Bottom-up beats top-down for datalog. In PODS

’89: Proceedings of the eighth ACM SIGACT-SIGMOD-SIGART

symposium on Principles of database systems, pages 140–149,

New York, NY, USA, 1989. ACM.

[63] J. D. Ullman. Principles of Database and Knowledge-Base Systems,

volume II edition. Computer Science Press, 1989.

[64] Moshe Y. Vardi. The complexity of relational query languages

(extended abstract). In STOC ’82: Proceedings of the fourteenth

annual ACM symposium on Theory of computing, pages 137–146,

New York, NY, USA, 1982. ACM.

[65] John Whaley and Monica S. Lam. Cloning-based context-

sensitive pointer alias analysis using binary decision diagrams.

In PLDI ’04: Proceedings of the ACM SIGPLAN 2004 conference on

Programming language design and implementation, pages 131–

144, New York, NY, USA, 2004. ACM.

160 BIBLIOGRAPHY

[66] Pengcheng Wu and Karl Lieberherr. Shadow programming:

Reasoning about programs using lexical join point information.

In Proceedings of the 4th International Conference on Generative

Programming and Component Engineering (GPCE’05), 2005.

[67] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. Efficient for-

ward computation of dynamic slices using reduced ordered bi-

nary decision diagrams. In ICSE ’04: Proceedings of the 26th In-

ternational Conference on Software Engineering, pages 502–511,

Washington, DC, USA, 2004. IEEE Computer Society.

CHAPTER 8

Appendix

8.1 FxCop rule implementations

Listing 8.1: Abstract types should not have constructors

Declarations

2 pointcut AbstractClassHasConstructors(jp:SH) .

Definitions

4 AbstractClassHasConstructors(ce) :- ConstructorExec(ce,sig),

Signature(sig,t,_,_), TypeInfo(t,_),

6 IsClass(t), TypeModifiers(t,m),

ModIsAbstract(m).

Listing 8.2: There should be no empty interface

1 Declarations

emptyinterfacetype(t:T) output .

3 Definitions

emptyinterfacetype(t) :- TypeInfo(t,_), IsInterface(t),

5 !DeclaresMethod(t,_,_,_,_) .

161

162 CHAPTER 8. APPENDIX

Listing 8.3: Avoid excessive type parameters on generic types

1 Declarations

ExcessiveTypeParam(t:T) output .

3 Definitions

ExcessiveTypeParam(t) :- TypeInfo(t,_), IsGeneric(t),

5 TypeParameter(t,pos,_), pos > 5 .

Listing 8.4: Do not catch general exceptions

Declarations

2 pointcut GeneralException(jp:SH) .

Definitions

4 GeneralException(jp) :- MethodExec(m,_), ExceptionHandler(jp,t,m),

TypeInfo(t,"java.lang.Exception") .

6 GeneralException(jp) :- MethodExec(m,_), ExceptionHandler(jp,t,m),

TypeInfo(t,"java.lang.Throwable") .

Listing 8.5: Avoid having static members in a generic type

Declarations

2 StaticInGeneric(t:T) output .

Definitions

4 StaticInGeneric(t) :- TypeInfo(t,_), IsGeneric(t),

DeclaresField(t,_,_,m), ModIsStatic(m).

6 StaticInGeneric(t) :- TypeInfo(t,_), IsGeneric(t),

DeclaresMethod(t,_,_,m,_), ModIsStatic(m).

Listing 8.6: Avoid having protected members in a final class

Declarations

2 TypeHasProtectedInFinal(t:T) output .

Definitions

4 TypeHasProtectedInFinal(t) :- TypeInfo(t,_),TypeModifiers(t,m),

ModIsFinal(m), DeclaresField(t,_,_,m2),

6 ModIsProtected(m2).

8.1. FXCOP RULE IMPLEMENTATIONS 163

Listing 8.7: Exceptions should be public

1 Declarations

ExceptionsNotPublic(t:T) output .

3 SuperOrSelfTypePublic(t:T) .

Definitions

5 ExceptionsNotPublic(t) :- TypeInfo(t,_), IsClass(t), SuperType(t,et),

TypeInfo(et,"java.lang.Exception"),

7 !SuperOrSelfTypePublic(t) .

SuperOrSelfTypePublic(t) :- TypeInfo(t,_), TypeModifiers(t,m),

9 ModIsPublic(m) .

SuperOrSelfTypePublic(t) :- SuperType(t,tsup),

11 SuperOrSelfTypePublic(tsup) .

Listing 8.8: Avoid having visible instance fields

1 Declarations

TypeWithVisibleInstanceField(t:T) output .

3 Definitions

TypeWithVisibleInstanceField(t) :- TypeInfo(t,_), IsClass(t),

5 DeclaresField(t,_,_,m),

ModIsPublic(m), !ModIsStatic(m) .

164 CHAPTER 8. APPENDIX

8.2 FindBugs rule implementations

Listing 8.9: Class implements Cloneable but does not define clone

method

Declarations

2 ClonableClassNoClone(t:T) output .

HasCloneMethod(t:T) .

4 Definitions

ClonableClassNoClone(t) :- TypeInfo(t,_), Implements(t,ci),

6 TypeInfo(ci,"java.lang.Cloneable"),

!HasCloneMethod(t) .

8 HasCloneMethod(t) :- MethodExec(_,sig), Signature(sig,t,"clone",_) .

Listing 8.10: Clone method does not call super.clone()

Declarations

2 pointcut CloneMethodNoSuperClone(jp:SH) .

HasCloneCallOnSuperType(e:SH, t:T) .

4 Definitions

CloneMethodNoSuperClone(e) :- MethodExec(e,sig),

6 Signature(sig,t,"clone",_),

!HasCloneCallOnSuperType(e,t) .

8 HasCloneCallOnSuperType(e,t) :- MethodCall(_,sig,e),

Signature(sig,t2,"clone",_),SuperType(t,t2) .

8.2. FINDBUGS RULE IMPLEMENTATIONS 165

Listing 8.11: Class defines clone method without implementing

Cloneable

1 Declarations

pointcut CloneMethodNonCloneable(jp:SH) .

3 ImplementCloneable (t:T) .

Definitions

5 CloneMethodNonCloneable(e) :- MethodExec(e,sig),

Signature(sig,t,"clone",_),

7 !ImplementCloneable(t) .

ImplementCloneable(t) :- Implements(t,ci),

9 TypeInfo(ci,"java.lang.Cloneable") .

Listing 8.12: Class defines covariant compareTo

1 Declarations

pointcut covariantcompareto(jp:SH) .

3 Definitions

covariantcompareto(e) :- MethodExec(e,sig),

5 Signature(sig,_,"compareTo",_),

CodeSignature(sig,psig),

7 CodeSignatureNumParams(psig,1),

CodeSignatureParam(psig,0,tp),

9 !TypeInfo(tp,"java.lang.Object") .

166 CHAPTER 8. APPENDIX

Listing 8.13: Method might drop exception

Declarations

2 pointcut dropExceptions(jp:SH) .

Throwing(sig:Sig,et:T).

4 CalleeMayThrow(e:SH,et:T).

Catches(e:SH,et:T).

6 Definitions

dropExceptions(e) :- MethodExec(e,sig), CalleeMayThrow(e,et),

8 Signature(sig,_,_,_), !Throwing(sig,et),

!Catches(e,et) .

10 Catches(e,et) :- ExceptionHandler(_,et,e) .

Throwing(sig,et) :- Throws(sig,_,et) .

12 CalleeMayThrow(e,et) :- MethodCall(_,sig,e),Signature(sig,_,_,_),

Throwing(sig,et).

8.2. FINDBUGS RULE IMPLEMENTATIONS 167

Listing 8.14: Method might ignore exception

Declarations

2 pointcut ignoreExceptions(jp:SH) .

Throwing(sig:Sig,et:T).

4 CalleeMayThrow(e:SH,et:T).

Catches(e:SH,et:T).

6 Definitions

ignoreExceptions(e) :- MethodExec(e,sig), CalleeMayThrow(e,et),

8 Signature(sig,_,_,_),!Catches(e,et) .

Catches(e,et) :- ExceptionHandler(_,et,e) .

10 Throwing(sig,et) :- Throws(sig,_,et) .

CalleeMayThrow(e,et) :- MethodCall(_,sig,e),Signature(sig,_,_,_),

12 Throwing(sig,et).

Listing 8.15: Do not use removeAll to clear a collection

Declarations

2 pointcut removesAll(jp:SH) .

Definitions

4 removesAll(c) :- MethodCall(c,sig,_), Signature(sig,t,"removesAll",_),

SuperType(t,ct),TypeInfo(ct,"java.util.Collection") .

Listing 8.16: Do not call a few dangerous methods on System class

Declarations

2 pointcut dangerousCalls(jp:SH) .

dangerousMethodNames(n:S) .

4 Definitions

dangerousCalls(c) :- MethodCall(c,sig,_), Signature(sig,t,name,_),

6 TypeInfo(t,"java.lang.System"),

dangerousMethodNames(name).

8 dangerousMethodNames("exit").

dangerousMethodNames("runFinalizersOnExit") .

168 CHAPTER 8. APPENDIX

Listing 8.17: Class defines compareTo but uses Object.equals()

Declarations

2 pointcut comparesToNoEquals(jp:SH) .

hasEquals (t:T) .

4 Definitions

comparesToNoEquals(e) :- MethodExec(e,sig),

6 Signature(sig,t,"compareTo",_),

!hasEquals(t) .

8 hasEquals(t) :- MethodExec(_,sig), Signature(sig,t,"equals",_) .

Covariant equals method defined

This is very similar to Listing 8.12.

8.2. FINDBUGS RULE IMPLEMENTATIONS 169

Listing 8.18: Explicit invocation of finalizer should be prohibited

Declarations

2 pointcut callsFinalizer(jp:SH) .

Definitions

4 callsFinalizer(c) :- MethodCall(c,sig,_),

Signature(sig,_,"finalizer",_).

170 CHAPTER 8. APPENDIX

8.3 Predicate definitions for Abstract

Syntax Tree based model

Listing 8.19: AST Predicates

######## Domains

2 ID #Domain of AST node/binding IDs

Z #Domain of integers

4 S #Domain of strings

B #Domain of booleans

6 K #Domain of type kinds

MOD #Domain of modifiers

8

#Declarations

10 CompilationUnit(ind:ID)

CompilationUnit_IMPORTS(parent:ID, pos:Z, child:ID, length:Z)

12 CompilationUnit_TYPES(parent:ID, pos:Z, child:ID, length:Z)

TypeDeclaration(ind:ID, TypeBinding:ID, isInterface:B)

14 TypeDeclaration_MODIFIERS(parent:ID, pos:Z, child:ID, length:Z)

TypeDeclaration_NAME(parent:ID, child:ID)

16 TypeDeclaration_TYPE_PARAMETERS(parent:ID, pos:Z, child:ID, length:Z)

TypeDeclaration_SUPER_INTERFACE_TYPES(parent:ID, pos:Z, child:ID,

18 length:Z)

TypeDeclaration_BODY_DECLARATIONS(parent:ID, pos:Z, child:ID, length:Z)

20 TypeBinding(ind:ID, name:S, key:S, qualifiedName:S, kind:K, elementType:ID,

componentType:ID, dimensions:Z, PACKAGE:ID, declaringClass:ID,

22 declaringMeth:ID, modifiers:MOD, SUPERCLASS:ID,

implementedInterfaces:ID, declaredTypes:ID)

24 ElementType(ind:ID)

PackageBinding(ind:ID, name:S, key:S, unamed:B)

26 SimpleName(ind:ID, TypeBinding:ID, kindBinding:ID, identifier:S)

MethodDeclaration(ind:ID, MethodBinding:ID, constr:B, extra_dimensions:S)

28 MethodDeclaration_MODIFIERS(parent:ID, pos:Z, child:ID, length:Z)

MethodDeclaration_TYPE_PARAMETERS(parent:ID, pos:Z, child:ID, length:Z)

30 MethodDeclaration_RETURN_TYPE2(parent:ID, child:ID)

MethodDeclaration_NAME(parent:ID, child:ID)

8.3. PREDICATE DEFINITIONS FOR ABSTRACT SYNTAX TREE BASED MODEL 171

32 MethodDeclaration_PARAMETERS(parent:ID, pos:Z, child:ID, length:Z)

MethodDeclaration_THROWN_EXCEPTIONS(parent:ID, pos:Z, child:ID, length:Z)

34 MethodBinding(ind:ID, name:S, key:S, isConstr:B, defaultConstr:B,

declaringClass:ID, returnType:ID, modifiers:MOD,

36 parameterTypes:ID, varargs:B, exceptionTypes:ID)

ParameterTypes(ind:ID, pos:Z, TypeBinding:ID)

38 Modifier(ind:ID, keyword:S)

PrimitiveType(ind:ID, TypeBinding:ID, typecode:S)

40 SingleVariableDeclaration(ind:ID, VariableBinding:ID, VARARGS:B,

extra_dimensions:S)

42 SingleVariableDeclaration_MODIFIERS(parent:ID, pos:Z, child:ID, length:Z)

SingleVariableDeclaration_TYPE(parent:ID, child:ID)

44 SingleVariableDeclaration_NAME(parent:ID, child:ID)

VariableBinding(ind:ID, name:S, key:S, isField:B, isEnumConst:B, isParam:B,

46 variableId:Z, modifiers:MOD, TYPE:ID, declaringClass:ID,

declaringMeth:ID)

48 FieldDeclaration(ind:ID)

FieldDeclaration_MODIFIERS(parent:ID, pos:Z, child:ID, length:Z)

50 FieldDeclaration_TYPE(parent:ID, child:ID)

FieldDeclaration_FRAGMENTS(parent:ID, pos:Z, child:ID, length:Z)

52 VariableDeclarationFragment(ind:ID, VariableBinding:ID, extra_dimensions:S)

VariableDeclarationFragment_NAME(parent:ID, child:ID)

54 VariableDeclarationFragment_INITIALIZER(parent:ID, child:ID)

NumberLiteral(ind:ID, TypeBinding:ID, token:S)

56 ImplementedInterfaces(ind:ID, pos:Z, TypeBinding:ID)

SimpleType(ind:ID, TypeBinding:ID)

58 SimpleType_NAME(parent:ID, child:ID)

MethodDeclaration_BODY(parent:ID, child:ID)

60 Block(ind:ID)

Block_STATEMENTS(parent:ID, pos:Z, child:ID, length:Z)

62 ExpressionStatement(ind:ID)

ExpressionStatement_EXPRESSION(parent:ID, child:ID)

64 Assignment(ind:ID, TypeBinding:ID, operator:S)

Assignment_LEFT_HAND_SIDE(parent:ID, child:ID)

66 Assignment_RIGHT_HAND_SIDE(parent:ID, child:ID)

InfixExpression(ind:ID, TypeBinding:ID, operator:S)

172 CHAPTER 8. APPENDIX

68 InfixExpression_LEFT_OPERAND(parent:ID, child:ID)

InfixExpression_RIGHT_OPERAND(parent:ID, child:ID)

70 InfixExpression_EXTENDED_OPERANDS(parent:ID, pos:Z, child:ID, length:Z)

ReturnStatement(ind:ID)

72 ReturnStatement_EXPRESSION(parent:ID, child:ID)

DeclaredTypes(ind:ID, pos:Z, TypeBinding:ID)

74 QualifiedName(ind:ID, TypeBinding:ID, kindBinding:ID)

QualifiedName_QUALIFIER(parent:ID, child:ID)

76 QualifiedName_NAME(parent:ID, child:ID)

MethodInvocation(ind:ID, TypeBinding:ID, MethodBinding:ID)

78 MethodInvocation_EXPRESSION(parent:ID, child:ID)

MethodInvocation_TYPE_ARGUMENTS(parent:ID, pos:Z, child:ID, length:Z)

80 MethodInvocation_NAME(parent:ID, child:ID)

MethodInvocation_ARGUMENTS(parent:ID, pos:Z, child:ID, length:Z)

82 IfStatement(ind:ID)

IfStatement_EXPRESSION(parent:ID, child:ID)

84 IfStatement_THEN_STATEMENT(parent:ID, child:ID)

IfStatement_ELSE_STATEMENT(parent:ID, child:ID)

86 PostfixExpression(ind:ID, TypeBinding:ID, operator:S)

PostfixExpression_OPERAND(parent:ID, child:ID)

88 ForStatement(ind:ID)

ForStatement_INITIALIZERS(parent:ID, pos:Z, child:ID, length:Z)

90 ForStatement_EXPRESSION(parent:ID, child:ID)

ForStatement_UPDATERS(parent:ID, pos:Z, child:ID, length:Z)

92 ForStatement_BODY(parent:ID, child:ID)

VariableDeclarationExpression(ind:ID, TypeBinding:ID)

94 VariableDeclarationExpression_MODIFIERS(parent:ID, pos:Z, child:ID,

length:Z)

96 VariableDeclarationExpression_TYPE(parent:ID, child:ID)

VariableDeclarationExpression_FRAGMENTS(parent:ID, pos:Z, child:ID,

98 length:Z)

StringLiteral(ind:ID, TypeBinding:ID, value:S)

100 WhileStatement(ind:ID)

WhileStatement_EXPRESSION(parent:ID, child:ID)

102 WhileStatement_BODY(parent:ID, child:ID)

SwitchStatement(ind:ID)

8.3. PREDICATE DEFINITIONS FOR ABSTRACT SYNTAX TREE BASED MODEL 173

104 SwitchStatement_EXPRESSION(parent:ID, child:ID)

SwitchStatement_STATEMENTS(parent:ID, pos:Z, child:ID, length:Z)

106 SwitchCase(ind:ID)

SwitchCase_EXPRESSION(parent:ID, child:ID)

108 BreakStatement(ind:ID)

ThrowStatement(ind:ID)

110 ThrowStatement_EXPRESSION(parent:ID, child:ID)

ClassInstanceCreation(ind:ID, TypeBinding:ID, MethodBinding:ID)

112 ClassInstanceCreation_TYPE_ARGUMENTS(parent:ID, pos:Z, child:ID, length:Z)

ClassInstanceCreation_TYPE(parent:ID, child:ID)

114 ClassInstanceCreation_ARGUMENTS(parent:ID, pos:Z, child:ID, length:Z)

TypeDeclaration_SUPERCLASS_TYPE(parent:ID, child:ID)

116 ArrayType(ind:ID, TypeBinding:ID)

ArrayType_COMPONENT_TYPE(parent:ID, child:ID)

118 ArrayCreation(ind:ID, TypeBinding:ID)

ArrayCreation_TYPE(parent:ID, child:ID)

120 ArrayCreation_DIMENSIONS(parent:ID, pos:Z, child:ID, length:Z)

TryStatement(ind:ID)

122 TryStatement_BODY(parent:ID, child:ID)

TryStatement_CATCH_CLAUSES(parent:ID, pos:Z, child:ID, length:Z)

124 NullLiteral(ind:ID, TypeBinding:ID)

CatchClause(ind:ID)

126 CatchClause_EXCEPTION(parent:ID, child:ID)

CatchClause_BODY(parent:ID, child:ID)

128 SuperMethodInvocation(ind:ID, TypeBinding:ID, MethodBinding:ID)

SuperMethodInvocation_TYPE_ARGUMENTS(parent:ID, pos:Z, child:ID, length:Z)

130 SuperMethodInvocation_NAME(parent:ID, child:ID)

SuperMethodInvocation_ARGUMENTS(parent:ID, pos:Z, child:ID, length:Z)

132 BooleanLiteral(ind:ID, TypeBinding:ID, bv:B)

MethodDeclaration_JAVADOC(parent:ID, child:ID)

134 Javadoc(ind:ID)

Javadoc_TAGS(parent:ID, pos:Z, child:ID, length:Z)

136 TagElement(ind:ID, tagName:S)

TagElement_FRAGMENTS(parent:ID, pos:Z, child:ID, length:Z)

138 VariableDeclarationStatement(ind:ID)

VariableDeclarationStatement_MODIFIERS(parent:ID, pos:Z, child:ID,

174 CHAPTER 8. APPENDIX

140 length:Z)

VariableDeclarationStatement_TYPE(parent:ID, child:ID)

142 VariableDeclarationStatement_FRAGMENTS(parent:ID, pos:Z, child:ID,

length:Z)

144 ThisExpression(ind:ID, TypeBinding:ID)

DoStatement(ind:ID)

146 DoStatement_EXPRESSION(parent:ID, child:ID)

DoStatement_BODY(parent:ID, child:ID)

148 LineComment(ind:ID)

HasChild(parent:ID, child:ID)

150 NumOfElements(id:ID, num:Z)

IsArray(k:K)

152 IsCapture(k:K)

IsNullType(k:K)

154 IsPrimitive(k:K)

IsTypeVariable(k:K)

156 IsWildcardType(k:K)

IsAnnotation(k:K)

158 IsClass(k:K)

IsInterface(k:K)

160 IsEnum(k:K)

IsAbstract(m:MOD)

162 IsFinal(m:MOD)

IsNative(m:MOD)

164 IsPrivate(m:MOD)

IsProtected(m:MOD)

166 IsPublic(m:MOD)

IsStatic(m:MOD)

168 IsVolatile(m:MOD)

IsSynchronized(m:MOD)

