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Abstract

Adaptive Programming (AP) provides advanced code modularization for

traversal related concerns in object-oriented programs. Computation in

AP programs consists of (i) a graph-based model of a program’s class hi-

erarchy, (ii) a navigation specification, called a strategy, and (iii) a visitor

class with specialized methods executed before and after traversing ob-

jects. Strategy specifications abstract over graph nodes and edges allowing

for certain modifications to the program’s class hierarchy without affect-

ing visitor behavior. Despite the benefits of AP there are also limitations;

hardcoded name dependencies between strategies and the class hierarchy

as well as non-modular adaptive code (strategies and visitors). These lim-

itations hamper adaptive code reuse and make composition and extension

of adaptive code difficult.

To address these limitations we define What You See Is What You Get

(WYSIWYG) strategies, constraints andDemeter Interfaces. WYSIWYG strate-

gies guarantee the order of strategy nodes in selected paths simplifying the

semantics of strategies and leading to more predictable behavior. We fur-

ther extend AP systems to enforce the interface between WYSIWYG strate-

gies and visitors by limiting visitor operations to strategy nodes. This lim-

itation makes dependencies between WYSIWYG strategies and visitors ex-

plicit. Constraints provide a new mechanism that allows programmers

to define invariants on the graph-based model of a program’s hierarchy

thereby making programmer’s assumptions explicit and verifiable at com-

pile time. Finally, Demeter Interfaces provide (i) an interface between the
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ii ABSTRACT

program’s class hierarchy and both strategies and visitors, (ii) constraints on

the structure of a class hierarchy that implements a Demeter interface and

(iii) the ability to parametrize adaptive code.

While our combination of extensions to AP provide modular, reusable

and resilient adaptive programs, our definition of WYSIWYG strategies

also leads to a new simpler algorithm for calculating all valid paths for a

strategy and a straightforward code generation process. Code generation

results in a programwhose size is polynomial in the size of the strategy and

the input program’s class hierarchy. For a strategy with k nodes and a pro-

gram with n classes, our generation algorithm produces at most (k+ 2)× n

methods.



Acknowledgments

During my time as a graduate student there have been many people that

have, in their way, helped and supported me and my work. First and

foremost, the members of my dissertation committee, Professors Mitchell

Wand, Pete Manolios and Ralf Laemmel. Their support, suggestions and

tireless efforts gave me direction and helped me complete this dissertation.

My advisor, Karl Lieberherr, whose infinite patience, devotion, and support

has been invaluable throughout my tenure as a graduate student. I would

also like to thank Professor Matthias Felleisen for his support, and whose

work ethic and dedication to his work acted as a catalyst and as an example

to follow.

I would also like to thank the members of the Demeter Team, Johan

Ovlinger, DougOrleans, PengchengWu, Jeffrey Palm, Bryan Chadwick and

Ahmed Abdelmeged for providing a fertile environment for me to develop

as a researcher and person. The members of the Programming Research

Laboratory that provided a vibrant and stimulating research environment,

I cannot begin to list all the things that I have learned from all of them.

I am also grateful to my friends and colleagues in Boston, Christos Di-

moulas, Vassileios Koutavas, Dimitris Vardoulakis, Dimitris Kanoulas and

my roommate Evangelos Kanoulas. They are the reason I was able to call

Boston my home away from home. They were always there for me.

I would like to thank my family. My parents for their patience, support

and understanding. My siblings, Michael and Frosoula for believing in me

and for always being there for me. My family in Greece for their support

iii



iv ACKNOWLEDGMENTS

and for not letting me forget who I am and where I come from. Especially,

I thank my cousin Michael who has always been by my side, in good and

bad times.

Last but not least, I want to thank Stavroula, for her love, support and

understanding even at times when I did not deserve it.

I am eternally grateful.



Contents

Abstract i

Acknowledgments iii

Contents v

List of Figures ix

1 Introduction 1

1.1 Evolutionary Software Development . . . . . . . . . . . . . 1

1.1.1 The Law of Demeter and Adaptive Programming . 2

1.2 My Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Outline and research contributions . . . . . . . . . . 8

2 Adaptive Programming 11

2.1 Programming in DAJ . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 AspectJ’s inter-type declarations . . . . . . . . . . . 12

2.1.2 Class Dictionaries . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Traversal Files . . . . . . . . . . . . . . . . . . . . . . 16

2.1.4 DAJ Visitors . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Benefits of AP . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 A Music Media collection . . . . . . . . . . . . . . . 21

2.3 Pitfalls of AP . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Lack of Abstractions in AP . . . . . . . . . . . . . . 34

v



vi CONTENTS

2.4 WYSIWYG Strategies, Constraints and Demeter Interfaces 35

2.4.1 Abstracting over AP code with DIs . . . . . . . . . . 41

3 WYSIWYG Strategies and Traversal Automata 47

3.1 Graphs and Automata . . . . . . . . . . . . . . . . . . . . . 48

3.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Path Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Strategy Graph Automaton . . . . . . . . . . . . . . 54

3.3.2 Class Graph and Object Graph Automaton . . . . . 55

3.3.3 AP Compilation Approaches Using Automata . . . 58

3.4 Correctness Criteria for Traversal Automata . . . . . . . . . 61

3.5 Constructing the Traversal Automaton . . . . . . . . . . . . 63

3.6 Walking an Object Graph . . . . . . . . . . . . . . . . . . . . 72

4 AP translation to CLASSICJAVA 77

4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 APCORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1 APCORE Syntax . . . . . . . . . . . . . . . . . . . . 78

4.2.2 Static type system for APCORE . . . . . . . . . . . 81

4.2.3 Translation to CLASSICJAVA . . . . . . . . . . . . . 94

4.2.4 Program translation preserves the program’s type . 107

5 Demeter Interfaces 125

5.1 Support for Demeter Interfaces . . . . . . . . . . . . . . . . 126

5.1.1 Defining a Demeter Interface . . . . . . . . . . . . . 127

5.1.2 Mapping a Demeter Interface . . . . . . . . . . . . . 131

5.1.3 A simple equation system with Demeter Interfaces 142

5.2 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.2.1 Java Generics and DAJ . . . . . . . . . . . . . . . . . 172

5.2.2 Comparing DCONAJ with CONAJ . . . . . . . . . . 175

6 Related Work 179



CONTENTS vii

6.1 The Demeter Tools . . . . . . . . . . . . . . . . . . . . . . . 179

6.1.1 Strategies . . . . . . . . . . . . . . . . . . . . . . . . 180

6.1.2 Traversal Graph . . . . . . . . . . . . . . . . . . . . . 182

6.2 Strategic programming . . . . . . . . . . . . . . . . . . . . . 184

6.3 Scrap your boilerplate . . . . . . . . . . . . . . . . . . . . . 186

6.4 Haskell Type classes and Views . . . . . . . . . . . . . . . . 187

6.4.1 Views . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.5 XPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7 Conclusion and future work 195

7.1 Future directions . . . . . . . . . . . . . . . . . . . . . . . . 195

7.1.1 Parametrized Demeter Interfaces . . . . . . . . . . . 195

7.1.2 Tool support . . . . . . . . . . . . . . . . . . . . . . . 196

7.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Bibliography 199





List of Figures

1.1 Setter and getter for the login field using DAJ. . . . . . . . . . 5

2.1 Sample AspectJ aspect using inter-type declarations. . . . . . . 13

2.2 UML diagram for BTree and its corresponding class graph . . 14

2.3 Binary Tree example in DAJ . . . . . . . . . . . . . . . . . . . . 14

2.4 Traversal file for Binary Trees . . . . . . . . . . . . . . . . . . . 16

2.5 Implementation of toString in AP. . . . . . . . . . . . . . . . . 19

2.6 A Binary Tree pretty printing Visitor implementation. . . . . . 20

2.7 A three-tier architecture. . . . . . . . . . . . . . . . . . . . . . . 22

2.8 Class dictionary for a media collection. . . . . . . . . . . . . . . 25

2.9 Traversal file with operations on MediaCollection. . . . . . . 26

2.10 Visitor implementations for MediaCollection. . . . . . . . . . 26

2.11 Visitors implementing search operations on a MediaCollection. 27

2.12 Visitors that return string representations of objects. . . . . . . 28

2.13 Update and total cost of a MediaCollection. . . . . . . . . . . 28

2.14 Operations on Song. . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.15 Getters for song title and song duration. . . . . . . . . . . . . . 29

2.16 Class dictionary with support for MP3s. . . . . . . . . . . . . . 30

2.17 The class dictionary for a media library with genres. . . . . . . 31

2.18 An extenstion to media collection that breaks AP code. . . . . 33

2.19 A media collection with support for a recommendations list. . 34

2.20 Media collection usign WYSIWYG strategies. . . . . . . . . . . 38

2.21 Updated operations on SongList. . . . . . . . . . . . . . . . . . 39

ix



x LIST OF FIGURES

2.22 Media collection’s traversal file with constraint annotations. . 40

2.23 Additional adaptive methods in MediaCollection. . . . . . . . 42

2.24 DI for searching for a Val through a Collection. . . . . . . . . 42

2.25 Visitor definitions used with the Search DI. . . . . . . . . . . . 43

2.26 Media collection using DIs. . . . . . . . . . . . . . . . . . . . . 44

2.27 Searching for song titles. . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Class Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Strategy and Traversal automaton for Figure 3.1. . . . . . . . . 56

3.3 Class Graph Automaton . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Automaton for Prefix(NSG ∩ NCG). . . . . . . . . . . . . . . . . 60

3.5 Object graph automaton NO for object graph a → e → o → d. . 63

3.6 Difference between a TA and a strategy graph. . . . . . . . . . 65

3.7 Automaton for Prefix(TA) ∩ Prefix(NO). . . . . . . . . . . . . . 65

3.8 Strategy SG and the TA for Figure 3.1. . . . . . . . . . . . . . . 66

3.9 walk(og,ta,os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.10 walkHelper(os, og,ta,state,reach, P) . . . . . . . . . . . . . . . . 73

4.1 AP surface syntax. . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Predicates on class definitions. . . . . . . . . . . . . . . . . . . 82

4.3 Predicates on visitor definitions (Part I). . . . . . . . . . . . . . 83

4.4 Predicates on visitor definitions (Part II). . . . . . . . . . . . . . 84

4.5 Type Rules for Classes and Visitors . . . . . . . . . . . . . . . . 85

4.6 Type Rules for Methods . . . . . . . . . . . . . . . . . . . . . . 87

4.7 Auxiliary predicates for path sets (Part I). . . . . . . . . . . . . 89

4.8 Auxiliary predicates for path sets (Part II). . . . . . . . . . . . . 91

4.9 Rules for Constraints checking . . . . . . . . . . . . . . . . . . 93

4.10 Type Rules for Expressions Part I . . . . . . . . . . . . . . . . . 95

4.11 Type Rules for Expressions Part II . . . . . . . . . . . . . . . . . 95

4.12 Field Lookup functions . . . . . . . . . . . . . . . . . . . . . . . 96

4.13 Constructor method type lookup . . . . . . . . . . . . . . . . . 97



LIST OF FIGURES xi

4.14 Method type lookup . . . . . . . . . . . . . . . . . . . . . . . . 98

4.15 Compilation of AP methods . . . . . . . . . . . . . . . . . . . . 99

4.16 Compilation of AP methods (Part I) . . . . . . . . . . . . . . . 102

4.17 Compilation of AP methods (Part II) . . . . . . . . . . . . . . . 104

4.18 Generation of expressions from a set of edges . . . . . . . . . . 105

4.19 Compilation of AP methods (Part III) . . . . . . . . . . . . . . . 106

4.20 Translation of constructors methods and Visitors . . . . . . . . 108

4.21 Translation of expressions . . . . . . . . . . . . . . . . . . . . . 109

4.22 Visit types and matching for before and after methods . . . . . 109

5.1 The Demeter Interface for flat lists. . . . . . . . . . . . . . . . . 128

5.2 Visitor implementations used with the FlatList DI, part I. . . 129

5.3 Visitor implementations used with the FlatList DI, part II. . . 130

5.4 List of integers implementing FlatList. . . . . . . . . . . . . . 132

5.5 Example of a mapping function. . . . . . . . . . . . . . . . . . 135

5.6 The maps M and E for the list of integers example. . . . . . . . 135

5.7 Example of a generated visitor. . . . . . . . . . . . . . . . . . . 137

5.8 The DLList class dictionary with the mapping for FlatList. . 138

5.9 Extended LoIntegers to allow for nested lists. . . . . . . . . . 139

5.10 Naive extension to accommodate for nested lists. . . . . . . . . 140

5.11 The UML equivalent of Simple Equations Class Graph. . . . . 141

5.12 Class dictionary in DAJ for simple equations. . . . . . . . . . . 142

5.13 An instance of a simple equations system given as input to DAJ. 143

5.14 The traversal file for SemanticChecker. . . . . . . . . . . . . . . 144

5.15 Class graph with exponents and operator precedence. . . . . . 145

5.16 Class graph for functions with one argument. . . . . . . . . . . 147

5.17 The Demeter Interface for the simple equations system. . . . . 147

5.18 The class graph and mappings of InfixEQSystem. . . . . . . . 149

5.19 Demeter Interface for functions with one argument. . . . . . . 151

5.20 Extension to accommodate for function definitions. . . . . . . 153



xii LIST OF FIGURES

5.21 Concrete class dictionary for single argument functions. . . . . 154

5.22 Changes to accommodate parametric equations. . . . . . . . . 155

5.23 Stack implementation with contracts. . . . . . . . . . . . . . . . 158

5.24 The List DI used inside DCONAJ. . . . . . . . . . . . . . . . . 160

5.25 The three extra visitors used inside List DI. . . . . . . . . . . . 161

5.26 Mappings for List. . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.27 Using a general strategy. . . . . . . . . . . . . . . . . . . . . . . 165

5.28 Count Visitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.29 Using specific strategies. . . . . . . . . . . . . . . . . . . . . . . 167

5.30 Visitor for counting Type and VariableDeclaratorId objects. . 168

5.31 DI for Java methods with contracts. . . . . . . . . . . . . . . . . 169

5.32 Visitors for retrieving pre and post-condition definitions. . . . 170

5.33 Visitors for retrieving Identifiers. . . . . . . . . . . . . . . . . . 171

5.34 DI segment for Methods. . . . . . . . . . . . . . . . . . . . . . . 172

5.35 Mappings for the Methods DI. . . . . . . . . . . . . . . . . . . . 173

5.36 Implementation of the MakeMTableRecordV visitor. . . . . . . . 174

5.37 Generic count visitor. . . . . . . . . . . . . . . . . . . . . . . . . 175

5.38 The three extra visitors used inside List DI with generics. . . 176

6.1 SP implementation for a top down traversal over a binary tree. 186

6.2 Extended DTD with BusStops . . . . . . . . . . . . . . . . . . . 194



CHAPTER 1

Introduction

This dissertation provides a new definition and interpretation of strategies

(called WYSIWYG strategies) in Adaptive programs and presents the de-

sign and specification of two extensions to Adaptive Programming, Con-

straints and Demeter Interfaces. These three additions to Adaptive Program-

ming (AP) facilitate modular, reusable and resilient adaptive programs as-

sisting with evolutionary software development. We further show how

WYSIWYG strategies provide additional benefits during compilation of Adap-

tive programs.

1.1 Evolutionary Software Development

Software evolution is omnipresent in software development. The need for

bigger more complex software has lead development methods to adopt an

evolutionary software development process. Software is thus developed

using an iterative and incremental lifecycle [8, 17, 26]. Each iteration adds a

new feature on top of the initial core implementation. Evolution is the way

by which software is developed today.

Despite the central role of evolution in the software development pro-

cess writing software that is easy to evolve is difficult. Iterations alter a

system’s code base in order to:

• introduce a new feature;

1



2 CHAPTER 1. INTRODUCTION

• correct errors;

• refactor code, i.e., modify the implementation but not the program’s

behavior in order to improve technical and/or managerial objectives

and

• extend existing functionality to meet changing requirements.

Programmers are required to perform these alterations at the right loca-

tion(s) in the code base and check the behavior of their alterations both in

isolation and in relation with the rest of the system.

To facilitate evolutionary programming paradigms, languages support-

ing these paradigms provide concepts and mechanisms to assist program-

mers. To this end Adaptive Programming (AP) [29] has been developed as

an extension to Object-Oriented (OO) programming.

1.1.1 The Law of Demeter and Adaptive Programming

Dependencies between software units such as one unit using another or

accessing information inside another unit directly affect software evolu-

tion [49, 37]. The Law of Demeter (LoD) [27] was developed as a design

rule to help limit dependencies that negatively affect software evolution.

The general formulation of the Law of Demeter states [18]:

Each unit should have only limited knowledge about other

units: only units “closely related” to the current unit.

Unit here refers to a programming module, e.g., a function, a method, a

class, an object etc. The definition of closely related is intentionally left vague

so that it can be adapted accordingly. For example, in the case of methods

closely related units are the method’s arguments and its enclosing class’

fields, in the case of a Java class closely related units are the classes in the

enclosing package.
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We can view the LoD as a more specific case of Low Coupling [15] that

aims to reduce coupling between units. Coupling is a measure of how

strongly one class is connected to, has knowledge of, or relies upon other

classes. In the light of software evolution modifications to classes that ex-

hibit high coupling causes modifications to their related classes leading to a

ripple effect throughout the code base. More specific coupling metrics, e.g.,

coupling between object classes (CBO) [9] and the coupling factor (CF) [11],

are used to predict evolution-sensitive code [9]; code that can cause prob-

lems upon evolution, or, the estimated effort of managing the impact of

changes.

Although OO designs that follow the LoD are easier to evolve, they

also lead to class implementations with a large number of methods. These

method implementations contain method calls on their closely related ob-

jects, which in turn call methods on their closely related objects, etc. Also,

there might be an increase in the number of arguments passed to some of

these methods. Adaptive programming allows programmers to organize

all the methods associated with a particular functional task (or algorithm)

into a module which hides the original low-level methods.

As an example consider the class structure for an integration test frame-

work forweb pages. Through the use of web testingAPIs (i.e., WebDriver [41])

we can represent a web page, along with it contents, as a Java class. Web-

Driver allows programmers to represent web pages as Java objects, called

PageObjects and is responsible for communicating between a browser and

a PageObject. The communication is bi-directional, Java programs can ob-

tain information from the browser concerning the contents of the currently

loaded URL as well perform actions on the web page through the PageOb-

ject. Typically, a PageObject contains other PageObjects as fields. Each field

represents a segment of the web page under test.

Consider a PageObject class (Main) for a web page that decomposes the

page’s content into five segments; a header, a footer, and three columns, left,
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center and right column. Each segment is represented as a field inside Main

that is also a PageObject. The PageObject for the left column (LColumn) is

further decomposed into a login PageObject (Login) and an FAQ PageOb-

ject (FAQ). The Login PageObject contains two fields, one for providing the

user’s login (lfield of type LField) and one for providing the user’s pass-

word (pfield of type PField). Both LField and PField are PageObjects

attached to the the two text fields on the web page where users input their

login and password respectively.

We will consider two test cases for the login operation. The first test case

will successfully login and the second test case will provide a malformed

email address. In the casewhere a user provides amalformed email address

(i.e., a@@a.com) the web page refreshes and sets the user name text field to

red. The code for the two test cases needs to gain access to the PageObjects

that represent the user name text field and the password text field. In the

first test case we provide a valid email and password and click the login

button. In the second use case we provide a malformed email and a pass-

word, click the login button and then fetch the PageObject that represents

the user’s login name to verify that it is indeed highlighted red.

Writing a test for the login operation starting from Main requires that we

access the two fields, lfield and pfield, inside Login. Directly accessing

the user login and password field, e.g.,

main.lcolumn.login.lfield.sendKeys("joe@joe.com")1

breaks the LoD. If we follow the LoD then the task needs to be encapsu-

lated as a newmethod, e.g., setLoginName() in each of the classes involved.

At each class this new method implementation delegates to its immediate

neighbor. Once we reach an object of LField we then call its sendKeys()

method. We repeat this process in order to implement a getter method from

Main to retrieve the PageObject stored in lfield and pfield respectively.

1The method sendKeys is provided by WebDriver as a mechanism to send keyboard
input to a web page’s text field.
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aspect ToLoginName {
declare strategy: toLoginName: from Main to LField;
declare traversal: public void setLoginName(String name): toLoginName(LFieldV);
declare traversal: public LField getLoginTextBox(): toLoginName(LFieldGetV);

}

import org.openqa.selenium.∗;

class LFieldV {
String name;
public LField(String name) { this.name = name; }
public void before (lField host){ host.sendKeys(this.name); }

}

class LFieldGetV {
LField res;
public void before (LField host){ this.res = host; }
public LField return() { this.res; }

}

Figure 1.1: Setter and getter for the login field using DAJ.

We can view any solution that follows the LoD as a composition of two

tasks (i) find the path to the type(s) we are interested in and (ii) perform

computation at the points of interest along the path. Knowing the type(s) of

interest and the path(s) to reach them the code required to navigate through

objects is repetitive, boilerplate and uninteresting. Adaptive programming

encapsulates these two tasks and alleviates the programmer from writing

the repetitive, boilerplate, code for navigating through objects. To facili-

tate this separation between navigation and computation AP tools allow

programmers to provide strategy specifications, that define an abstract path

specification, and a visitor [15] class that defines computation to be per-

formed along this path.

Figure 1.1 shows the AP implementation, in DAJ [44], for setting and

retrieving the login field starting from an object of type Main. The meth-

ods setLoginName and getLoginTextBox are adaptive methods that are also

introduced into the class Main.2 Both methods use the strategy "from Main

2An adaptive method is introduced into the strategy’s source class, in this case the
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to LField", the setLoginName adaptive method uses the visitor LFieldV

and the getLoginTextBox adaptive method uses the visitor LFieldGetV.

Adaptive methods that consume arguments must be used with visitor’s

whose constructor methodmatches these arguments. At runtime the values

passed as arguments to the adaptive method are forwarded to the visitor’s

constructor.

The LFieldV visitor implementation consists of a before method that

executes before traversing an object of type LField. DAJ analyzes the class

hierarchy to identify paths that satisfy the strategy specification, i.e., a path

starting from an object of type Main and terminating at an object of type

LField [28]. A call to the method setLoginName first creates an instance of

PFieldV, passing any arguments given to the adaptive method to the visi-

tor’s constructor method, and then starts the traversal along the calculated

path(s) executing any applicable methods in the LFieldV visitor. When

traversal reaches an LField object the visitor call the sendKeysmethod send-

ing the string name as input. The The LFieldGetV visitor implementation is

similar but also contains a return method. The return method is called

by DAJ at the end of the traversal and the value returned by the return

method is the value returned by the adaptivemethod. With these two adap-

tive methods in place our test code can now obtain and set the values for

lfield inside Login.3

APprograms separate navigation and computation along traversalsmak-

ing it possible to reuse strategy specifications and visitor implementations.

Furthermore, adaptive methods continue to function4 as long as modifica-

tions to the class hierarchy provide at least one path that satisfies the adap-

tive method’s strategy specification.

There are however limitations to the current AP approach. Strategy

source of the strategy toLoginName is Main.
3Similar adaptive methods can be used to obtain and set values for pfield inside

Login.
4The AP program compiles and runs but may have different behavior.
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specifications introduce dependencies on class names. These hardcoded

name dependencies make strategy specifications less reusable. Also, visi-

tor implementations rely on certain invariants that strategy specifications

sometimes violate.

Consider an addition to the web page’s content where we add the capa-

bility for first time users to register after they have been send an invitation

from an existing user. To accommodate for user registration we add HTML

code on the left column of the web page that requires new users to input

their email address and a secret invitation key they have received with their

invitation in order to start their setup process.

The new HTML code is represented as a new PageObject Registration

that is part of LColumn with a new button for registration. Registration

contains two fields, lfield of type LField and rfield of type RField. Our

setLoginName method used in our original login test will now input the

email address joe@joe.com in both instances of LField (one under Login

and one under Registration) since the visitor encounters both objects in

its traversal. This does not break our login test since the login functionality

does not take into account other input fields on the web page. Our test for

illegal email address however breaks. Setting an invalid email address that

will go to both instance of LField encountered while traversing from Main

to LField will cause the first occurrence (from Login) to be flagged and

colored red. The getLoginTextBox adaptive method however will fetch the

second instance of LField (from Registration) that will not be colored red,

thus breaking the tests assertion. The implicit assumption that there is one

unique LField

These limitations admitted by AP decrease code reuse, hamper evolu-

tion and make iterative development difficult.
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1.2 My Thesis

WYSIWYG strategies, Constraints and Demeter Interfaces facil-

itate modular, reusable and resilient Adaptive programs that

better support iterative software development. Furthermore,

WYSIWYG strategies express a subset of valid paths that is more

intuitive and allows for simpler code generation than previous

approaches.

The adoption of WYSIWYG strategies provides a simple strategy se-

mantics and guarantees the order of strategy nodes in valid paths. WYSI-

WYG strategies define an interface between the program’s structure and

the visitor’s behavior. The strategy exposes only strategy nodes to the visi-

tors and in a specific order, shielding visitor code from modifications to the

intermediate nodes increasing reusability and resilience. The restriction on

the order of strategy nodes that is set by WYSIWYG strategies simplifies

the code generated by AP tools.

Constraints are used to define properties (uniqueness of a subpath and

absence of subpaths) on the paths matched by a strategy. A constraint spec-

ification makes explicit the invariants that a visitor implementation expects

from a path. Constraints are statically checked and provide early detection

of inappropriate uses of adaptive code.

Demeter interfaces encapsulate an abstraction of a program’s data struc-

ture (an interface class graph) along with strategy specifications. The ab-

straction provided by the interface class graph facilitates reuse. The clear

separation between adaptive code and the program’s structure leads to

more modular adaptive programs.

1.2.1 Outline and research contributions

This dissertation is structured as follows:
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• The following chapter (2) introduces adaptive programming and its

limitations in detail along with an introduction to WYSIWYG strate-

gies, constraints and Demeter interfaces and their usage.

• In Chapter 3 we define strategy automata and their properties and

give the definition of our algorithm for calculating all valid paths

given a strategy and a class graph along with our analysis for its run-

time complexity. We also provide an abstract definition of our genera-

tion algorithm along with our definitions for object graphs and object

graph slice. The chapter concludes with our proof for object path cor-

rectness that shows how our generation algorithm selects the correct

object paths for a given strategy SG and class graph CG.

• Chapter 4 defines our AP language, APCORE , and gives its semantics

as a translation to CLASSICJAVA . We further provide a type preserva-

tion theorem and its proof showing that given a well typed APCORE

program of type t our generation algorithm generates a well typed

CLASSICJAVA program of type t.

• Demeter Interfaces are introduced in chapter 5. The chapter includes

examples and a study based on the implementation of a design by

contract system for Java implemented using DIs.

• The dissertation concludes with a section on related work and future

directions.

The main contributions of the research presented in this dissertation can be

summarized as follows:

1. definition of WYSIWYG strategies, constraints and Demeter Inter-

faces

2. a formal model for AP with WYSIWYG strategies and constraints de-

fined as a translation to CLASSICJAVA
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3. a new algorithm for calculating the valid paths p in a class graph CG

given a strategy SG.

4. a polynomial code generation algorithm that does not rely on run-

time information during object traversal. While previous attempts

to encode traversals without runtime information resulted into ex-

ponentially large programs, the new algorithm generates programs

whose size is polynomial to the size of their WYSIWYG strategy and

the input program’s class hierarchy.



CHAPTER 2

Adaptive Programming

In this chapter of the dissertation we informally describe DAJ [44], one

of the tools that supports AP, and discuss benefits and limitations of AP

through examples. The chapter concludes with an introduction to each of

our extensions to AP, WYSIWYG, constraints and Demeter interfaces, and

how these extensions tackle the current limitations of AP.

2.1 Programming in DAJ

DAJ programs consist of:

• a set of Java class definitions,

• a set of traversal files,

• a set of specialized visitor classes and

• a class dictionary.

DAJ uses and extends AspectJ [42]’s inter-type declarations. A traversal

file is an AspectJ aspect that defines strategy and traversal definitions as

inter-type declarations. Visitors in DAJ are an extension to the standard

visitor design pattern [15] and allow for three special methods, before and

aftermethods are called before and after traversing an object and a return

method called after traversal completion.

11



12 CHAPTER 2. ADAPTIVE PROGRAMMING

A class dictionary is a textual representation of the program’s class struc-

ture and has a dual role in anAP program; a class dictionary defines a graph

based representation of the class hierarchy and can be used to define an

LL(k) grammar for a language. DAJ generates a lexer and parser from the

class dictionary that can be used to parse sentences in the language defined

and create object instances.

We first give a short introduction to AspectJ’s inter-type declarations

and then return to class dictionaries, traversal files and DAJ visitors. A

more detailed exposition of AspectJ and its inter-type declaration feature is

available in the AspectJ Programmer’s Manual [43].

2.1.1 AspectJ’s inter-type declarations

AspectJ is a general purpose aspect oriented programming (AOP) language

implemented as an extension to Java. The AspectJ language provides as-

pects as a new programming construct. Aspects, like classes, can contain

methods and fields but also pointcut definitions, advice and inter-type declara-

tions. This subsection will cover inter-type declarations.

Inter-type declarations can be used to

• introduce new methods or fields to a class

• add Java annotations

• alter a class’s superclass

• add new interface names to the list of interfaces that a class imple-

ments

Figure 2.1 shows a small example aspect that uses inter-type declara-

tions to add the method sayHello to the class Main. The result of this inter-

type declaration is the addition of the method

public void sayHello(){System.out.println("Hello");}
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aspect Test {
public voidMain.sayHello(){System.out.println{”Hello”}; }
declare parents:Main implements Serializable;

}

Figure 2.1: Sample AspectJ aspect using inter-type declarations.

inside the definition of class Main. The AspectJ compiler signals a compile

time error if the addition of sayHello conflicts with another method defini-

tion with the same name.1

Inter-type declarations can introduce private methods as well. The

modifier private limits the usage of this method to the aspect definition

that introduced the method. For private inter-type declarations the As-

pectJ compiler internally renames method and/or field names with fresh

names avoiding conflicts.

The second kind of inter-type declarationswhich are of the form declare

spec:args, were spec is a predefined category, e.g., parents, error etc. In Fig-

ure 2.1 the second inter-type declaration adds the interface Serializable

to the list of interfaces implemented by Main. The class Main is responsible

for implementing all method signatures in Serializable.

The facilities provided by AspectJ’s inter-type declarations allow for the

addition of methods to existing classes without creating subclasses or di-

rectly editing existing code.

2.1.2 Class Dictionaries

A class dictionary is a textual representation of a program’s class hierarchy.

The class dictionary defines a graph, called a class graph, where each class

is a node and each inheritance edge expands into two edges; one edge with

the superclass as its source and the subclass as its target labeledwith ⋄↓, and

a second edge with the subclass as its source and the superclass as its target

1We direct the interested reader to the AspectJ programmers guide [43] for details
about errors and conflicts due to inter-type declarations.
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Figure 2.2: UML diagram for BTree and its corresponding class graph

BTree : Node | Leaf.
Leaf = ”leaf”.
Node = ”data” Datum

”left” <l> BTree

”right” <r> BTree.
Datum = <val> Integer.

data 1
left leaf

right leaf

Figure 2.3: The class dictionary for binary trees (left) and sample input in
the language specified by the class dictionary grammar (right).

labeled with ⋄↑ (Figure 2.2). Each containment edge is a unidirectional edge

between a class and its member with the field’s name as the edge label.

It is not necessary to provide a class dictionary with every DAJ program.

DAJ can extract the class dictionary automatically through reflection. A

class dictionary defines a subset S of the programs classes and limits the

applicability of AP code to the subset S.

However, the class dictionary can also serve as a grammar specification

that DAJ uses to generate a lexer and parser. DAJ can then parse valid sen-

tences in the language defined by the grammar and create the correspond-

ing object instances.

Figure 2.3 (left) contains the class dictionary for the binary tree example.

Each line in the class dictionary defines an abstract or a concrete class and
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its terminated by a period. Abstract classes are defined using a colon, :,

with the name of the abstract class on the left of the colon and the names

of the subclasses on the right. Alternative subclasses are defined with a

parallel line |. Class field names are enclosed in < > and the keyword

common defines fields inside abstract classes, e.g.,

BTree : Node | Leaf common <val> Integer

defines the abstract class BTreewith a field named val of type Integer and

two subclasses Node and Leaf.

Concrete classes are defined using the equal sign, =, with the name of

the class on the left of the equal sign and the name of the class’s fields

on the right. The last line in Figure 2.3 defines the concrete class Datum

with one field of type Integer. Class dictionaries provide special syntax

for parametrized classes. List(A) ∼ {A} defines a parametrized list with

type parameter A that can contain zero or more elements, for example we

can create a node with a list of subtrees by changing the definition of Node

in Figure 2.3 to be

Node = "data" Datum "subtrees" List(BTree).

Class dictionaries are used to define an LL(k) grammar. We can then create

object instances by parsing sentences in the language defined by this gram-

mar. Each line of the class dictionary is a production rule. DAJ provides

some predefined terminal classes such as Integer, String etc.; syntactic to-

kens are enclosed inside double quotes. For example, in the definition of

Node in Figure 2.3 the first field Datum is preceded by the token data, the

second field by the token left and the third field by the token right. Fig-

ure 2.3 (right) shows a sample input sentence that will generate a binary

tree with one node containing the number 1 as its datum and two leafs as

the left and right subtrees.
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aspect TreeAP{
declare strategy: toLeafs: from BTree to Leaf;
declare traversal: public void print(): toLeafs(TPrintV);

}

Figure 2.4: Traversal file for Binary Trees

2.1.3 Traversal Files

Traversal files and visitors are defined against the class graph. DAJ ex-

tends AspectJ’s declare statement to include the categories strategy and

traversal. A declare strategy inter-type declaration takes two arguments

an identifier (id) and a strategy specification (ss) separated by a colon. The

inter-type declaration binds the strategy specification, ss to the identifier

id. The strategy specification is written in a domain specific language, e.g.,

in Figure 2.4 toLeafs is the name of the strategy and from BTree to Leaf

is the strategy specification. DAJ supports a from-to notation and a graph-

based notation for strategy specifications. The strategy in Figure 2.4 can

also be written as BTree -> Leaf using graph-based notation. The purpose

of strategy specifications is to define abstract paths based on the types of

objects. Abstract paths are used to select paths at runtime made up of a

sequence of objects connected through containment or inheritance relation-

ships that are expansions of an abstract path. A path p′ is an expansion of a

path p if we can obtain a non-empty prefix of p from p′ by removing nodes

from p′. Put differently, we can obtain p′ from p by adding nodes from

the class graph. For example the strategy in TreeAP selects all object paths

starting from an instance of type BTree that lead to an instance of type Leaf.

Strategy specifications use directives to include or exclude nodes from

paths. Strategy specification directives come in two flavors, class directives

that refer to class names and edge directives that refer to edges in the class

graph. From-to notation uses from to specify the path’s source node; to

to specify the path’s target node; via to specify nodes or edges that a path
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should contain; bypassing to specify nodes or edges a path should exclude.

For example

from BTree via Node to Leaf

uses class directives to select all paths starting at an object of type Btree

to an object of type Leaf that goes through one (or more) object(s) of type

Node.

Similarly the strategy

from BTree bypassing Node to Leaf

selects all paths starting at an object of type BTree to an object of type Leaf

that do not contain objects of type Node.

Using the graph based syntax we can define class directives for each

edge. Source and target nodes are annotated with source: and target:,

e.g.,

source:BTree -> Node bypassing { Leaf }

Node -> target:Leaf

defines a strategy with BTree as the source and Leaf as the target. The

strategy selects paths starting from a BTree going through a Node with no

Leaf nodes in between and continues from Node to reach a Leaf.

Edge directives are of the form -> Type,fieldName,Type. For example

from BTree via (->Node,l,BTree) to Leaf

allows paths from an instance of type BTree to an instance of type Leaf that

go through instance(s) of type Node that contain a field with name l of type

BTree. We can also define any type using the pattern * or a set of types

as a comma separated list inside curly braces. For example the strategy

specification
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from BTree via {Leaf, Node} to *

will select paths starting from BTree, going through either object(s) of type

Leaf, or of type Node, or both, and terminate at a node of any type. The

language used for strategy specifications allows programmers to abstract

over classes, edges and whole subgraphs of the class hierarchy.

2.1.4 DAJ Visitors

DAJ visitors are an extension to the visitor pattern [15] that provide specific

meaning to a set of predefined method names, before, after and return.

All before and after methods are one argument methods and must re-

turn void. A before method executes before traversing an object that is

a subtype2 of the before method’s argument type. Similarly, an after

method executes after traversing an object that is a subtype of the after

method’s argument type. In Figure 2.6, the first before method executes

before traversing an object that is a subtype of BTree.

A return method takes no arguments and its return type has to match

the return type given in the method signature used in the traversal inter-

type declaration. The return method executes after all valid paths have

been traversed. For example, in Figure 2.5 we define the adaptive method

toString and uses the ToStringV visitor. The adaptive method’s return

type matches the visitor’s return method’s return type. By replacing the

visitor ToStringVwith TPrintV (Figure 2.6) without changing the adaptive

method’s return type to void yields a compile time error.

Strategies are connected to visitors through traversal inter-type declara-

tions. A traversal inter-type declaration takes as input a method signature,

a strategy name and the name of a visitor class. The method signature is

used to introduce a new method inside the source class of the strategy. We

call these methods adaptive methods. Arguments to the adaptive methods

2The subtype relation is reflexive.
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aspect TreeAP{
declare strategy: toLeafs: from BTree to Leaf;
declare traversal: public String toString(): toLeafs(ToStringV);

}

class ToStringV {
int tabs;
String tostring;

// properly initialize fields
public void ToStringV(){
tabs = 0;
tostring = new String("");

}
protected void writeTabsLn(int t, String s) { tostring.concat(writeTabs(t) + s + "\n"); }
public void before(Leaf host) { writeTabsLn(tabs,"LEAF"); }
public void before(Node host) {
tabs++;
writeTabsLn(tabs, "NODE : ");

}
public void before(Datum host) { tostring.concat(host.integer.toString()); }
public void after(Node host) { tabs −= 1; }
protected String writeTabs(int t){
String res = new String("\n");
while(t > 0) {
res = res.concat("\t");
t = t − 1;

}
return res;

}
// return final result
public String return() { return this.tostring; }

}

Figure 2.5: An AP implementation of toString using return inside a visi-
tors.
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class TPrintV {
int tabs;
public void TPrintV(){ tabs = 0; }
protected void write(String s) { System.out.print(s); }
public void writeTabsLn(int t, String s) { System.out.println(writeTabs(this.t) + s); }
public void before(Leaf host) { writeTabsLn(tabs,"LEAF"); }
public void before(Node host) {
tabs++;
writeTabsLn(tabs,"NODE : ");

}
public void before(Datum host) { write(host.integer.toString()); }
public void after(Node host) { tabs -= 1; }
protected String writeTabs(int t){
String res = new String("\n");
while(t > 0) {
res = res.concat("\t");
t -= 1;

}
return res;

}
}

Figure 2.6: A Binary Tree pretty printing Visitor implementation.

must match the arguments to the Visitor’s constructor. Values passed as ar-

guments to the adaptive method are used as arguments to the Visitor’s con-

structor. Also, the return type of the adaptive method must be a subtype of

the return type of the visitor’s return method. The value returned by the

visitor’s returnmethod is the value returned by the adaptive method.

The adaptive method’s implementation is generated from the strategy

specification and the visitor definition. From the strategy specification and

the program’s class hierarchy DAJ calculates all valid paths and generates

the necessary visit methods, pointcuts, advice and calls to the visitor meth-

ods inside all the relevant classes.3 The adaptive method’s implementa-

tion first creates a new instance of the visitor class, passing the adaptive

method’s arguments to the visitor’s constructor, and then traverses the class

hierarchy by calling the generated visit method(s). The binary tree ex-

3 The details of the algorithm and its implementation can be found in [28].
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ample, Figure 2.4, declares a traversal that introduces the method public

void print() into the abstract class BTree. The method’s implementation

traverses from BTree to all Leaf objects executing the visitor TPrintV along

the way (Figure 2.6).

2.2 Benefits of AP

In this subsection we show some of the benefits and pitfalls of AP using as

an example a system for manipulating a collection of music media. We take

the examples through iterations, extensions and refactorings exemplifying

the adaptive nature of AP.

2.2.1 A Music Media collection

Our running example involves a media collection. Even though the media

collection example is at first sight a simple program, we have identified that

similar programs are common in multi-tier, specifically three-tier software

architectures for building web services. Our media example is a simplifica-

tion of a recurring use case for systems that rely on web services. We first

give a brief overview of a simple multi-tier architecture for web services

and discuss a simple use case scenario. We then proceed with our simpli-

fied media collection example.

A popular multi-tier architecture (Figure 2.7) for web services is the

three-tier architecture which comprised of

Presentation tier The presentation tier is the topmost level of the applica-

tion that displays information obtained from other tiers. Typically a

web server serving static or dynamic content is in the presentation

tier.

Application tier The application tier (also referred to as the logic layer)

controls the application’s functionality and the processing of data.
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Figure 2.7: A three-tier architecture.

The application tier contains all the services that the presentation tier

depends on.

Data tier The data tier is responsible for storing and retrieving data. The

data tier typically consists of database servers.

As an example consider an internet site that allows visitors to search,

listen to, and, buy music. The site relies on multiple services, provided by

different providers that allow for searching and retrieving music content.

The communication between a web server and service providers is gov-

erned by an interface that defines the available operations, input data, out-

put data and any exceptions for the service. The interface is defined using

WSDL (Web Services Description Language) [46]. The WSDL uses an XML

schema to define its interface with supporting tools that generate code, for

example in Java, to capture the data structured defined in the interface. On

the side of the database services use object-relational mapping libraries (e.g.,

Hibernate [10]) to map database tables and query results to classes.

Web services typically try to maintain two different data representa-

tions, one for clients (requests) and one for providers (databases). For ex-

ample, consider that all services and database systems are using the same

WSDL and database schema. A Java service maintains a set of class files
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to capture database tables and database query results and a second set of

classes for the WSDL interface. The service implementation is responsible

for mapping values between the two different data representations. It is

important to note that the separation between data representations allows

for service implementations to shield clients from changes to the tables and

query results.

Consider the case of our music internet site and the operation of search-

ing for songs. The service will provide the WSDL interface that contains a

method for searching for music songs and returning a list of matches. Con-

sider the interactions between each tier when a client visits the web site and

searches for songs by an artist. The web server receives an HTTP request

and fires a request to the service. The web server builds the request by con-

sulting the WSDL interface in order to identify the appropriate method call

and build the appropriate data structure for the method’s arguments and

populate these data structures with HTTP requests arguments.

The service receives the request from the web server and sends the ap-

propriate query to the database. The database returns a set of results to

the service. The service receives the query results, performs any necessary

processing and then maps the results to the data structure defined by the

WSDLmethod and sends it back to the web server. The web server receives

the reply and presents the result to the clients in HTML.

Web services contain data translators to perform the translation from

one data representation to another. The implementation of these data trans-

lators can be rather large. The number of translators gets even larger when

the service has to communicate with multiple different databases that store

data under different database schemas. In these situations web services

need to have different translators, one for each different database schema.

A similar problem occurs on the web server side when the hosted site com-

municates with multiple different services in order to obtain information

(e.g., a meta search site for airline tickets that searches multiple airline com-
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panies).

With AP we can implement operations on data representations, as well

as implementing translators from one representation to another, with ease.

The use of strategies allows programmers to specify the parts of the data

representation they are interested in while visitors capture operations on

data representations that can be easily reused. Also, AP implementations

for operations and data translators adapt to modifications of the data rep-

resentation (either from the WSDL interface or from the database) making

it easier to maintain. We show some of these benefits, and explore some of

the shortcomings, of AP using a simple music collection example.

A music collection is made up of zero or more music media. Our first

iteration deals with CDs and DVDs each with a title and artist as attributes.

CDs contain a list of tracks and a price where tracks consist of a song title

and the song’s duration in minutes and seconds. Price is an integer repre-

senting the cost of a CD. DVDs consist of two song lists and a price.

Figure 2.8 defines the class dictionary for our media collection that in-

cludes CDs and DVDs.4 We define the following operations as adaptive

methods for our media collection:

• count the total number of songs in the collection

• search for a song in the collection given a search string

• pretty print all media; print the title, artist and an enumerated list of

songs with the duration of each song

• update the price of a all media by a given amount

• calculate the total cost of the collection.

Figure 2.9 shows the content of MediaCollectionAP which defines one

adaptivemethod for each operation. MediaCollectionAP defines two strate-

4The class Ident is provided by DAJ as a wrapper for Java’s String with extra func-
tionality and operations for parsing.
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import java.util.∗;

MediaCollection :MtCollection | ConsCollection.
MtCollection = "end".
ConsCollection = "disk"Media MediaCollection.
Media : CD | DVD common "title" Title "artist" Artist.
CD = "tracks" SongList "price" Price.
DVD = "side-1" <a> SongList "side-2" <b> SongList "price" Price.
Title = Ident.
Artist = Ident.
Price = Integer.
SongList :MtSongList | ConsSongList.
MtSongList = ";".
ConsSongList = Song SongList.
Song = "song title" Title "duration" Duration.
Duration = <min> Integer ":" <sec> Integer.

Figure 2.8: Class dictionary for a collection of music media that includes
CDs and DVDs.

gies, the first (toSongs) begins at a MediaCollection instance and navigates

to all reachable Song instances; the second strategy (toPrice) starts from a

MediaCollection object and navigates to all reachable Price instances.

Each traversal declaration in Figure 2.9 introduces a new adaptivemethod

inside the MediaCollection class. The adaptive method countSongs takes

no arguments and returns the total number of songs reached through the

toSongs strategy in a collection using the SongCounterV visitor (Figure 5.28).

The SongCounterV extends CounterV incrementing counterwhen the traver-

sal reaches a Song instance. The adaptive method searchSongTitle takes

a string t as input and returns a SongList instance containing all Song in-

stances reached through the toSongs strategy whose title matches the pat-

tern .* t .* using the SongSearchV visitor (Figure 2.11).

SongSearchV extends SearchV; SearchV is a general search visitor that

provides methods for creating the appropriate regular expression given a

string s and a method for checking if the string s matches the regular ex-

pression. SongSearchV specializes SearchV by checking for a match against

the title of any Song instance encountered during traversal. SongSearchV

maintains a local song list and stores Song instances whose title matches
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aspect MediaCollectionAP {
declare strategy : toSongs : from MediaCollection to Song;
// Return the total number of songs in a collection.
declare traversal: int countSongs() : toSongs(SongCounterV);
// Return a list of songs in the collection that match .* t .*
declare traversal: SongList searchSongTitle(String t): toSongs(SongSearchV);
// String representation of all the songs in a collection.
declare traversal: String asStringCount() : toSongs(AsStringCounterV);

declare strategy: toPrice : from MediaCollection to Price;
// Change all prices by delta.
declare traversal: void updatePriceBy(int delta) : toPrice(UpdatePriceV);
// Return the total cost of the collection.
declare traversal: int getTotalPrice() : toPrice(PriceAdderV);

}

Figure 2.9: The traversal file that defines operations on a MediaCollection
as adaptive methods.

class CounterV {
int count;

public CounterV() { this.count = 0; }
public CounterV(int i) { this.count = i; }
public int return() { return this.count; }

}

class SongCounterV extends CounterV {
public SongCounterV() { super(); }

public SongCounterV(int i) { super(i); }
public void before(Song host) {
this.count += 1;

}
}

Figure 2.10: CountV is a generic counting visitor extended by SongCounterV

for counting Song instances.

the regular expression. The beforemethod defined in SongSearchV depends

on another adaptive method getSongTitle defined in SongAP (Figure 2.14).

SongAP introduces two getter methods, one for title and one for duration, as

adaptive methods using two strategies songToTitle and songToDuration.

Each method uses a specialized version of the StringV visitor (Figure 2.15)

that returns a string representation of a song’s title (IdentV) and a song’s

duration (DurationV).

The adaptive method asStringCount returns a string representation of

a collection using the AsStringCounterV visitor (Figure 2.12). The visi-

tor AsStringCounterV extends the AsStringV visitor. The AsStringV vis-
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import java.util.regex.Pattern;

class SearchV {
protected String s;
SearchV(String s){
this.s = s;

}
protected boolean match(String regexp,

String s) {
return Pattern.matches(regexp, s);

}
protected String makeRE(String s){
return ".*" + s + ".*";

}
}

class SongSearchV extends SearchV {
private SongList res;
SongSearchV(String s){
super(s);
this.res = new MtSongList();

}
public void before(Song host){
if (match(makeRE(s),

host.getSongTitle())){
res = new ConsSongList(host, res);

}
}
public SongList return() { return res; }

}

Figure 2.11: SearchV is a generic search visitor that constructs the appropri-
ate regular expression and provides a method for checking a string against
its regular expression. SongSearchV extends SearchV checking for a match
between the pattern and a Song instance’s title.

itor provides a default implementation for representing a media collec-

tion as a string. Visitor AsStringCounterV extends AsStringV’s behavior

and prints an enumerated song list for music media using the adaptive

method stringAndCount (Figure 2.14). The aspect SongListAP introduces

themethod stringAndCount alongwith the CounterAndStringV visitor (Fig-

ure 2.12) and navigates from a Media instance to all reachable Song instances.

The CounterAndStringV visitor maintains a string representation of each

song prepended with the song’s index.

The updatePriceBy adaptive method takes as input the increment (or

decrement) in price for music media and the UpdatePriceV (Figure 2.13)

visitor updates for each CD and DVD instance the price field accordingly.

Finally, the getTotalPrice adaptive method adds all price instances in a

collection and returns the grand total.

Adaptive programs can accommodate changes to the topology of the

class graph for which strategy declarations select non-empty paths. As

a first extension we would like to extend our media collection to include
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class AsStringV extends StringV{
public void AsStringV() { super();}
protected String writeTabs(){
StringBuffer res = new StringBuffer();
for (int i = 0; i < tabs ; i++) { res.

append(TAB); }
return res.toString();

}
public void before(Media host){
tabs++;
sb.append(host.getTitle() + NL);
sb.append(host.getArtist() + NL);

}
public void after(Media host) { tabs; }
public void before(Song s){
sb.append(writeTabs()).
append(s.getSongTitle()).
append(TAB).
append("[").
append(s.getSongDuration()).
append("]").
append(NL);

}
public String return(){ return sb.

toString(); }
}

class AsStringCounterV extends AsStringV
{

AsStringCounterV() { super(); }

public void before(Media host){
super.before(host);
sb.append(host.stringAndCount());

}
public void before(Song host) { }

}

class CounterAndStringV extends
AsStringV {

private int counter;
CounterAndStringV(){
super();
this.counter = 0;

}
public void before(Song host) {
counter++;
sb.append(TAB + counter).append(")

");
super.before(host);

}
}

Figure 2.12: Visitors that return string representations of objects.

class UpdatePriceV {
protected int change;
UpdatePriceV(int i){ this.change = i; }
public void before(Price p) {
p.integer =
new Integer(p.integer.intValue() +

change);
}

}

class PriceAdderV {
int total;
PriceAdderV() { this.total = 0; }
public void before(Price p) {
total += p.integer.intValue();

}
public int return(){
return this.total;

}
}

Figure 2.13: Visitors to update a CD’s or a DVD’s price (left) and to sum all
media prices (right).
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aspect SongAP {
declare strategy : songToTitle : from Song to Title;
// getter for a song title
declare traversal: String getSongTitle() : songToTitle(IdentV);

declare strategy : songToDuration : from Song to Duration;
//getter for a song’s duration
declare traversal: String getSongDuration() : songToDuration(DurationV);

}

aspect SongListAP {
declare strategy : songListToSong : from SongList to Song;
// string represetation of a list of songs
declare traversal: String show() : songListToSong(CounterAndStringV);

declare strategy : mediaToSong : from Media to Song;
declare traversal: String stringAndCount() :

mediaToSong(CounterAndStringV);
}

Figure 2.14: The traversal file that defines operations on a Song as adaptive
methods (top) and the traversal file that defines operations on a SongList

as adaptive methods (bottom).

class StringV {
protected static String NL = "\n";
protected static String TAB = "\t";
protected int tabs;
protected StringBuffer sb;

public void StringV() {
this.sb = new StringBuffer();
this.tabs = 0;

}
public String return(){ return sb.toString(); }

}

class IdentV extends StringV{
public void IdentV() { super(); }
public void before(Title host) {
this.sb.append(host.ident.toString());

}
}

class DurationV extends StringV{
public void DurationV() { super();}
public void before(Duration host) {
this.sb.append(host.min.toString())
.append(":")
.append(host.sec.toString());

}
}

Figure 2.15: IdentV and DurationV (bottom) retrieve the title (bottom left)
and a song’s duration (bottom right).
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import java.util.∗;

MediaCollection :MtCollection | ConsCollection.
MtCollection = "end".
ConsCollection = "disk"Media MediaCollection.

Media : CD | DVD | MP3 common "title" Title "artist" Artist.

MP3 = Song.

CD = "tracks" SongList "price" Price.
DVD = "side-1" <a> SongList "side-2" <b> SongList "price" Price.
Title = Ident.
Artist = Ident.
Price = Integer.
SongList :MtSongList | ConsSongList.
MtSongList = ";".
ConsSongList = Song SongList.
Song = "song title" Title "duration" Duration.
Duration = <min> Integer ":" <sec> Integer.

Figure 2.16: Class dictionary with support for MP3s.

songs that we have in mp3 format. An mp3 file has a title and artist name

which represent the album’s title and artist’s name. The mp3 song how-

ever captures a single song with a song title and duration. We extend our

existing class dictionary for our media collection to incorporate mp3 files

as an extra alternative to the Media class (Figure 2.16, modifications are in

a grey background). Updating the class dictionary with the one given in

Figure 2.16 we obtain a valid AP program. The already defined adaptive

methods maintain their original behavior; countSongs, searchSongTitle

and asStringCount perform their original task and their results include

MP3 instances. The adaptive methods updatePriceBy and getTotalPrice

correctly update CD and DVD instances and are not affected by the addi-

tion of mp3s in our media collection.

As a second extension we want to include genres in our representation

of our media collection. Our collection becomes a list of genres, e.g., clas-

sical, rock, blues, pop, r&b etc. We alter MediaCollection to be a list of

Genre’s where Genre is an abstract class with a field holding a list of music

media. Each kind of music genre becomes a subclass of Genre (Figure 2.17).
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MediaCollection :MtCollection | ConsCollection.
MtCollection = "end".

ConsCollection = ”genre” Genre MediaCollection.

Genre : Classical | Rock | Blues | POP | RandB common MediaList.

MediaList : Mt | ConsMedia.

Mt = .

ConsMedia = ”disk” Media MediaList.
Media : CD | DVD | MP3 common "title" Title "artist" Artist.
MP3 = Song.
CD = "tracks" SongList "price" Price.
DVD = "side-1" <a> SongList "side-2" <b> SongList "price" Price.
Title = Ident.
Artist = Ident.
Price = Integer.
SongList :MtSongList | ConsSongList.
MtSongList = ";".
ConsSongList = Song SongList.
Song = "song title" Title "duration" Duration.
Duration = <min> Integer ":" <sec> Integer.

Figure 2.17: The class dictionary for a media library with genres.

Replacing our original class dictionary for our collection with the class

dictionary from Figure 2.17 gives a valid AP program. Despite the modifi-

cation to the class dictionary the originally defined adaptive methods still

behave the same; they still apply to all the songs and media in our collec-

tion. As a small refactoring to the class dictionary in Figure 2.17 we can

introduce a new abstract class to capture the common attribute Price in CD

and DVD. We add an abstract class PricedMedia that extends Media and con-

tains a member of type Price and we have CD and DVD extend PricedMedia.

The originally defined adaptive methods adapt to our refactoring and their

implementations will still take into account all media and songs in our col-

lection.

Even though each preceding extension modified the class graph the

modification was such that allowed all adaptive methods to accommodate

for the change and maintain their original behavior. Each extension altered

the set of paths selected by a strategy in our original program. The changes

to the paths either
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• introduce (or remove) a node to a path and no visitor depends on this

node (e.g., PricedMedia),

• does not remove nodes from the paths for which a visitor has a before

(or after) method,

• does not disrupt the sequence of nodes in a path for which a visitor

has a before (or after) method, and,

• introduces new paths for the same strategy that work correctly with

the current visitors.

2.3 Pitfalls of AP

It is easy to perform modifications to the class dictionary that yield valid

AP programs but generate adaptive methods with undesired behavior.

Consider changing our original media collection example so that in-

stead of representing our collection as a collection of music media con-

taining songs, we represent our collection as a list of songs where each

song has an attribute specifying the different media that contain the song

(Figure 2.18). Replacing our original class dictionary with the one in Fig-

ure 2.18 yields a valid AP program with asStringCount adaptive method

exhibiting undesired behavior. A call to asStringCount results in printing

a long list of songs without artist names or titles from CDs and DVDs.5

Our modification did not cause strategies to fail, i.e., a strategy with an

empty set of valid paths, but has caused a change in the sequence of nodes

found in paths from MediaCollection to Song. Media is no longer part

of the paths selected by toSongs and the visitor used with asStringCount

(AsStringCounterV) has before and after methods defined for Media. The

problem stems from the fact that DAJ visitors can have before or after meth-

ods on types that are not explicitly mentioned in the attached strategy.

5The remaining adaptive methods behave as expected.
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import java.util.∗;

MediaCollection :MtCollection | ConsCollection.
MtCollection = "end".
ConsCollection = Song MediaCollection.
Song = "song title" Title "duration" Duration "media"MediaList.
Duration = <min> Integer ":" <sec> Integer.
MediaList :MtMediaList | ConsMediaList.
MtMediaList = ";".
ConsMediaList =Media MediaList.
Media : CD.
CD = "title" Title "artist" Artist "price" Price.
Title = Ident.
Artist = Ident.
Price = Integer.

// Util Classes
SongList :MtSongList | ConsSongList.
MtSongList = .
ConsSongList = Song SongList.

Figure 2.18: A media collection is a list of songs with each song having a
list of media that contain the song.

Visitors that depend on types of nodes not mentioned in the strategy

are brittle. Modifications to the class dictionary that remove nodes that a

visitor depends on still result to valid paths selected by the strategy. Visitor

implementations that depend on such nodes run the risk of adapting to

modifications with undesired behavior.

As another extension to our original media collection example consider

the addition of a recommendation list to each Media class. A recommenda-

tion list is made up of zero or more Media instances (Figure 2.19)

Replacing our original class dictionary with the one in Figure 2.19 yields

a valid AP program. The behavior of the originally defined adaptive meth-

ods changes drastically; given a circular MediaCollection object any call

to an adaptive method results in a non-terminating execution. Running

our adaptive program on an acyclic MediaCollection yields duplicating

behavior for each media instance that is used as a recommendation, e.g., for

an object that contains a CD d and it is also used as a recommendation for
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import java.util.∗;

MediaCollection :MtCollection | ConsCollection.
MtCollection = "end".
ConsCollection = "disk"Media MediaCollection.
Media : CD | DVD common "title" Title "artist" Artist

"recommendations" RecList .

RecList : MtRecList | ConsRecList.

MtRecList = .

ConsRecList =Media RecList.
CD = "tracks" SongList "price" Price.
DVD = "side-1" <a> SongList "side-2" <b> SongList "price" Price.
Title = Ident.
Artist = Ident.
Price = Integer.
SongList :MtSongList | ConsSongList.
MtSongList = ";".
ConsSongList = Song SongList.
Song = "song title" Title "duration" Duration.
Duration = <min> Integer ":" <sec> Integer.

Figure 2.19: A media collection with support for a recommendations list.

another CD d′, d is printed twice.

The problem is the generality with which DAJ interprets strategy speci-

fications and allows any node to appear as part of a path between two strat-

egy nodes. This general interpretation allows for valid paths that include

cycles.6 Programmers have to rewrite their strategies to include bypass-

ing directives for each node in the strategy in order to avoid infinite paths

that contain strategy nodes. Rewriting strategies in this way to avoid cycles

becomes cumbersome, brittle and error prone.

2.3.1 Lack of Abstractions in AP

It is important to note that AP lacks abstractions that allow for the reuse of

adaptive behavior. Consider our original media collection example and the

adaptive method used to search for songs inside our collection. To extend

our media collection to allow for searches on media titles we have to create

6Infinite paths.
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a new visitor, extending SearchV and repeat the code in SongSearchV but

instead of adding a before method for Songwe have to add it for Media. Fur-

thermore, we need to define a new adaptivemethod similar to getSongTitle

to obtain the title for a media instance. The new adaptive method is sim-

ilar to the getSongTitle but uses a strategy whose source node is Media

rather than Song. DAJ does not provide any mechanism for abstracting and

reusing adaptive code that deals with similar graphs. The lack of abstract-

ing adaptive code decreases reuse and increases maintenance costs.

2.4 WYSIWYG Strategies, Constraints and

Demeter Interfaces

Even though AP allows for programs to adapt to data structure modifi-

cations we have identified specific shortcomings of AP that interfere with

modularity, code reuse, and resilience of AP programs:

• Strategy interpretation is too general. For any strategy swith strategy

nodes a and b a valid path can contain any type of node between a

and b (including a and/or b). Developers cannot rely on a strict order-

ing of strategy nodes in selected paths and have to guard their code

against unwanted loops in selected paths. Development becomes dif-

ficult and error prone.

• Brittle interfaces between strategy and visitor. Even though behavior

is defined at the same abstraction level as the strategy, AP tools al-

low for behavior specifications to directly refer to nodes that are not

explicitly mentioned in the strategy. Referring to nodes not explic-

itly mentioned in the strategy adds a dependency on the part of the

path that we anticipate to change. These extra dependencies make the

development of behavior specifications difficult.
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• Lack of abstractions for AP code (strategy and behavior). Strategies

and behavior attached to strategies cannot be easily reused. The names

used in the strategy and behavior specification are the same as the

names given to the data structures in the program. Reuse across pro-

grams that have the same data structure but have chosen different

names cannot be easily abstracted and reused. Similarly, data struc-

tures within the same program that share similar topology cannot

share the same AP code. The hard-coded name dependencies be-

tween the program’s data structure and AP code limits reuse and in-

creases software maintainability.

To address these shortcomings we extend AP with

• WYSIWYG strategies and constraints; WYSIWYG strategies provide

a new way for interpreting strategy specifications while constraints

can be used to define path invariants for a class graph,

• enforcing an interface between strategies and visitors; a well typed

AP program contains visitors that can only have before or after meth-

ods on types explicitly mentioned in their attached strategy, and,

• Demeter Interfaces provide a newmechanism that abstract over com-

mon graph structures and adaptive code providing a better mecha-

nism for reuse both within and across programs.

WYSIWYG strategies are a new way of interpreting strategy specifica-

tions. Given a strategy s with a set of strategy nodes V, a path p is a valid

path if and only if there exists a path p′ in s such that p is an expansion of

p′ and for every node n found between a pair of strategy nodes a and b in

p, n 6∈ V. We refer to this notion of expansion as a pure expansion.

Constraints are a new extension to AP that allows programmers to ex-

plicitly specify extra constraints on the class graph. These constraints are in-

variants that the programmer expects the class graph to satisfy. Constraints
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are expressed using strategy specifications and properties about the set of

valid paths selected by these strategies, e.g., absence of certain paths and

cardinality of the set of valid paths for a strategy.

Demeter Interfaces allow for abstracting adaptive code into a newmod-

ule. A Demeter Interface is made up of an interface class graph (ICG) –that

serves as an abstraction of a class graph– along with strategies and visitors

defined against the ICG. A Demeter interface is then mapped onto a class

dictionary by providing mappings between the edges and nodes in the ICG

to the edges/paths and nodes in the class dictionary. The adaptive code

defined in a Demeter interface gets generated according to the mapping

provided for the specific class dictionary.

In the remainder of this section we reexamine our media example us-

ing our new extensions and explain their usage. We start with the original

media collection program.

With WYSIWYG strategies and the enforcement of a strict interface be-

tween strategy and visitor where each visitor can only contain before and/or

after methods on types explicitly mentioned in the visitor’s attached strat-

egy, our original media collection program is invalid. Figure 2.20 shows

the new MediaCollectionAP traversal file with altered strategies and a new

strategy (toSongsViaMedia) used in the definition of asStringCount. Strat-

egy definitions use our graph-based notation and each strategy explicitly

mentions node repetitions. Originally our toSongs strategy was defined as

from MediaCollection to Song; under WYSIWYG strategies however the

selected paths for toSongs include all songs reachable through the first el-

ement of MediaCollection. Any path through ConsCollection followed

by MediaCollection is not a valid path under WYSIWYG strategies for

toSongs. To allow for such paths the strategy specification has to explic-

itly contain an edge from ConsCollection to MediaCollection.

Furthermore, asStringCount originally used the toSongs strategy along

with the AsStringCounterV visitor. The AsStringVisitor however con-
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aspect MediaCollectionAP {
declare strategy : toSongs : source:MediaCollection → ConsCollection

ConsCollection → MediaCollection
ConsCollection → target:Song;

// Return the total number of songs in a collection.
declare traversal: int countSongs() : toSongs(SongCounterV);
// Return a list of songs in the collection that match .* t .*
declare traversal: SongList searchSongTitle(String t): toSongs(SongSearchV);

declare strategy : toSongsViaMedia : source:MediaCollecton → ConsCollection
ConsCollection → MediaCollection
ConsCollection → Media
Media → target:Song;

// String representation of all the songs in a collection.
declare traversal: String asStringCount() :
toSongsViaMedia(AsStringCounterV);

declare strategy: toPrice : source:MediaCollection → ConsCollection
ConsCollection → MediaCollection
ConsCollection → target:Price;

// Change all prices by delta.
declare traversal: void updatePriceBy(int delta) : toPrice(UpdatePriceV);
// Return the total cost of the collection.
declare traversal: int getTotalPrice() : toPrice(PriceAdderV);

}

Figure 2.20: Modified traversal file for media collections with WYSIWYG
strategies.

tains methods for Media and Song breaking the condition imposed on visi-

tors. We replace toSongs in the definition of asStringCount with the new

strategy toSongsViaMedia. We also modify SongListAP.trv and use a new

visitor (SongListAsStringV) for the adaptive method show (Figure 2.21).

With the preceding changes to the original media collection example we

have a valid AP program underWYSIWYG strategies. Performing the same

extensions with the same program modifications for adding support for

MP3 media, genres and refactoring to introduce PricedMedia yield a valid

AP program with adaptive methods correctly adapting their behavior.

Consider changing the representation in our media collection to be a list

of songs where each song has an attribute specifying the different media

that contain the song. Replacing our class dictionary with the one given in

Figure 2.18 gives us an invalidAP program. The strategies toSongsViaMedia
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aspect SongListAP {
declare strategy : songListToSong : source:SongList → ConsSongList

ConsSongList → SongList
ConsSongList → target:Song;

// string represetation of a list of songs
declare traversal: String show() : songListToSong(SongListAsStringV);

declare strategy : mediaToSong : source:Media → target:Song;
declare traversal: String stringAndCount() :

mediaToSong(CounterAndStringV);

}

class SongListAsStringV extends AsStringV {
private int counter;
SongListAsStringV(){
super();
this.counter = 0;

}
public void before(Song host) {
counter++;
sb.append(TAB + counter).append(") ");
super.before(host);

}
}

Figure 2.21: The altered SongListAP traversal file and the new visitor
SongListAsStringV.

and mediaToSong (Figure 2.21) select no paths in the new class dictionary

causing a compile time error rejecting a modification that was previously

allowed by DAJ but had undesired behavior.

As another extension consider our original music media collection and

the addition of a recommended list of music media. Applying the same

modifications as before we can replace our class dictionary with the one

given in Figure 2.19 giving a valid AP program. Unlike the behavior of this

program under DAJ, calling the asStringCount adaptive method does not

duplicate songs and execution terminates. The WYSIWYG strategy selects

paths via Media to Song but disallows paths of the form MediaCollection,

ConsCollection, Media, ConsRecList, Media etc. A second occurrence of

Media is not allowed by WYSIWYG strategies stopping the traversal from
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aspect MediaCollectionAP {
declare strategy : toSongs : source:MediaCollection → ConsCollection

ConsCollection → MediaCollection
ConsCollection → target:Song;

// Return the total number of songs in a collection.
declare traversal: int countSongs() : toSongs(SongCounterV);
// Return a list of songs in the collection that match .* t .*
declare traversal: SongList searchSongTitle(String t): toSongs(SongSearchV);

declare strategy : toSongsViaMedia : source:MediaCollecton → ConsCollection
ConsCollection → MediaCollection
ConsCollection → Media
Media → target:Song;

// String representation of all the songs in a collection.
declare traversal: String asStringCount() :
toSongsViaMedia(AsStringCounterV);

declare strategy: toPrice : source:MediaCollection → ConsCollection
ConsCollection → MediaCollection
ConsCollection → target:Price;

// Change all prices by delta.
declare traversal: void updatePriceBy(int delta) : toPrice(UpdatePriceV);
// Return the total cost of the collection.
@constraint{unique(from Media to Price)}
declare traversal: int getTotalPrice() : toPrice(PriceAdderV);

}

Figure 2.22: Media collection’s traversal file with constraint annotations.

navigating through RecList instances.

Constraints allow programmers to define invariants that they expect the

class graph to satisfy. In our music media example observe that the adap-

tive method getTotalPrice expects to find one price for each music me-

dia. Consider the scenario where a CD or a DVD also includes prices for

each individual song. Calculating the total cost of our media collection us-

ing the getTotalPrice adaptive methods yields the wrong result. With

constraints programmers can explicitly express invariants that they expect

the underlying class graph to honor. We define constraints as annotations

to adaptive method declarations. Figure 2.22 shows the traversal file for

MediaCollectionwith a constraint annotation on the adaptive method dec-

laration for getTotalPrice. The constraint specifies that there should be

one and only one path that starts from a Media object and leads to a Price
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object. With this constraint in place, the extensions to allow individual song

prices for CDs and DVDs as well as a CD and DVD price yields an invalid

AP program. Constraints enforce programmer specified invariants about

the underlying class graph at compile time. Constraints provide an extra

mechanism for developers to define and have finer control over what they

consider to be “correct” class graphs controlling in this way the set of cor-

rect program evolutions.

2.4.1 Abstracting over AP code with DIs

Consider extending our original media collection application to support

searching based on media titles. The extension in DAJ requires a new vis-

itor similar to SongSearchV but with a before method on Media rather than

Song. Also, we need to add a new helper adaptive method to Media that re-

turns the media’s title, similar to the adaptive method getSongTitle (Fig-

ure 2.23). The AP code for searching for a song title and searching for

a media title have a lot in common. The two search visitors SongSearchV

and TitleSearchV differ in the type they use to store search results and the

methods that they use to acquire the title of a song and a music media.

A Demeter Interface (DI) is similar to a traversal file and includes an

abstraction of the class graph called the interface class graph (ICG) and a se-

quence of strategy and traversal declarations. An ICG is similar to a class

dictionary definition with abstract names for nodes instead of actual class

names. Figure 2.24 shows the DI that abstracts the search functionality in

our media collection example. The ICG captures the structural similarities

between the relevant subgraphs involved in searching for a song or media

title. Adaptive code (strategies, traversals and visitors) are defined against

the ICG. Visitor definitions can refer to adaptive methods defined in the

DI or methods available to all types (e.g., toString). Figure 2.25 contains

the definitions of the visitors used in the Search DI. A Demeter Interface
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aspect MediaAP {
declare strategy : mediaToSong : source:Media → target:Song;
declare traversal: String stringAndCount() :

mediaToSong(CounterAndStringV);

declare strategy : mediaToTitle : source:Media → target:Title bypassing SongList;
// return a Media’s title as a string
declare traversal: String getMediaTitle(): mediaToTitle(IdentV);

}

class TitleSearchV extends SearchV {
private Collection res;

TitleSearchV(String s){
super(s);
this.res = new MtCollection();

}
public void before(Media host){
if (match(makeRE(s), host.getMediaTitle())){
res = new ConsCollection(host, res);

}
}
public Collection return() { return res; }

}

Figure 2.23: The new adaptive method getMediaTitle defined on Media

instances and the new visitor TitleSearchV.

di Search {
//ICG
Collection :Mt | Cons.
Mt = .
Cons = Element Collection.
Element = Value.
Value = Id.
Id = .

// Strategies
declare strategy: toEle: source:Collection → Cons

Cons → Collection
Cons → target:Element;

declare strategy: toVal: source:Element → target:Value;

// Traversals
declare traversal: Collection search(String s): toEle(ValSearchV);
@constraint{unique(toVal)}
declare traversal: Value getValue(): toVal(IdV);

}

Figure 2.24: DI for searching for a Val through a Collection.
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class ValSearchV extends SearchV {
private Collection res;
ValSearchV(String s){
super(s);
this.res = new Mt();

}
public void before(Ele host){
if (match(makeRE(s),

host.getValue())){
res = new Cons(host, res);

}
}
public SongList return() { return res; }

}

class IdV extends StringV{
public void IdV() { super(); }
public void before(Id host) {
this.sb.append(host.toString());

}
public String return(){ return sb.

toString(); }
}

Figure 2.25: Visitor definitions used with the Search DI.

needs to be applied to a concrete class dictionary in order for the DI’s be-

havior to be available. The definition of class dictionaries is extended to

include a list of DIs that a class dictionary implements and a new section

in the class dictionary defines a mapping between a DI’s ICG and the class

dictionary’s nodes and edges. The mapping of a DI to a class dictionary

takes an optional list of name pairs that indicate new names for adaptive

methods defined in the DI and a list of mappings that maps all nodes and

edges of the DI to nodes and edges/paths in the class dictionary. Figure 2.26

shows a new class dictionary for our media collection. The new class dictio-

nary implements the Search DI and maps the DI twice. The first mapping

generates a new adaptive method inside MediaCollection with the name

mediaSearch instead of search and a method getValue inside Media. The

mapping is comprised of a list of use statements, each use statement takes

two arguments an ICG edge and a graph-based strategy over the nodes in

the class graph. We specify ICG edges as a triple where the first element is

either an inheritance edge (=>) or a has-a edge (->) followed by the edge

source and the edge target. For example in the first mapping in Figure 2.26

Collection objects are mapped to MediaCollection objects and Mt objects
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import java.util.∗;
cdMediaCollection {
//ICG
MediaCollection :MtCollection | ConsCollection.
MtCollection = "end".
ConsCollection = "disk"Media MediaCollection.
Media : CD | DVD common "title" Title "artist" Artist.
CD = "tracks" SongList "price" Price.
DVD = "side-1" <a> SongList "side-2" <b> SongList "price" Price.
Title = Ident.
Artist = Ident.
Price = Integer.
SongList :MtSongList | ConsSongList.
MtSongList = ";".
ConsSongList = Song SongList.
Song = "song title" Title "duration" Duration.
Duration = <min> Integer ":" <sec> Integer.

//Mappings
for Search ((search, mediaSearch)) {
use (=>, Collection, Mt)
asMediaCollection -> MtCollection,

use (=>, Collection, Cons)
asMediaCollection -> ConsCollection,

use (->,Cons, Element)
as ConsCollection -> Media,

use (->, Element, Value)
asMedia -> Title bypassing SongList,

use (->, Value, Id)
as Title -> Ident

}

for Search ((search, songSearch)) {
use (=>, Collection, Mt)
as SongList -> MtSongList,

use (=>, Collection, Cons)
as SongList -> ConsSongList,

use (->, Cons, Element)
as ConsSongList -> Song,

use (->, Element, Value)
as Song -> Title,

use (->, Value, Id)
as Title -> Ident

}
}

Figure 2.26: The new media collection class dictionary that implements
the search DI. The DI is mapped twice; once for searching for media titles
titleSearch and a second time for searching for song titles songSearch.
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are mapped to MtCollection objects. Element objects are mapped to Media

objects and Value objects are mapped to Title objects reachable from Media

objects that do not traverse through SongList objects.

The second mapping in Figure 2.26 introduces a new adaptive method

into SongListwith the name songSearch instead of search and an adaptive

method with the name getValue inside Song.

Our extension to DAJ takes a class dictionary and all DIs implemented

by the class dictionary and uses the mappings to rewrite the strategies in

the DI and generate appropriate versions of the visitors rewriting abstract

names using their mapped class names. Any constraints defined inside

the DIs are rewritten based on the mappings provided and reevaluated to

verify that the mapping does not violate any constraints.

The class dictionary in Figure 2.26 does not introduce a method for

searching songs inside MediaCollection but instead introduces a method

for searching for songs inside SongList. To gain access to songSearchmethod

from the MediaCollection class we can introduce an adaptive method that

navigates to SongList and calls songSearch (Figure 2.27).

A DI only depends on names in the ICG, adaptive methods introduced

by the DI ormethods available from Object. DIs are self contained allowing

for separate development and testing. Instantiating each ICG name as a new

class with all the necessary inheritance and has-a relationships we obtain a

valid AP program that we can execute and test separately. DIs increase

modularity and reuse of AP code.
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aspect MediaCollectionAP {
//elided ...
declare strategy : toSongList : source:MediaCollection → ConsCollection

ConsCollection → MediaCollection
ConsCollection → target:SongList;

declare traversal: SongList searchSongs(String s): toSongList(SSongV);

declare strategy : toSong : source:SongList → ConsSongList
ConsSongList → SongList
ConsSongList → target:Song;

declare traversal: SongList songListAppend(SongList s): toSong(AppendSongListV);

}

class SSongV {
private String s;
private SongList res = new MtSongList();

SSongV(String s) { this.s = s;}
public void before(SongList host){ res = host.searchSong(s).songListAppend(res); }
public SongList return() { return res; }

}

class AppendSongListV {
private SongList res;

AppendSongListV(SongList sl) { this.res = sl;}
public void before(Song host){ res = new ConsSongList(host,res); }
public SongList return() { return res; }

}

Figure 2.27: Introducing an adaptive method to MediaCollection for
searching song titles.



CHAPTER 3

WYSIWYG Strategies and Traversal

Automata

In this chapter we present the main abstractions used to capture the se-

mantics of WYSIWYG strategies. We simplify our model and consider

strategies, class graphs and object graphs as simple graphs, where strategy

graphs further define a unique source and target node. We define the no-

tion of embedded strategies and object graph conformance. We define the

notion of embedded strategies where a strategy graph’s node set is a subset

of the class graph’s node set. An object graph conformance conforms to a

given class graph if for each node (edge) in the object graph there exists a

corresponding node (edge) in the class graph.

Based on our abstraction of strategy graphs and class graphs we intro-

duce traversal automata, the main construct used to calculate all valid paths

for a WYSIWYG strategy in a class graph. We formally define the necessary

conditions that a traversal automaton must have and give an algorithm for

constructing a traversal automaton. We prove our algorithm correct and

show how to use a traversal automaton to guide a traversal (also called a

walk) over a conforming object graph. We further show that a complete

walk starting an object o, guided by a traversal automaton selects all pre-

fixes of valid paths in the object graph for a strategy SG, class graph CG

and a conforming object graph O.

47
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The following section provides definitions and notation used through-

out this chapter. In section 3.2 we provide a simple model for class graphs,

strategies and object graphs. In section 3.3 we give a description of the

compilation problem for AP in terms of automata. In section 3.4 we give

the definition for traversal automata and in section 3.5 we provide our al-

gorithm for constructing a traversal automaton given a strategy and a class

graph and prove our algorithm correct. In the final section 3.6 we provide

an algorithm for traversing an object graph guided by a traversal automa-

ton. We also show that our guided traversal algorithm upon termination

visits all object paths p in a conforming object graph O such that meta(p) is

a prefix of some valid path q in the class graph CG.

3.1 Graphs and Automata

In this section we describe our notation for graphs, paths, automata and

their operations.

A graph is defined as a pair consisting of two finite sets, a set of nodes

and a set of edges, G = (V, E). The set of edges E contains pairs of nodes,

e.g., (v1, v2), that represent the edge v1 → v2 in G. For a graph G we define

the following functions

• G.nodes returns the set of nodes V in G,

• G. edges returns the set of edges E in G,

• G. outgoing(v) returns a set of edgesO = {e | e ∈ G. edges ∧ e.source =

v}.

For an edge e = (v1, v2) we define e.source = v1 and e.target = v2. A

node v ∈ G is said to be a sink node if and only if G. outgoing(v) = ∅.

We define a path p as a sequence of nodes v1, v2, . . . , vn with the following

operations:
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• p.first returns the first node v1 in p,

• p.last returns the last node vn in p and

• p.tail returns v2, . . . , vn.

A path p is said to be in graph G, denoted as path(p,G), if for every two

consecutive nodes vi and vi+1, (vi, vi+1) ∈ G. edges. A path p is said to be a

prefix of another path q, denoted as p ⊑ q if p can bewritten as v1, . . . , vn and

q can be written as v1, . . . , vn, vn+1, . . . , vm. Our prefix operation is reflexive,

i.e., p ⊑ p. The function allPrefixes consumes a path p and returns all paths

q such that q ⊑ p. We also define concatenation of two paths p = p1, . . . , pn

and p′ = p′1, . . . , p
′
m as p • p′ = p1, . . . , pn, p

′
2, . . . , p

′
m if and only if pn = p′1.

We define the predicate expansion(p, q,R) (read p is an expansion of q,

modulo R) to hold between two paths p and q and a set of nodes R if and

only if

1. p.first = q.first and p.last = q.last.

2. p is obtainable from q by inserting zero or more nodes and each in-

serted node is not in the set R.

For a given graphGwe also define the predicate reaches(G, v1, vn, allowed)

to hold iff allowed ⊆ G.nodes and ∃p : path(p,G) and p = v1, . . . , vn and

∀i : 1 < i < n, vi ∈ allowed .

A deterministic finite state automaton (DFA) is a quintuple 〈Q,Σ, δ, q0, F〉

where

• Q is a finite set of states

• Σ is a finite set of symbols called the alphabet

• δ is a total transition function δ : Q× Σ 7−→ Q

• q0 ∈ Q is the initial state
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• F ⊆ Q is the set of final states

We use the dot notation to refer to elements of the quintuple of a DFA, e.g.,

N.Σ refers to the alphabet Σ of automaton N. Also, a state q is a stuck state

in automaton N, written as stuck(N, q), iff

1. q 6∈ N.F, and

2. ∀α : α ∈ N.Σ ⇒ (q, α, q) ∈ N.δ.

We generalize δ to δ
∗ : Q× Σ∗ 7−→ Q where

• δ
∗(q, ǫ) = q

• δ
∗(q, ab) = δ

∗(δ(q, a), b)

where ǫ is the empty sequence of symbols. Given a sequence of symbols σ a

simulation of σ on an automaton N starting at state q is defined as N.δ∗(q, σ).

If a starting state is not given the simulation starts at the automaton’s initial

state, e.g., q0.

For automata we also define the⊥-closure of an automaton N by adding

a distinguished node q⊥ to N.Q and update N.δ to include

• for each α ∈ N.Σ the transition (q⊥, α, q⊥) and

• for each state q ∈ N.Q and for each α ∈ N.Σ such that N.δ(q, α) is

undefined, we update the transition function to include (q, α, q⊥).

Given a DFA N we define the prefix-closure of the language defined by N

as Prefix(L(N)) =
⋃

w∈L(N)
{t | t ⊑ w}. Using the automaton N we can

obtain N′ such that L(N′) = Prefix(L(N)) by making each state in N from

which we can reach a state q ∈ N.F final in N′.

3.2 The Model

In this section we formally present a simple model for class graphs, strate-

gies, and, object graphs. In the interest of simplifying our algorithm and its
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correctness proof we restrict class graphs to simple unlabeled graphs and

strategies to be embedded WYSIWYG strategies with one target node that

must be a sink node. Restricting class graphs to simple graphs appears to

disallow classes that contain one or more fields of the same type. We can

use a refactoring that will allow us to model such classes using graphs. For

each field fi of type ti in class C that shares the same type with another field

f j also in C we create a fresh class t′i that contains a single field f of type

ti. The new class contains the same method names and signatures as ti and

forwards all calls to f . We then update the field definition of fi in C to be t′i.

A class graph (CG) is a graph and a strategy graph embedded in a spe-

cific class graph (SG〈CG〉) is also a graph with a distinguished source node

source and a distinguished target node target such that

1. target is a sink node.

2. SG.nodes ⊆ CG.nodes [Embedded].

3. ∀n ∈ SG.nodes, reaches(SG,SG.source, n,SG.nodes) and

reaches(SG, n,SG.target,SG.nodes). [No dead nodes]

4. ∀e ∈ SG. edges : ∃p : path(p, CG) where

expansion(p, (e.source, e.target),SG.nodes) [Compatibility]

The preceding conditions help simplify and minimize the size of the

strategy graph. We restrict the strategy graph to have a single target node

(condition 1) and require that the nodes in the strategy graph are a subset

of the nodes in the class graph (condition 2) removing the need to map be-

tween the two node sets. The third condition ensures that each node in the

strategy graph contributes to some path that will reach the target node dis-

allowing irrelevant nodes. Finally, the compatibility condition (condition 4)

ensures that each edge in the strategy graph contributes to some path in the

class graph that will lead us to the target node, disallowing redundant (or

irrelevant) strategy edges.
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A path q = q1, . . . , qn is said to satisfy a WYSIWYG strategy SG〈CG〉 iff

there exists a path s = s1, . . . , smi and path(s,SG), and each node si in s is

also in q and we can decompose q into subpaths q′ such that

q = s1, q
′
1, s2, . . . , sm−1, q

′
m−1, sm

and for all j, 0 ≤ j < m, expansion((sj, q
′
j, sj+1), (sj, sj+1),SG.nodes)

holds.

An object graph O that conforms to a class graph CG (O〈CG〉) is a graph

with a total function meta : O.nodes 7−→ CG.nodes such that: ∀e ∈ O. edges

(meta(e.source),meta(e.target)) ∈ CG. edges. We also say that the type of

object o is meta(o). The function meta is lifted to paths in O, e.g., for a

path p = p1, . . . , pn, meta(p) = meta(p1), . . . ,meta(pn). We also say that

a path p in O satisfies a strategy graph SG embedded in CG if and only if

satisfies(meta(p),SG).

Given a class graph CG, a strategy graph SG and a conforming object

graphO our goal is to enumerate the set of paths p inO such thatmeta(p) is

a prefix of a path q such that path(q, CG) and satisfies(q,SG). We achieve this

by constructing a class graph automaton NCG , a strategy graph automaton

NSG and an object graph automaton NO such that,

• NCG selects all paths in CG starting at SG.source and terminating at

SG.target,

• NSG selects all paths comprised of nodes from CG.nodes that are ex-

pansions of paths in SG starting with SG.source and terminating with

SG.target, and,

• NO selects all paths in the object graph O that start at an object o and

terminate at an object o′ such thatmeta(o) = SG.source andmeta(o′) =

SG.target.

We can obtain the set of paths p that we are looking for using automata

intersection. First we take the prefix closure of the automata intersection
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of the strategy graph automaton and the class graph graph automaton, i.e.,

Nsc = Prefix(NSG ∩ NCG). We then take the intersection between Nsc and

the prefix closure of the object graph, e.g., Prefix(NSG ∩ NCG) ∩ Prefix(NO).

The intersection between the strategy graph automaton and the class

graph automaton gives as a new automaton (Nsc) that accepts all prefixes

of valid paths in the class graph. The intersection between Nsc and the

prefix closure of the object graph automaton results in an automaton that

accepts all prefixes of valid paths in the object graph.

3.3 Path Selection

Abstractly speaking, compilation of an AP program involves the selection

of paths in a graph G given a selector S. In AP, the strategy graph corre-

sponds to the selector S and the class graph corresponds to the graph G.

Ultimately, in AP the selected paths in the class graph are used to traverse

over an object graph. We only consider object graphs that conform to the

class graph in question. We define conformance between an object graphO

and a class graph CG if for each edge (v1, v2) in O (meta(v1),meta(v2)) is in

CG, where meta is a function that returns the runtime type of an object o in

O. Therefore, by conformance, selected paths from the class graph provide

the set of all possible valid paths in a conforming object graph.

Even though in this chapter we use simple graphs to represent WYSI-

WYG strategies, class graphs and object graphs to address the path selec-

tion problem, automata theory [16] has also been used to explain the path

selection problem in AP [35, 36, 33]. We describe how each of the graphs

involved, strategy graph, class graph and object graph can be turned into a

deterministic finite automaton (DFA). First we sketch an algorithm on how

we can turn the strategy graph into a DFA and then describe the modifica-

tion to the algorithm to accommodate for class graphs and object graphs.

We then proceed to map operations on automata, specifically automata in-
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tersection, to the compilation approaches taken by AP tools. AP tools fall

into one of the following two compilation approaches,

1. generating code given a strategy and a class graph, e.g., DemeterJ,

and,

2. navigating over an object graph O given a strategy SG and a class

graph CG where O conforms to CG, e.g., DJ and DAJ.

3.3.1 Strategy Graph Automaton

Given a strategy graph SG with a source node s and a target node t, and a

class graph CG such that SG is embedded in CG (i.e., SG.nodes ⊆ CG.nodes)

we build a DFA NSG = 〈Q,Σ, δ, q0, F〉 using the following steps:

1. Σ = CG.nodes. The automaton’s alphabet is the same as the node

names in CG.

2. F = {qSG.target}. The state qSG.target corresponds to the target node v in

SG.

3. Q = {qv | v ∈ SG.nodes} ∪ {q0}. Each node in SG becomes a state in

the automaton and we add a distinguished initial state q0.

4. ∀qv ∈ Q \ F : δ(qv, v′) =















qv′ if (v, v′) ∈ SG. edges

qv if v′ ∈ Σ \ SG.nodes

For each edge e = (v, v′) in SG.edges, such that v 6∈ F we add a transi-

tion from the automaton’s state that corresponds to v to the automa-

ton’s state that corresponds to v′. The transition is labeled with v′.

We also add self loops to each state, except the final state, in NSG la-

beled with all the symbols in Σ other than the node names in SG, (i.e.,

CG.nodes \ SG.nodes).

5. We add a transition labeled with s from our initial state q0 to qs and

the ⊥-closure of NSG to δ.
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Figure 3.1: Class Graph

Using the class graph in Figure 3.1 and the strategy graph in Figure 3.2(a)

we obtain the DFA NSG given in Figure 3.2(b). The language defined by

NSG can be given as a regular expression,

L(NSG) = AX ∗(B | C)X ∗D

where X = (v1 | . . . | vn) such that vi ∈ CG.nodes \ SG.nodes.

3.3.2 Class Graph and Object Graph Automaton

We use a similar algorithm to create an automaton NCG for a class graph

CG. The automaton NCG selects all the paths in CG that start from the class

SG.source and terminate at the class SG.target. Given a strategy graph SG

with a source node s and a target node t, and a class graph CG such that

SG is embedded in CG (i.e., SG.nodes ⊆ CG.nodes) we build a DFA NCG =

〈Q,Σ, δ, q0, F〉 using the following steps:

1. Σ = CG.nodes. The automaton’s alphabet is the same as the node

names in CG.

2. Q = {qv | v ∈ CG.nodes} ∪ {q0}. Each node in CG becomes a state in

the automaton and we add a distinguished initial state q0.
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A
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C

D

(a) Strategy
graph with
source A and
target D

q0 qA

Σ′

qB

Σ′

qC

Σ′

qD
A

B D

C D

(b) Resulting DFA from SG and CG
where Σ′ = CG.nodes \ SG.nodes =
(X,Y, P,Q, F, E,O). For readability all
transitions to/from q⊥ are excluded.

Figure 3.2: The strategy SG and the traversal automaton using the class
graph from Figure 3.1.

3. F = {qSG.target}. The state qSG.target corresponds to the target node v in

CG.

4. δ = {(qv, v′, qv′) | (v, v′) ∈ CG. edges}. For each edge e in CG we add

a transition from the automaton’s state that corresponds to e’s source

node to the automaton’s state that corresponds to e’s target node. The

transition is labeled with e’s target node name. For example, given an

edge e = (v, v′) in CG we generate a transition (qv, v′, qv′) in NCG .δ.

5. We add a transition labeled with s from our initial state q0 to qs and

the ⊥-closure of NCG to δ.

Figure 3.3 shows the class graph automaton using the class graph from

Figure 3.1 and the strategy from Figure 3.2(a). The language defined by the
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Figure 3.3: Class Graph Automaton

class graph automaton NCG in Figure 3.3 can be given as

L(NCG) = A(EO | XY(ǫ | (P | QC)BF | QC))D

In the case of an object graph, the algorithm is similar to the case for the

class graph but the algorithm takes as input an object graph O a strategy

graph SG, and a start object o. The object graph automaton NO selects all

the paths in O that start from the node o, terminate at a node o′, such that

meta(o) = SG.source and meta(o′) = SG.target. We build the DFA NO using

the following steps:

1. Σ = CG.nodes. The automaton’s alphabet is equal to the set of node

names in the class graph.

2. Q = {qo | o ∈ O.nodes} ∪ {q0}. For each node o in the object graph

we create a corresponding state qo.

3. F = {qo | meta(o) = SG.target}. All states that correspond to nodes

in the object graphwhose runtime type is equal to the strategy’s target

are final.

4. δ = {(qo,meta(o′), qo′) | (o, o′) ∈ O. edges}. For each edge in the object

graph between two nodes o and o′ we create a transition between qo

and qo′ labeled with the runtime type of o′.
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5. We add (q0,meta(o), qo), where o is the starting object provided, and

the ⊥-closure of N to δ.

Thus, given a strategy graph SG, a class graph CG and a conforming

object graph O with a start object o, we can obtain a strategy automaton

NSG , a class graph automaton NCG and an object graph automaton NO.

3.3.3 AP Compilation Approaches Using Automata

We can explain the two compilation approaches taken by AP tools using au-

tomata operations on the strategy graph automaton, class graph automaton

and the object graph automaton.

3.3.3.1 Generative Approach: DemeterJ

The DemeterJ [50] AP tool consumes a strategy and a Java program along

with a class graph for the Java program and generates Java code to perform

traversals based on the input strategy. To generate Java code for travers-

ing runtime object graphs that conform to the input class graph, DemeterJ

calculates a traversal graph [28]; a graph that contains all valid paths in the

class graph.

The process for calculating all valid paths for a given strategy SG over a

given class graph CG can be formulated as the automata intersection of the

strategy graph automaton NSG and the class graph automaton NCG . Tak-

ing the intersection of the strategy graph automaton and the class graph

automaton gives us an automaton, Nsc, that recognizes the language of all

complete WYSIWYG paths, i.e., paths that terminate with SG.target. Deme-

terJ generates code (methods) within classes that are responsible for travers-

ing any conforming object graph.

DemeterJ’s code generation consults the traversal graph in order to iden-

tify the correct classes in the program and performs runtime checks on ob-

jects in order to avoid null values. The traversal graph is viewed as a non-
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deterministic finite automaton (NFA). The generated methods simulate the

NFA with each method having as an argument a list of tokens. The list of

tokens tracks the NFA’s states that the automaton is currently on given the

objects traversed [7].

The intersection of the strategy graph automaton and the class graph

automaton Nsc can replace the traversal graph and can be used to generate

code in DemeterJ. Given that Nsc is a DFA, code generation is simpler than

in the case of the traversal graph; methods do not need to consume a list of

tokens, there is at most one current state during a run of the DFA on any

input.

Given that at runtime object graphs are not restricted to have all the

edges and nodes found in their conforming class graph we can have object

graphs that do not contain a valid path for the strategy. An object graph can,

however, contain prefixes of valid paths. Performing a traversal over such

an object graph starting at an object o will result in visiting all prefixes of

valid paths that start at meta(o), e.g., meta(o, . . . , on) ⊑ p where p ∈ L(Nsc).

We accommodate for these prefixes in our automaton by taking the prefix

closure of Nsc, Prefix(Nsc). For example, the prefix closure of the intersection

of the strategy automaton in Figure 3.2(b) and the class graph automaton

in Figure 3.3 L(N) = Prefix(L(N′)) is given in Figure 3.4. Given an object

graph O we can obtain the set of valid prefixes for O by simulating each

path in O on N.

Given N (Figure 3.4) consider as an example an object graph O consist-

ing of the object a such that meta(a) = A. The set of paths p such that p is

a prefix of a valid path in CG is the set {a}. If we consider another object

graph a → o → e → d where the runtime type for an object x is X, then

again the set of valid prefixes is {a}. As a last example, lets consider the

object graph a → x → y → q → c → b → f → d. Observe that the object

graph contains one path and the path is not a WYSIWYG path. The set of

valid prefixes is then {a, ax, axy, axyq, axyqc}.
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Figure 3.4: Automaton representing Prefix(NSG ∩ NCG). For readability all
transitions to/from q⊥ are excluded.

3.3.3.2 Reflective Approach: DJ/DAJ

Tools like DJ [34] and DAJ [44] provide the same capabilities as DemeterJ

but can do so without generating code.1 Instead both DJ and DAJ interro-

gate runtime objects in order to calculate the valid paths during traversals.

Both DJ and DAJ rely on the underlying runtime system’s ability to obtain

runtime types for objects as well as construct the complete class graph from

an object graph.

After calculating the class graph, DJ and DAJ proceed by constructing

the traversal graph from the strategy and the calculated class graph and use

the traversal graph as a guide in order to traverse the object graph. At each

object DJ/DAJ reflectively acquires the objects runtime type t and then uses

t and the traversal graph (an NFA) to decide where to go next.

As in the case with DemeterJ, the traversal graph can be replaced by the

prefix closure of the intersection of the strategy graph automaton and the

class graph automaton, e.g., Nsc = Prefix(NSG ∩ NCG). Traversing the object

graphwill follow the same pattern but instead of interrogating the traversal

graph, we now interrogate Nsc.

Previouswork on compilationmethods for AP [35, 36, 28] defined strate-

gies differently. In [35, 36] strategies are given as series-parallel graphs

that cannot express loops in strategy graphs. Unlike WYSIWYG strate-

gies, series-parallel strategies select paths that allow for extra occurrences

of strategy node names in selected paths. In [28], strategies are more gen-

1DAJ can do both, use reflection or generate code.
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eral; strategies are graphs selecting paths that allow for extra occurrences of

strategy node names in selected paths. Both of these approaches to strate-

gies allow extra occurrences of strategy nodes to appear in selected paths.

Trying to capture this property in our strategy graph automaton construc-

tion implies that at each state of the automaton we should have self loop

iterations labeled with strategy node names.2 Adding these types of self

loops yields a non-deterministic finite automaton (NFA). Therefore, the in-

tersection of the strategy graph automaton, the class graph automaton and

the object graph automaton yield an NFA. Using an NFA to generate code

that traverses all paths selected by SG in an object graph O we can either

determinize the NFA to obtain a DFA and use the generated DFA to gener-

ate code [36, 35], or, simulate an NFA by passing to each generated method

tokens that represent the state(s) the NFA is currently on during its simula-

tion [28]. Determinization of the NFA can generate an exponentially large

DFA and thus generate an exponentially large program,3 while simulating

an NFA incurs a runtime cost.

With WYSIWYG strategies we are able to give a simple construction for

our traversal automaton that is deterministic.

3.4 Correctness Criteria for Traversal Automata

A traversal automaton N for class graph CG and a strategy graph SG (Defi-

nition 1), is an automaton with Σ = CG.nodes that is used to guide a traver-

sal of an object graph O conforming to CG only through paths that satisfy

the given strategy. Intuitively, N must have the following properties:

soundness – all words in the language L(N) of the traversal automaton N

satisfy the strategy.

2Our construction in section 3.3.1 explicitly disallows these types of self loops.
3An example strategy and class graph that leads to exponentially large program is

given in [28] §6.2.
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completeness – all paths in the class graph that satisfy the strategy are in

L(N).

optimality – the automaton moves to state q⊥ for all paths that cannot lead

to a target. For any path p in class graph CG such that there does not

exist a path q in CG and q ∈ L(N) and p ⊑ q then N.δ∗(q0, p) = q⊥.

We would like the traversal automaton to capture all words that sat-

isfy the strategy (soundness) but also capture all the paths in the given class

graph that satisfy the strategy (completeness). Furthermore, we would like

the traversal automaton to transition to its stuck state (q⊥) as soon as a sym-

bol α is read from the input that we know cannot lead us to the final state

(optimality).

Definition 1. (Traversal Automaton)

An automaton N = 〈Q,Σ, δ, q0, F〉 is a traversal automaton for a class graph

CG and an embedded strategy SG if and only if

1. Σ = CG.nodes. The automaton’s alphabet is the same as the node names in

CG.

2. ∀q : q ∈ L(N) ⇒ satisfies(q,SG). All words in the language Ł(N) satisfy

SG.

3. ∀q : path(q, CG) ∧ satisfies(q,SG) ⇒ q ∈ L(N). All the paths in the class

graph CG that satisfy SG are in the language L(N).

4. ∀p : path(p, CG) ∧ ¬stuck(N,N.δ∗(q0, p)) ⇒ ∃q : path(q, CG) ∧ p ⊑

q ∧ satisfies(q,SG). For simulations of the automaton on a class graph path

p that leave the automaton in a non-stuck state (i.e., all states other than q⊥)

there exists a path q in the class graph that satisfies SG and p ⊑ q.
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q0 qA qE qO qD
A E O D

Figure 3.5: Object graph automaton NO for object graph a → e → o → d.

3.5 Constructing the Traversal Automaton

Given a strategy graph SG and a class graph CG we construct a traversal

automaton N using the following steps:

1. Σ = CG.nodes. The automaton’s alphabet is the same as the node

names in CG.

2. Q = {qv | v ∈ SG.nodes} ∪ {q0}. Each node in SG becomes a state in

the automaton N and we also add a distinguished start node q0.

3. F = {qSG.target}. The state qSG.target corresponds to the target node v in

SG.

4. ∀qv ∈ Q \ F : δ(qv, v′) =















































qv′ if (v, v′) ∈ SG. edges

qv if ∃v2 : (v, v2) ∈ SG. edges ∧ v′ ∈ A

reaches(CG, v, v′, A) ∧ reaches(CG, v′, v2, A)

where A = Σ \ SG.nodes

5. We add (q0,SG.source, qSG.source) and the ⊥-closure of N to δ.

Figure 3.8 shows the TA for the strategy graph in Figure 3.8(b) and the

class graph given in Figure 3.1 (page 55). The language defined by the au-

tomaton in Figure 3.8(b) can be given as

L(N) = A(X | Y | P | Q)∗(BF∗ | C)D

The language defined by the traversal automaton N in Figure 3.8(b) de-

fines paths that satisfy the strategy SG from Figure 3.8(a) (Definition 1, con-

dition 2). Observe that for all paths p in the class graph that satisfy the
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strategy, p is in the language defined by the automaton N in Figure 3.8(b),

(Definition 1, condition 3). However the reverse implication does not hold;

there are words w ∈ L(N) that are valid paths according to the strategy

but invalid paths for the class graph, e.g., (A,Q, B,D) ∈ L(N) but the path

(A,Q, B,D) is an invalid path for the class graph in Figure 3.1.

The strategy graph automaton NSG (§ 3.3.1, page 56) corresponds to our

Traversal Automaton in that it defines the set of valid paths as words of

the language defined by the automaton. Figure 3.8(b) shows the Traversal

Automaton (TA) for the same class graph and strategy graph. The traver-

sal automaton’s construction is similar to the construction of the strategy

graph automaton, the difference lies in the way we calculate self loops on

each automaton state. In the case of the TA, we add a self loop on a state qi

labeled v if the node v appears on a path p in the class graph from node i to

node j and (i, j) is an edge in the strategy graph. Therefore, the TA excludes

paths in the class graph that may never lead to qD that the NSG automaton

allows (e.g., A, E,O). The language defined by the TA contains all WYSI-

WYG paths in the class graph and extra paths that cannot be present in a

conforming object graph. The strategy graph automaton, on the other hand,

contains all WYSIWYG paths in the class graph as well as extra paths that

can be present in a conforming object graph.

For example, given the strategy from Figure 3.2(a) with the strategy

graph automaton NSG (Figure 3.2(b)), traversal automaton NTA (Figure 3.8)

and class graph automaton NCG (Figure 3.3), consider the object graph a →

e → o → d and its object graph automaton NO (Figure 3.5), then the paths

selected by Prefix(NTA) ∩ Prefix(NO) (Figure 3.7) and the paths selected by

Prefix(NSG) ∩ Prefix(NO) (Figure 3.6(a)) differ. The extra loop transitions in

NSG allow for paths that are not prefixes of any valid path for the strategy.

The construction of our TA only includes transitions between non-stuck

states if the node in the class graph contributes to a path between strategy

nodes. Thus the TA only selects paths that are prefixes of some valid path
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q3q2
O

q0 q1
A E

(a) Automaton N = Prefix(NSG) ∩ Prefix(NO).

q1q0
A

(b) Automaton M =
Prefix(NTA) ∩ Prefix(NO).

Figure 3.6: The difference between using the TA and the strategy graph
automaton to calculate the set of paths the object graph a → e → o → d.
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q2
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Figure 3.7: Intersection of Prefix(TA) and the prefix closure of the object
graph automaton for object graph a → x → y → q → c → b → f → d.

for the strategy in the class graph.

By taking the intersection of the strategy graph automaton and the class

graph automatonwe obtain an automaton that contains only the validWYSI-

WYG paths in the class graph.

With a TA there is no need to take the TA’s intersection with the class

graph automaton. Instead we can obtain the set of valid paths in an ob-

ject graph by taking the intersection of the prefix closure of the TA and the

prefix closure of the object graph, e.g., Prefix(TA) ∩ Prefix(NO).

Consider for example the TA in Figure 3.8(b) and the object graph a

where meta(a) = A. The intersection of the prefix closed TA and the prefix

closed object graph automaton accepts the string A. As another example

consider the object graph a → x → y → q → c → b → f → d, then the

intersection of the prefix closure of TA and the prefix closure of the object

graph automaton accepts the language {A, AX, AXY, AXYQ, AXYQC} (Fig-

ure 3.7).

Theorem 1. (Correctness)

The traversal automaton constructed from a class graph CG and a strategy graph
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(a) Strategy
graph with
source A and
target D

q0 qA

X,Y,P,Q

qB

F

qC

qD
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B D

C D

(b) Resulting traversal automaton from SG
and CG. For readability all transitions
to/from q⊥ are excluded.

Figure 3.8: The strategy SG and the traversal automaton using the class
graph from Figure 3.1 (page 55).

SG satisfies Definition 1, page 62.

Proof. let N be the traversal automaton obtained from a class graph CG and

a strategy SG using the 5-step procedure given in § 3.5, we show that N

satisfies all the properties of a traversal automaton.

1. Immediate.

2. We start by showing that every word r in L(N) must start with the

node SG.source and end with SG.target. By definition we know that

r is in L(N) iff we can trace a path through N starting by N.q0 and

ending with a state in N.F whose sequence of labels are the same as

r. By construction, there is one edge going out of q0 whose label is

SG.source. Therefore, every word in L(N) starts with SG.source. Also,

by construction, we have a single final state labeled qSG.target. By the

definition of SG, SG.target is a sink node. Therefore, all the edges
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leading into qSG.target are created by step 4 (qm, n, qn), i.e., all the edges

leading into the final state of N are labeled SG.target.

Now we show that any word r = r1, r2, . . . rn in L(N) satisfies the

strategy. Let s = s1, s2, . . . , sk be the longest subsequence of r such

that si ∈ SG.nodes. Therefore expansion(r, s,SG.nodes) holds. As we

have shown above r1 = SG.source, therefore, s1 = r1 = SG.source

because otherwise, we can prepend SG.source to s and get a longer

subsequence of r whose nodes are in SG.nodes. Likewise, sk = rn =

SG.target. By the definition of satisfies, if we can show that s is a path

in SG, then we can conclude that satisfies(r,SG).

First, we show that s is in L(N) and then show that s is a path in SG.

By construction, the nodes in r but not in s are added as self loop la-

bels by step 4 (qm, s, qm). Since we can trace a path through N whose

labels are the same as r, we can also trace a path through N whose

labels are the same as s by avoiding self loops.

Finally, we show that s is a path in SG. Since s is a word in L(N), by

construction we know that each symbol si (in SG.nodes) labels a tran-

sition that leads to state qsi (added by step 4 (qm, n, qn)). Furthermore,

every two consecutive symbol si and si+1 show up as labels on two

transitions, one leading into state qsi and the other leading out of qsi

and into qsi+1
. The second transition can only exist if there is an edge

(si, si+1) in SG. edges. Therefore, s is a path in SG.

3. Let p = p0, p1, . . . , pn be a path in CG and satisfies(p,SG). We show

that a simulation of p on N starting at the initial state terminates with

N in the final state.
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We note that, by construction, only symbols in SG.nodes can transition

N from one state to another (through one of the transitions added by

step 4 (qm, n, qn)) such that both states are not the q⊥ state. Symbols

in CG.nodes \ SG.nodes can either transition N through one of the self-

loops added by step 4 (qm, s, qm) to the same state or to the stuck state

q⊥.

We first show that nodes in p that are not in SG.nodes can not tran-

sition N to the stuck state q⊥ and therefore can not change the state

of N. Suppose that pi 6∈ SG.nodes is the first node in p to transition

N from a non stuck state into the stuck state q⊥. Let ph be its closest

predecessor node that is in SG.nodes and pj be its closest successor

node that is in SG.nodes. The symbols ph and pj always exist and are

uniquely identifiable by the definition of satisfies. Then pi must not

be mentioned on any self-loop at qph , otherwise, pi will not transition

N to q⊥. For that to happen, pi must be unreachable in CG from ph

through nodes not in SG.nodes or cannot reach pj in CG through nodes

not in SG.nodes or both. The first condition, contradicts our assump-

tion that ph can reach pi through a path in CG (a subpath of p) that

does not contain any node in SG.nodes. The second condition, contra-

dicts our assumption that pj is reachable from pi through a path in CG

that does not contain any node in SG.nodes.

We now show that nodes in p that are in SG.nodes can only transition

N to its only final state qSG.target. By definition of satisfies, there ex-

ists a path s = s0, . . . , sk in SG that contains all nodes in p that are in

SG.nodes and p0 = s0 = SG.source, which by construction transitions

N from the initial state q0 to qSG.source. For any following symbol si
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where i > 0, there must be an edge (si−1, si) in SG.edges because, by

the definition of satisfies, s is a path in SG. Therefore, by construc-

tion, there is a transition (qsi−1
, si, qsi) (added by step 4 (qm, n, qn)) in

N. Furthermore, by the definition of satisfies, pn = sk = SG.target,

which leaves N in state qSG.target which is the only final state of N by

construction.

4. Given N at state q0 consider a simulation of N given the input p =

p1, p2, . . . , pn, where path(p, CG), that leaves N in a state qm we need to

show that ∃q : path(q, CG) and satisfies(q,SG) and p ⊑ q. We proceed

by cases on p.last.

• p.last ∈ N.F then select p = q, and we know that q ∈ L(N) thus

satisfies(q,SG) and p ⊑ q.

• p.last = q0. By Lemma 1 we know that there exists a path p in

CG and p.first = SG.source such that given N at state qSG.source

a simulation of N on p.tail leaves N in state qSG.target. By the

construction of N we know that q0 has one and only one transi-

tion (q0,SG.source, qSG.source) that leaves N in a non-stuck state.

Thus given N at state q0 a simulation of p will leave N in state

qSG.target. Thus, p = q, and we know that q ∈ L(N), therefore

satisfies(q,SG) and p ⊑ q.

• p.last ∈ SG.nodes\N.F. By construction of N we know that N

just completed a transition between two distinct states q1, q2.

We have already shown (Lemma 1) that from any state q′ ∈

N.Q\{q0, q⊥, }we can always find a path r in CG such that a sim-

ulation of N at state q′ on input r.tail leaves N in state qSG.target.

We also know that p takes N from q0 to qm where qm is not a stuck

state or an accepting state. We also know that r.first = p.last thus
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we can construct q = p • r and path(q, CG) and p ⊑ q.

We need to show that satisfies(q,SG). But we have already shown

that for all w ∈ L(N) then satisfies(w,SG) and we know that

q ∈ L(N).

• p.last 6∈ SG.nodes. We know that a simulation of N at state q0 on

input p leaves N in state qm. By construction of N, (q, v, q) ∈ N.δ

iff v ∈ CG.nodes and v 6∈ SG.nodes. Thus the last transition taken

by N while simulating p was a self loop on state qm. We also

know by construction of N that for all v ∈ CG.nodes, (qm, v, qm) ∈

N.δ iff there exists qk ∈ N.Q and path r = r1, r2, . . . , rn in CG such

that

r1 = m ∧

rn = k ∧

∀j : 1 < j < n : rj 6∈ SG.nodes ∧

∃i : 1 < i < n : ri = v

We can thus select transitions

(qm, ri + 1, qm), (qm, ri + 2, qm), . . . , (qm, rn−1, qk), (qm, rn, qk)

By construction we know that the transitions labeled with

ri+1, ri+2, . . . , rn−1 are defined in N.δ. We also know by construc-

tion that (qm, rn, qk) ∈ N.δ. We have shown (Lemma 1) that for

any state qi ∈ N.Q such that qi 6∈ {q0, q⊥, qSG.target} we can con-

struct a path p′ in CG such that given an N at state qi simulating

N on input p′.tail leaves N in state qSG.target. We can thus con-

struct the path q = p • (ri, . . . rn • p′) such that path(q, CG) and

p ⊑ q. Since q ∈ L(N) we can also conclude that satisfies(q,SG).
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Lemma 1. Given a class graph CG, an embedded strategy SG and the traversal

automaton N for SG and CG for every state qv in N.Q\{q⊥, q0, qSG.target}, ∃p
′ :

path(p′, CG) ∧ p′.first = v such that N.δ∗(qv, p′.tail) = qSG.target.

Proof. By the definition of SG (no dead states condition),

∃r : path(r,SG) ∧ r.first = v ∧ r.last = SG.target

By the definition of SG (compatibility condition) we know that

∀e ∈ SG. edges : ∃r′ : path(r′, CG) ∧

expansion(r′, (e.source, e.target),SG.nodes)

Let r′ = r′1, . . . , r
′
m. By the definition of expansion and by construction of N,

we know that r′1 = e.source and r′m = e.target and

∀i : 1 < i < m : r′i 6∈ SG.nodes ∧

(qr′1 , r
′
i, qr′1

) ∈ N.δ

Thus r′i cannot move N to a stuck state. Observe that qr′1
= qe.source and

qr′n = qe.target for e ∈ SG. edges. Thus

(qr′1 , r
′
n, qr′n) = (qe.source, r

′
n, qe.target)

and by construction of N we know that (qe.source, r′n, qe.target) ∈ N.δ. We can

thus select

(qr′1 , r
′
2, qr′1

)(qr′1 , r
′
3, qr′1

) . . . (qr′1 , r
′
n, qr′n)

and move N from qr′1
to qr′n .

We can repeat the same process for each strategy edge ej connecting two

consecutive nodes in r and obtain a set of paths πj such that each πj.tail

simulated on N at state qej.source leaves N in state qej.target. Concatenating all

πj returns a path π in CG such that given N at state qv, a simulating of N

on π.tail takes N from qv to qSG.target.
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3.6 Walking an Object Graph

In this section, we define the operation walk(O〈CG〉,N, o) which takes an

object graph O〈CG〉 that conforms to a class graph CG, a traversal automa-

ton N created from CG and a strategy SG, and an starting object (o) in

O.nodes and traverses O guided by traversal automaton N. We also prove

that if walk terminates it returns a set P that is the largest set containing all

paths p inO starting with object o such thatmeta(p) is a prefix of a path q in

O and q satisfies SG. We say that a path p in O is valid under SG, denoted

valid(p,SG), iff

∃q : path(q, CG) ∧ meta(p) ⊑ q ∧ satisfies(q,SG)

Input: og : an object graph that conforms to a class graph cg

ta : a traversal automaton

os : an object in the object graph.

Output: a walk of og starting a os and guided by ta

1 return walkHelper (os, og,ta,ta.q0,{os},∅)

Figure 3.9: walk(og,ta,os)

Theorem 2. For all CG and for all traversal automata N, and all object graphs

O〈CG〉 and os such that os ∈ O.nodes and meta(os) = SG.source, let P =

walk(O,N, os) then for all paths p in P, valid(p,SG) holds.

Proof.

By induction on the depth of recursive calls to walkHelper. Consider the

first call to walkHelper. P = ∅ and we know that meta(os) = SG.source.

We also have that N is in state q0 and by construction of N we know that

there is a transition (q0,meta(os), qSG.source). By Lemma 1we know that there

exists a path q such that path(q, CG) and a simulation of N on SG.source, q

moves N to SG.target. The function walkHelper adds os to P (line 9). Thus,
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Input:

os : the starting object, os ∈ og and meta(os) = SG.source.

og : an object graph that conforms to a class graph cg

ta : a traversal automaton whose alphabet is cg.nodes

state : the current state of the automaton ta

reach : set of nodes from og to process

P : {allPrefixes(p) | ∃o′ : o′ ∈ reach ∧ p.first = os

path((p, o′), og) ∧

∃w : w ∈ L(ta) ∧meta(p) ⊑ w}

Output: set of paths P′ such that

∀p : path(p, og) ∧ p.first = os ∧

∃w : w ∈ L(ta) ∧ meta(p) ⊑ w ⇐⇒

o1, . . . , on ∈ P′

1 if reach = ∅ then
2 return P;
3 end
4 foreach o ∈ reach do
5 state’ = ta.δ(meta(o), state);
6 if state’ == q⊥ then
7 return P;
8 end
9 if P = ∅ then P = {o};
10 else foreach p ∈ P do
11 if (p.last, o) ∈ og. edges then
12 P = P ∪ {p, o};
13 end

14 end
15 reach’ = {o′ | e ∈ og. outgoing(o) ∧ e.target = o′} ;
16 P = walkHelper (os, og, ta, state’, reach’, P);

17 end
18 return P;
19

Figure 3.10: walkHelper(os, og,ta,state,reach, P)
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SG.source, p ∈ L(N) and by Definition 1 we can deduce that

satisfies((SG.source, p),SG)

Assume that after k recursive calls to walkHelper the theorem holds and

consider the k+ 1 recursive call. By the definition of walkHelper line 16 is

the only recursive call.

At call k + 1 if reach is empty then we return P and by the induction

hypothesis all paths in P satisfy SG.

If reach is not empty then for each element o of reach we have two cases

(lines 4 - 17):

1. ta.δ(meta(o), state) = q⊥ In this case, we return P and by the induction

hypothesis we know that each element of P satisfies SG.

2. ta.δ(meta(o), state) 6= q⊥ For each p ∈ P we update P to include p, oc

(lines 9 - 14) if there exists an edge (p.last, oc) ∈ O, or, if P is the

empty set we add the simple path o to P. By the induction hypothesis

we know that valid(p,SG). Let q′ be the automaton’s new state after

reading in meta(oc). Since q′ 6= q⊥ we know that by Lemma 1 there

exists an input r such that simulating ta at state q′ on r moves ta to

its target node. Let h = meta(p),meta(oc), r, then h ∈ L(N) and by

Definition 1 we can deduce satisfies(h,SG). Finally, we create a new

set reach’ (line 15) that contains the all immediate neighbors of oc in

O and return the result of the recursive call to walkHelper passing the

same start object, object graph, traversal automaton, the new automa-

ton state state’, the new set of reachable nodes reach’, and the set P.

Theorem 3. Given a class graph CG, an embedded WYSIWYG strategy SG, a

traversal automaton N for CG and SG, a conforming object graph O for CG and

a starting object os such that os ∈ O.nodes, meta(os) = SG.source, and, P =

walk(O,N, os) then P is maximal.
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Proof. By contradiction. Assume that there exists a path p in O (path(p,O))

such that valid(p,SG) and p 6∈ P. Let p = p1, p2, . . . , pn, an consider the first

call to walkHelper(os,O,N,N.q0, {os},∅), where reach = {os}. Since reach

is not the empty set (Figure 3.10, line 1), walkHelper iterates over the ele-

ments of reach (Figure 3.10, lines 4 - 17). We know that N.δ(meta(os), q0) =

qSG.source by construction of N and P = {os} (Figure 3.10, lines 9 - 14).

The recursive call to walkHelper(os,O,N, qSG.source, reach’, P) (Figure 3.10,

line 16) where reach’ contains all immediate neighbors of os inO (Figure 3.10,

line 15). Thus, p2 ∈ reach’. Inspecting the execution of the first recursive

call we know that reach is not the empty set and that state = qSG.source. Thus

walkHelper iterates over all elements o in reach including p2. By our assump-

tion that valid(p,SG) and by the properties of the traversal automaton N

we know that N.δ(meta(p2), qSG.source) = q and that q 6= q⊥. Therefore osp2

will become an element of P.

A similar reasoning can be used to show that for all pairs (pi, pi+1), for

1 ≤ i < n in p the prefix osp2, . . . , pi+1 is a member of P.





CHAPTER 4

AP translation to CLASSICJAVA

In this chapter we provide the semantics for a core subset of Demeter, called

APCORE, as a translation from APCORE to CLASSICJAVA [14]. We also

prove that given a well typed APCORE program at type t our translation

generates a well typed CLASSICJAVA program at type t.

4.1 Notation

Before we discuss APCORE ’s abstract syntax and our translation we first

introduce notation that we use throughout this chapter.

We use use an overbar over a symbol, e.g., D, to denote a sequence of

zero or more elements D. We index individual elements of the list using

a subscript, i ∈ [0, n] : Di. We also use the notation D1 . . .Dn as another

way to denote a sequence and we deploy this second notation in situations

where confusion between indexes may arise.

We use C to range over class names and V to range over visitor names

and B to range over both class names and visitor names. We use SG to de-

note the set of strategy graphs SG, CG to denote the set of class graphs CG

and TG to denote the set of traversal graphs TG. We overload the symbol

· and use it for both list concatenation and list append. We use • for the

empty list and overload the symbol \ to denote set difference but also an

update or addition of an element in a list. For example, f 7→ v \ fi 7→ v′

77
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will update the value pointed to by fi if fi ∈ f , otherwise if fi 6∈ f we add

fi 7→ v′ to the list f 7→ v.

We use ∅ to denote the empty set and we use S[x/y] to denote replace-

ment of the element y with the element x in the set S. If y 6∈ S then

the replacement does not alter S. Replacements can be sequenced, e.g.,

S[x/y][p/q] performs the replacements one at at time in sequence, first we

replace y with x and on the resulting set we then replace q with p. We also

use the notation Ck to annotate the node C with k. We use C for a set of

class names and Ck for a set of annotated class nodes. We use the symbol P

denote a set of paths and overload the functions source and target to return

the source (or target) of an edge or path.

4.2 APCORE

4.2.1 APCORE Syntax

The surface syntax for APCORE is given in Figure 4.1. A complete pro-

gram P in APCORE consists of a list of class and/or visitor definitions D

followed by an expression e representing the program’s main method. A

class definition must provide a name for the class followed by the keyword

extends and the name of its superclass. The name of the superclass can-

not be omitted except for the predefined class Object. A class definition

comprises of a list of field definitions C f ; followed by a unique constructor

method, a list of instance methods, and a list of adaptive methods.

A visitor definition is similar to a class definition but can only extend

other visitors. A visitor definition must provide a name for the visitor fol-

lowed by the keyword extends and the name of its supervisitor. The name of

the supervisitor cannot be omitted except for the build in Visitor; Visitor

plays the same role for visitors as the role played by Object for classes. A

visitor definition comprises of a list of field definitions, a unique constructor
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P ::= D e Programs

D ::= class C extends C {C f ; K M A}

| visitor V extends V { C f ; K M V}

Class

Visitor

K ::= B(C x,C y){super(x); this. f := y;} Constructors

M ::= t m(C x){e} Method

A ::= @{CC} t m(C x) with SG[V] Adaptive Method

V ::= before {C → {e}}

| after {C → {e}}

| t return {e}

Before Method

After Method

Return Method

CC ::= tt | ff | empty(SG) | unique(SG)

| not CC | or(CC, CC) | and(CC, CC)

Constraints

e ::= x | new C(e) | e.m(e) | e. f | e. f := e

| super.m(e) | let x = e in e | (C)e | e; e

Expressions

t ::= C Class Types

B ::= C | V Class or Visitor Types

C ::= class name or Object

V ::= visitor name or Visitor

m ::= method name

f ::= field name

x ::= variable name or this

SG ::= strategy graph

Figure 4.1: AP surface syntax.

method, a list of instance methods and a list of visitor methods.

Fields are defined as a pair with the first element being the field’s type

and the second element the field’s name. A constructor method K has the

same name as the class or visitor and takes the same number of arguments

as the total number of class or visitor fields, including inherited fields. The

body of the constructor method is fixed, first the superclass’ constructor is

called passing the appropriate arguments and then the current class’ fields

are initialized.

A method definitionM is made up of a return type t, the method name

m, a list of arguments C x and an expression as the method body. An adap-

tive method A is similar to a method definition with a constraint annota-
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tion @{CC} and with the method’s body replaced with the keyword with,

a strategy specification SG and a visitor name V.

Constraints are either primitive (e.g., empty, unique, tt, ff ) or compos-

ites created using constraint operators (e.g., not, or, and). The arguments

to primitive constraints are strategy specifications. The arguments to con-

straint operators are constraints. We leave the syntactic definition of a strat-

egy specification unspecified but provide its definition here.1

Definition 2. (Strategy Specification)

A strategy specification SG is a graph G = (V, E, ns, nt) with the following

conditions:

• a unique node ns ∈ V as the source node,

• a unique node nt ∈ V as the target node,

• for every node n ∈ V, n is reachable from ns and nt is reachable from n

We also assume the following operations on strategy definitions:

• SG.source returns the source node (ns) of strategy SG,

• SG.target returns the target node (nt) of strategy SG,

• SG.nodes returns the node set V of strategy SG, and,

• SG.edges returns the set of edges E of strategy SG.

Visitor definitions are similar to class definitions, instead of adaptive

methods visitor definitions contain visitor methods. Visitor methods have

the special names before, after, and return; before and after method

definitions consist of a list of type and expression pairs, i.e., C → {e} and

do not specify a return type. Each type-expression pair represents a visit

1The exact meaning and usage of strategy specifications is explained in later subsec-
tions. The definition of strategy specifications is similar to the definition of strategy graph
from § 3.
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method with argument type C and method body e. A return method defi-

nition has a return type and an expression as the method’s body.

Expressions in our grammar define typical expressions found in OO

languages, e.g., object creation with new, method invocation, field access

and field update, local scoping with let, an if expression, sequencing and

casting. Calls a super class’ methods start with the special variable super

followed by the method name and a list of arguments. Mathematical ex-

pressions using basic mathematical operators are also expressions in our

language.

4.2.2 Static type system for APCORE

Type rules for APCORE begin with Figure 4.5 and start with the ⊢P rule.

A well typed APCORE program satisfies some simple predicates and re-

lations, these are given in Figures 4.2, 4.3, and 4.4. The first three predi-

cates in Figure 4.2 assert that class names are unique, and within a class

definition field names and method names are unique. The relation <
c
p cap-

tures direct class subtypes and ≤c
p captures class subtypes, direct or tran-

sitive. The predicate WFClasses(D) asserts that the class hierarchy is an

order. We use ∈
f
p to identify direct fields of a class and ∈c

p to check that a

type C or a supertype of C is a member of a list of types D. The final two

predicates in Figure 4.2 assert that classes which are extended are defined

(CompleteClasses(D)) and that method overriding preserves the method’s

type (ClassOverridesOK(D)).

Figure 4.3 contains predicates that deal with Visitors and follow a sim-

ilar pattern as the predicates for classes. The first predicate in Figure 4.3

asserts that visitor names and class names are distinct. The following three

predicates assert that visitor names are unique and within a visitor defi-

nition field names and method names are unique. The relations <
v
p and

≤v
p define the direct and transitive subtype relationship for visitor types;



82 CHAPTER 4. AP TRANSLATION TO CLASSICJAVA

ClassesOnce(D) Unique class names

class C · · · {· · ·} · · ·

class C′ · · · {· · ·} ∈ D=⇒ C 6= C′

1MethodPerClass(D) Inside a class method names are unique

class C · · · { · · · t m(· · ·) · · · t′ m′(· · ·) · · ·} ∈ D =⇒ m 6= m′

1FieldPerClass(D) Inside a class field names are unique

class C · · · { · · ·C f ; · · ·C′ f ′; · · · } ∈ D =⇒ f 6= f ′

<
c
p Direct Subclass

C<
c
p C

′ ⇐⇒ class C extends C′ {· · ·} ∈ D

≤c
p Subclass

≤c
p ≡ transitive, reflexive closure of <

c
p

WFClasses(D) Class hierarchy is an order

≤c
p is antisymmetric

∈
f
p Direct field

C∈
f
p C

′ ⇐⇒ class C · · · {· · ·C′ f ; · · ·} ∈ D

∈c
p List membership for list of Classes

C∈c
p D ⇐⇒ ∃Di : C≤c

p Di

CompleteClasses(D) Classes that are extended are defined

range(<c
p) ⊆ domain(<c

p) ∪ {Object}

ClassOverridesOK(D) Class method overriding preserves the type

class C · · · {· · ·m(· · ·) · · ·} · · · class C′ · · · {· · ·m(· · ·) · · ·} ∈ D

=⇒ mtype(m,C) = mtype(m,C′) ∨ C 6≤c
p C

′

Figure 4.2: Predicates on class definitions.
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DistinctVCNames(D) Visitor and class names are distinct

visitor V · · · {· · ·} · · ·

class C · · · {· · ·} ∈ D =⇒ V 6= C

VisitorsOnce(D) Unique visitor names

visitor V · · · {· · ·} · · ·

visitor V′ · · · {· · ·} ∈ D=⇒ V 6= V′

1MethodPerVisitor(D) Inside a visitor method names are unique

visitor V · · · { · · · t m(· · ·) · · · t′ m′(· · ·) · · ·} ∈ D =⇒ m 6= m′

1FieldPerVisitor(D) Inside a visitor field names are unique

visitor V · · · { · · · C f ; · · ·C′ f ′; · · · } ∈ D =⇒ f 6= f ′

<
v
p Direct Subvisitor

V<
v
p V′ ⇐⇒ visitor V extends V′ {· · ·} ∈ D

≤v
p Subvisitor

≤v
p ≡ transitive, reflexive closure of <

v
p

≺: Direct Subtype

B≺: B′ ⇐⇒ B<
c
p B

′ ∨ B<
v
p B′

�: Subtype

B�: B′ ⇐⇒ B≤c
p B

′ ∨ B≤v
p B′

WFVisitors(D) Visitor hierarchy is an order

≤v
p is antisymmetric

CompleteVisitors(D) Visitors that are extended are defined

range(<v
p ) ⊆ domain(<v

p ) ∪ {Visitor}

VisitorOverridesOK(D) Visitor method overriding preserves the type

visitor V · · · {· · ·m(· · ·) · · ·} · · · visitor V′ · · · {· · ·m(· · ·) · · ·} ∈ D

=⇒ mtype(m,V) = mtype(m,V′) ∨ V 6≤v
p V′

Figure 4.3: Predicates on visitor definitions (Part I).
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OneReturnMethod(D) Visitors have one return method

visitor V · · · { · · · t return {· · ·} · · ·

· · · t m(· · ·) · · ·} ∈ D

=⇒ m 6= return

WFBeforeMethod(D) Unique types inside before methods

visitor V · · · { · · ·

before { · · · C → {· · ·} · · ·

· · · C′ → {· · ·} · · ·}} ∈ D

=⇒ C 6= C′

WFAfterMethod(D) Unique types inside after methods

visitor V · · · { · · ·

after { · · · C → {· · ·} · · ·

· · · C′ → {· · ·} · · ·}} ∈ D

=⇒ C 6= C′

Figure 4.4: Predicates on visitor definitions (Part II).

these are similar to the subtype relations given for classes in Figure 4.2.

The relations ≺: and �: generalize over the class and visitor subtype rela-

tions. The last three predicates in Figure 4.3 assert that the visitor type hi-

erarchy is an order (WFVisitors(D)), visitors that are extended are defined

(CompleteVisitors(D)), and, that method overriding inside visitor defini-

tions preserves the method’s signature (VisitorOverridesOK(D)).

Figure 4.4 contains predicates that deal with visit methods. The predi-

cate OneReturnMethod(D) asserts that there is a unique return method in-

side a visitor definition. The last two predicates in Figure 4.4 assert that the

types given in the list of type-expression pairs in a before or aftermethod

are disjoint.

The type rules for APCORE classes and visitors are given in Figure 4.5

(⊢D), the type rules formethods including adaptivemethods and visit meth-

ods are given in Figure 4.6. Typing of adaptive methods deals with con-
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⊢P P : t

ClassesOnce(D) VisitorsOnce(D) DistinctVCNames(D)
1MethodPerClass(D) 1FieldPerClass(D) CompleteClasses(D)

1MethodPerVisitor(D) 1FieldPerVisitor(D) CompleteVisitors(D)
WFBeforeMethod(D) WFAfterMethod(D) OneReturnMethod(D)

ClassOverridesOK(D) VisitorOverridesOK(D)
WFClasses(D) WFVisitors(D)

D ⊢D Di : OK D, [ ] ⊢e e : t

⊢P D e : t

D ⊢D D : OK

D,C ⊢K K : OK
D ⊢t Ci i ∈ [1, n]

D,C ⊢M Mj : OK j ∈ [1,m]

D,C ⊢A Ak : OK k ∈ [1, p]

D ⊢D class C extends D {C1 f1; . . .Cn fn; K M1 . . .Mm A1 . . .Ap} : OK

D,V ⊢K K : OK
D ⊢t Ci i ∈ [1, n]

D,V ⊢M Mj : OK j ∈ [1,m]

D,V ⊢VM Vk : OK k ∈ [1, p]

D ⊢D visitor V extends Z {C1 f1; . . .Cn fn; K M1 . . .Mm V1 . . . Vp} : OK

Figure 4.5: Type Rules for Classes and Visitors

straint evaluation. The rules for constraint evaluation are given in Fig-

ure 4.9, auxiliary predicates and definitions are given in Figures 4.7 and 4.8.

Type rules for expressions are given in Figures 4.10 and 4.11. Auxiliary

definitions used as part of the type rules for APCORE can be found in Fig-

ures 4.12 (field lookup), Figure 4.13 (constructor method lookup), and Fig-

ure 4.14 (method lookup).

Typing of an APCORE program begins with the rule ⊢P D e : t where

first we verify that the predicates concerning class and visitor definitions

hold for D (Figure 4.5). We then check that each class or visitor definition

is well typed D ⊢D Di : OK. The type of the whole program is given by the

type of the main expression e at the empty type environment [ ].
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The rules for checking classes and visitors (D ⊢D D : OK) follow a

similar pattern, for classes we check that the constructor method is well

typed, each of the field types are well defined and that methods and adap-

tive methods are well typed. The case for visitor definitions is similar but

instead of adaptive methods we check that all visit methods are well typed.

A constructor method is well typed (Figure 4.6) if the constructor’s ar-

guments match the class or visitor fields, both defined and inherited (rule

D, B ⊢K K : OK). For a well typed method we check that the return type

and the method argument types are well defined and that the body of the

method under a type environment that binds this and each argument ap-

propriately is of type t (rule D, B ⊢M M : OK). Note that the typing of

a method’s body allows for subsumption (Figure 4.11 rule TSUB) and that

methods return class types only.

For visit methods we have two rules, one for dealing with before and

after visit methods and one for return methods. For before and after

methods we check that for each type-expression pair Ci → { ei }, the type

provided is well defined and that the expression under a type environment

that appropriately binds this to the current class’ type and host to Ci is of

type Object. The typing rule allows for subsumption here as well. For the

return method the rule is similar but only types the expression e under a

type environment that only binds this and verifies that the type of e is a

subtype of the return’s method declared returned type.

Finally, for awell typed adaptivemethodwe first check that themethod’s

return type, argument types and the visitor name are well defined. We then

verify that the strategy’s source node has the same name as the adaptive

method’s defining class and that the node names in the strategy are a sub-

set of the program’s set of class names. The next premise verifies that the

constraint attached to the adaptive method evaluates to true and that the

visitor’s constructor method argument types match the adaptive method’s

argument types. Also, the visitor’s return method is a subtype of the adap-
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D, B ⊢K K : OK

ftypes(B) = C′ · C′′

D, B ⊢K B(C′ x,C′′ y){super(x); this. f := y;} : OK

D, B ⊢M M : OK

D ⊢t t D ⊢t Ci D, [this : B, x : C] ⊢s e : t

D, B ⊢M t m(C x){ e } : OK

D,V ⊢VM V : OK

D ⊢t Ci α ∈ {before , after}
D, [this : V, host : Ci] ⊢s ei : Object

D,V ⊢VM α {C → { e }} : OK

D ⊢t t D, [this : V] ⊢s e : t

D,V ⊢VM t return { e } : OK

D,C ⊢A A : OK

D ⊢t t D ⊢t Ci D ⊢V V

SG.source = C SG.nodes ⊆ D. cnames
D ⊢sg CC : tt ktype(V) = C → V

mtype(return,V) = t′ → t′′ t′′ ≤c
p t

visitTypes(V) ⊆ SG.nodes

D,C ⊢A @{CC} t m(C x) with SG[V] : OK

Figure 4.6: Type Rules for Methods

tive method’s return type. The last premise checks that the set of types

used inside the visitor’s before and after methods (visitTypes is defined in

Figure 4.22) is a subset of the strategy’s node names. The last premise im-

poses our strict interface between strategy and visitor definitions.

To explain constraint evaluation we first introduce the definitions for

class graph and traversal graph.
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4.2.2.1 Strategy and Traversal Graphs

The definitions of a class graph and a traversal graph rely on labeled graphs.2

We define a graph G = (V, E) as a tuple containing the set of node names

V and a set of edges E. The edge set for a normal graph is a set of ordered

pairs of nodes. We define a labeled graph as G = (V, E, L) where L is a set

of labels. The set of edges for a labeled graph is a set of ordered 3-tuples,

(C, x,C′), consisting of a node C ∈ V, a label x ∈ L and a node C′ ∈ V. We

use the functions nodes and edges on graphs that return the set of nodes and

the set of edges of a graph respectively.

For normal graphs we define paths to be a sequence of nodes such

that each pair of nodes in a path is in the graph’s set of edges. For a la-

beled graph a path is a sequence of node pairs interposed by labels, e.g.,

C1x1C2 . . .Cn−1xn−1Cn such that each node-label-node triple is in the graph’s

edge set. We also talk about paths in labeled graphs where we only con-

sider node names and exclude labels, i.e., C1x1C2 . . .Cn−1xn−1Cn can also

be given as C1C2 . . .Cn−1Cn when we are only concerned with path nodes.

A class graph (Figure 4.7) is a representation of a program’s class defini-

tions as a labeled graph where classes represent nodes and inheritance and

containment relationships (i.e., fields) represent edges. Containment edges

are labeled with field names, i.e., for a class C with a field f of type C′ the

class graphwill contain an edge (C, f ,C′). Inheritance edges are special and

are represented with two edges, one with an upward direction going from

the subclass to the superclass and one with a downward direction going

from the superclass to the subclass. Therefore a class graph contains two

edges for each inheritance relation between two classes; one edge is labeled

with ⋄↑ starting at the subclass and ending at the superclass and one edge

labeled with ⋄↓ starting at the superclass and ending at the subclass.

Given a class graph CG and two nodes C and C′ we can calculate the

2A more general treatment of traversal graphs can be found in [6, 28]
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cg(D) = CG Class graph

cg(D) = (V, E, L)

where V = {C | class C extends C′ {· · ·} ∈ D ∨

class C′ extends C {· · ·} ∈ D ∨

class C′ extends C′′ {· · ·C f ; · · ·} ∈ D }

E = {(C′, ⋄↓,C) | class C extends C′ {· · ·} ∈ D} ∪

{(C, ⋄↑,C′) | class C extends C′ {· · ·} ∈ D} ∪

{(C, f ,C′) | class C extends C′′ {· · ·C′ f ; · · ·} ∈ D}

L = { f | class C · · · {· · ·C′ f ; · · ·} ∈ D} ∪

{⋄↑, ⋄↓}

SG. pathset = P All strategy satisfying paths in SG

SG. pathset = {C | C0 = SG.source ∧ Cn = SG.target ∧

Ci ∈ SG.nodes ∧ (Ci,Ci+1) ∈ SG. edges}

CG. paths(C,C) = P Paths in CG given source and target types

CG. paths(A, B) = {(C0, l1,C1),. . . , (Cn−1, ln,Cn) |

C0 = A ∧

Cn = B ∧

(l1 . . . ln) = (⋄↓∗ f )?(⋄↑∗ f ⋄↓∗)∗( f ⋄↑∗)?

where f 6∈ {⋄↑, ⋄↓}}

CPExpansion(C,C,C) Path Expansion

CPExpansion(p, p′,R) ⇐⇒ p = C0 . . .Cn ∧ p′ = C′
0 . . .C

′
m ∧ n ≤ m ∧

∀i : 0 ≤ i < n :

∃j, l : 0 ≤ j, l < m :

j < l ∧ Ci = C′
j ∧ Ci+1 = C′

l ∧

∀k : j < k < l : C′
k 6∈ R

Figure 4.7: Auxiliary predicates for path sets (Part I).
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set of all paths in CG that start from C and finish at C′. Figure 4.7 defines

CG. paths(C,C) that returns a set P of all paths in CG that start from C and

finish at C′ and for each such path, the path’s labels match the regular ex-

pression (⋄↓∗ f )? (⋄↑∗ f ⋄↓∗)∗ ( f ⋄↑∗)? where f 6∈ {⋄↑, ⋄↓}. The pattern

disallows paths that contain segments where the labels are a mixture of

consecutive downward and upward inheritance edges.3 A strategy specifi-

cation is itself a graph (Definition 2) and it is used to define a set of abstract

paths that an adaptive method will traverse. We thus have to analyze the

program’s class definitions to discover the concrete paths that satisfy the ab-

stract paths. This begs the definition of how do we relate a concrete path to

a given abstract path; the definition is given by path expansion (CPExpansion

in Figure 4.7).

Path expansion consumes two paths (sequences of class names), p1 and

p2, and a set of class names R and verifies that for each consecutive pair of

nodes, Ci and Cj, in p1 there exists a subsequence in p2 that starts with Ci,

ends with Cj and all class names between Ci and Cj in p2 are not in R. We

will use this last condition– to disallow nodes in R – to define WYSIWYG

strategies by having R = SG.nodes (Figure 4.8, the use of allpaths in createtg).

A traversal graph is a labeled annotated graph that captures all the con-

crete paths in a CG that satisfy the abstract paths defined by a SG. We define

a labeled annotated graph as G = (Vk, Ek, Lk) where Vk is a finite set of an-

notated nodes, Ek is a finite set of edges, Lk is a finite set of labels and all

annotations for all three sets are drawn from a set α = {Z ∪ s} where s is

a special symbol. A labeled annotated edge is a labeled edge where both

nodes and the label are annotated.

Our algorithm for calculating the traversal graph given a strategy graph

SG and a set of class definition D is given in Figure 4.8 by gettg.

Informally, the algorithms starts by creating the class graph for the set

3We could also capture the pattern with the complement of the language corresponding
to σ(.∗(⋄↑+ ⋄↓+) | (⋄↓+ ⋄↑+).∗)
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gettg(SG,D) = TG Traversal graph given a strategy and class definitions

SG = (V, E, ns, nt) TG∅ = (∅,∅,∅) cg(D) = CG
createtg(E,V, CG, 1, TG∅) = TG

gettg(SG,D) = TG

createtg(E,V,CG,Z,TG) = TG Calculate the traversal graph

createtg(∅,V, CG, k, TG) = TG

TG1 = (V1, E1, L1) copy(CG, k) = CGk

E = (C1,C2) ∪ E′ copy((V,∅,∅), k) = (V′,∅,∅)
allpaths(CGk,Ck

1 ,C
k

2 ,V
′) = (Vk, Ek, Lk)

V2 = V1 ∪Vk[Cs

1/C
k

1 ][C
s

2/C
k

2 ]
E2 = E1 ∪ Ek[Cs

1/C
k

1 ][C
s

2/C
k

2 ]
L2 = L1 ∪ Lk TG2 = (V2, E2, L2)
createtg(E′,V, CG, k+ 1, TG2) = TG

createtg(E,V, CG, k, TG1) = TG

allpaths(CG,C,C,C) = CG Reduce the class graph to represent path expansions.

allpaths(CG,Cs,Ct,R) = (V, E, L)

s.t. ∀p: p ∈ CG. paths(Cs,Ct) ∧ CPExpansion((Cs,Ct), p,R) ∧

Ci ∈ p ⇐⇒ Ci ∈ V ∧

li ∈ p ⇐⇒ li ∈ L ∧

(Ci, li,Ci+1) ∈ p ⇐⇒ (Ci, li,Ci+1) ∈ E

copy(CG,Z) = CG Copy and annotate the class graph

copy((V, E, L), k) = (Vk, Ek, Lk)

s.t. n ∈ V ⇐⇒ nk ∈ Vk

l ∈ L ⇐⇒ lk ∈ Lk

(n1, l, n2) ∈ E ⇐⇒ (nkl , l
k, nk2) ∈ Ek

TG. paths(C,C) = P Paths in TG given source and target types

TG. paths(A, B) = {(C0, l1,C1), . . . , (Cn−1, ln,Cn) | C0 = A ∧

Cn = B ∧

(Ci, li+1,Ci+1) ∈ TG. edges}

Figure 4.8: Auxiliary predicates for path sets (Part II).
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of classes given as input. Then for each strategy edge ei = (C1,C2) the

algorithm creates a copy of the class graph (G) and annotates all class graph

nodes and labels with the number i. Using the annotated class graph the

algorithm then finds all path expansions for edge es in G and represents

them as a graph G′. In the graph G′ we then replace Ci
1 with Cs

1 and Ci
2

with Cs
2 to denote that these two nodes are strategy nodes. Once all the

strategy edges have been processed the algorithm takes the union of all the

resulting annotated graphs giving the final traversal graph for strategy SG

and the set of class definitions D.

In Figure 4.8 gettg returns the traversal graph for a strategy SG and a set

of class definitions D. The main function that creates the traversal graph

is createtg. The function gettg creates an empty traversal graph and passes

the set of strategy edges E, the set of strategy nodes V, the class graph CG,

the number 1 (the edge index to start) and the empty traversal graph to

createtg. The function createtg calculates the traversal graph using an accu-

mulator; createtg loops over the strategy edge set E, at each iteration we first

copy the class graph (copy(CG, k) = CGk) and we make a copy of the strat-

egy nodes (copy((V,∅,∅), k) = (V′,∅,∅)). We then use allpaths to obtain

a labeled annotated graph (Vk, Ek, Lk) of all path expansions in CGk for the

strategy edge (C1,C2). We also provide the set of all strategy nodes, an-

notated with the current edge index V′. The set V′ is the exclude set used

with CPExpansion that captures our condition for WYSIWYG paths. We

then update the annotations for Ck
1 and Ck

2 to be Cs
1 and Cs

2 in the accumu-

lator node set, edge set, and, label set. Finally we update our accumulator,

increment our counter and repeat the loop until all strategy edges have been

processed.

We now return to the evaluation of constraints that takes place during

the typing of adaptive methods. The rule for adaptive methods verifies

that the constraint annotation on the adaptive method yields tt in the given

class graph. The rules for constraint verification are given in Figure 4.9.
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D ⊢sg CC : B

gettg(SG,D) = (V, E, L)
E = ∅

D ⊢sg empty(SG) : tt

gettg(SG,D) = (V, E, L)
E 6= ∅

D ⊢sg empty(SG) : ff

SG = (V, E, n1, n2)
gettg(SG,D) = TG

|TG. paths(ns1 , n
s

2) |= 1

D ⊢sg unique(SG) : tt

SG = (V, E, n1, n2)
gettg(SG,D) = TG

|TG. paths(ns1 , n
s

2) |6= 1

D ⊢sg unique(SG) : ff

D ⊢sg c : ff

D ⊢sg not(c) : tt

D ⊢sg c : tt

D ⊢sg not(c) : ff

D ⊢sg c1 : b

D ⊢sg c2 : b
′

tt ∈ {b, b′}

D ⊢sg or(c1, c2) : tt

D ⊢sg c1 : b

D ⊢sg c2 : b
′

tt 6∈ {b, b′}

D ⊢sg or(c1, c2) : ff

D ⊢sg c1 : tt

D ⊢sg c2 : tt

D ⊢sg and(c1, c2) : tt

D ⊢sg c1 : b

D ⊢sg c2 : b
′

ff ∈ {b, b′}

D ⊢sg and(c1, c2) : ff

Figure 4.9: Rules for Constraints checking

The empty primitive constraint verifies that the traversal graph obtained

from the constraint’s strategy specification and the given class graph has

no edges. The unique primitive constraint verifies that the resulting traver-

sal graph contains one, and only one, path. The remaining composite con-

straint definitions define logical operators on constraints such as or, and

and not.

Figures 4.10 and 4.11 give the typing rules for APCORE expressions.

The rule for new (TNEW) checks that the type of each expression ei given

as argument to new is a subtype of the class’ constructor argument type.

TLET first type checks e1 and then type checks the body of the let expres-

sion e2 in an environment where the bound variable x is of the same type
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as e1. The rule TVAR checks that the variable is bound under the type en-

vironment Γ and returns its type. The rule for method calls (TMCALL) first

typechecks the receiver e0 and uses mtype (Figure 4.14) to search for the

type signature of the method m starting from the type of e0. Finally the rule

for method calls checks that the type of each expression given as argument

ei is a subtype of the corresponding method’s argument type. For a field

get expression (TFGET) we first type the receiver e and we search for the

type of field f starting from e’s type using fieldType (Figure 4.12). Typing

of a field set expression (TFSET) goes through the same steps as for a field

get expression but also verifies that the expression that we are assigning

to the field is a subtype of the field’s declared type. Typing of a super call

expression (TSUPERCALL) obtains the type for this using the current type

environment and then searches for the method m starting from the imme-

diate supertype of the type given to this. The rule for super calls checks

that the type of each argument is a subtype of the corresponding method’s

argument types. A sequence expression (TSEQ) types both expressions e1

and e2 and the sequence expression is given the same type as the type of ex-

pression e2. Finally a cast expression (TCAST) verifies that the expression’s

type and the type we are casting to are in a subtype relationship.

Figure 4.11 gives the definitions for our subsumption rule (TSUB), for a

well defined class type (TCDEF) and for awell defined visitor type (TVDEF).

4.2.3 Translation to CLASSICJAVA

Our translation takes awell typed APCORE program and generates a CLAS-

SICJAVA program. For each adaptive method definition in the input our

translation generates a series of mangled CLASSICJAVA methods (names

with a # subscript) that encode all valid paths in the input program. Infor-

mally we can decompose our translation into three steps.

• First all adaptive methods are translated to CLASSICJAVA methods.
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D, Γ ⊢e e : t

TNEW

D ⊢t C ftypes(C) = t
ktype(C) = t → C

D, Γ ⊢s ei : ti

D, Γ ⊢e new C(e) : C
TLET

D, Γ ⊢e e1 : t1
D, Γ[x : t1] ⊢e e : t

D, Γ ⊢e let x = e1 in e : t

TVAR
x ∈ domain(Γ)

D, Γ ⊢e x ⇒ x : Γ(x)
TMCALL

D, Γ ⊢e e0 : t0
mtype(t0,m) = (t → t)

D, Γ ⊢s ei : ti

D, Γ ⊢e e0.m(e) : t

TFGET

D, Γ ⊢e e : t
′

fieldType(t′, fi) = ti

D, Γ ⊢e e. fi : ti
TFSET

D, Γ ⊢e e : t
′

fieldType(t′, fi) = ti
D, Γ ⊢s e1 : ti

D, Γ ⊢e e. fi := e1 : ti

TSUPER

D, Γ ⊢e this : t0 t0 ≺: t′0
mtype(t′0,m) = (t → t)

D, Γ ⊢s ei : ti

D, Γ ⊢e super.m(e) : t
TSEQ

D, Γ ⊢e e1 : t1
D, Γ ⊢e e2 : t2

D, Γ ⊢e e1; e2 : t2

TCAST
D, Γ ⊢s e : t

D, Γ ⊢e (t)e : t

Figure 4.10: Type Rules for Expressions Part I

D, Γ ⊢s e : t D ⊢t t

TSUB
D, Γ ⊢e e : t

′ t′ ≤c
p t

D, Γ ⊢s e : t
TCDEF

t ∈ domain(<c
p) ∪ {Object}

D ⊢t t

D ⊢V t

TVDEF
t ∈ domain(<v

p ) ∪ {Visitor}

D ⊢V t

Figure 4.11: Type Rules for Expressions Part II
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All class fields fields(D) = D f

fields(Object) = • fields(Visitor) = •

class C extends D {C f ; · · ·} ∈ D

fields(C) = fields(D) · C f

visitor V extends V′ {C f ; · · ·} ∈ D

fields(V) = fields(V′) · C f

All class field types ftypes(D) = D

fields(C) = D f

ftypes(C) = D

All class field names fnames(D) = D

fields(C) = D f

fnames(C) = f

Field Type Lookup fieldType(D, f ) = t

fieldType(Object, ) = • fieldType(Visitor, ) = •

class C · · · {C f ; · · ·} ∈ D

fi ∈ f

fieldType(C, fi) = Ci

class C extends D {C f ; · · ·} ∈ D

fi 6∈ f

fieldType(C, fi) = fieldType(D, fi)

visitor V · · · {C f ; · · ·} ∈ D

fi ∈ f

fieldType(V, fi) = Ci

visitor V extends V′ {C f ; · · ·} ∈ D

fi 6∈ f

fieldType(V, fi) = fieldType(V′, fi)

Figure 4.12: Field Lookup functions

The translation takes each adaptive method and its strategy defini-

tion and calculates its traversal graph. The traversal graph and the

visitor attached to the adaptive method are used to generate methods

in all the classes that are in the traversal graph. There are two kinds of

classes, classes that are mentioned in the strategy (annotated with an

s) and classes that are not mentioned in the strategy (annotated with

an integer). For classes that are mentioned in the strategy our trans-

lation checks to see if the attached visitor contains any before or after

visit methods and generates method calls to the visitor methods.4 For

all classes that are part of a path that satisfies the strategy we gen-

4Visitor methods are translated to CLASSICJAVAmethods with specific mangled names
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Class constructor method lookup cktype(C) = C → C

class C extends C′ {· · · K · · ·} ∈ D
K = C(D x,D′ y){super(x), this. f := y;}

cktype(C) = D · D′ → C

Visitor constructor method lookup cktype(C) = C → C

visitor V extends V′ {· · · K · · ·} ∈ D
K = V(C x,C′ y){super(x), this. f := y;}

vktype(V) = C · C′ → V

Constructor method lookup ktype(D) = C → D

⊢t D

ktype(D) = cktype(D)

⊢V D

ktype(D) = vktype(D)

Figure 4.13: Constructor method type lookup

erate CLASSICJAVA methods that perform the traversal. A field edge

becomes a call to the generated method on the class’ field, a ⋄↑ edge

becomes a super call and a ⋄↓ generates a super call in the subclass

(the target of the ⋄↓ edge).

• Second, all visitor definitions are translated into CLASSICJAVA classes.

The Visitor becomes an empty visitor that extends Object. For each

type-expression pair in a visitor definition, our translation generated

a CLASSICJAVA method with one argument. The naming conven-

tion used for these methods mangles the concatenation of the visit

method name (before or after) an underscore and the type name e.g.,

before C#.

• Third, all constructor methods (and calls to constructor methods) are

rewritten. Constructor methods are rewritten into two methods, a
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Class method type lookup cmtype(m,C) = C → C

class C · · · {· · ·M · · ·} ∈ D
t m(D x){e} ∈ M

cmtype(m,C) = D → t

class C · · · {· · · A} ∈ D
@{CC} t m(D x) with SG[V] ∈ A

cmtype(m,C) = D → t

class C extends C′ {· · ·M · · ·} ∈ D
t m(D x){e} 6∈ M

cmtype(m,C) = cmtype(m,C′)

class C extends C′ {· · · A} ∈ D
@{CC} t m(D x) with SG[V] 6∈ A

cmtype(m,C) = cmtype(m,C′)

Visitor method type lookup vmtype(m,V) = C → C

visitor V · · · {· · ·M · · ·} ∈ D
t m(C x){e} ∈ M

vmtype(m,V) = C → t

visitor V extends V′ {· · ·M · · ·} ∈ D
t m(C x){e} 6∈ M

vmtype(m,V) = vmtype(m,V′)

Method type lookup mtype(m,D) = C → C

⊢t D

mtype(m,D) = cmtype(m,D)

⊢V D

mtype(m,D) = vmtype(m,D)

Figure 4.14: Method type lookup

no argument constructor and an initializer method that has the same

signature as the original APCORE constructor and initializes all class

fields. Calls to new in the APCORE program are translated into a let

expression that first calls the empty constructor, binds the result to a

fresh temporary variable name and then calls the generated initializer

method.

The translation of APCORE programs to CLASSICJAVA programs is de-

fined in Figures 4.15,to 4.21.

The first two rules in Figure 4.15 define the start of our translation; ⊢

D e ⇀P defn∗ e translates an APCORE program with a set of class and

visitor definitions D and the main expression e to a list of CLASSICJAVA

definitions defn∗ and a CLASSICJAVA expression e. The second rule ⊢ D ⇀D
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⊢ D e ⇀P defn∗ e ⊢ D ⇀D defn∗

⊢ D ⇀D defn∗

⊢ e ⇀e e

⊢ D e ⇀P defn∗ e

⊢ D ⇀A D′ ⊢ D′ ⇀V D′′ ⊢ D′′ ⇀K defn∗

m1 = V init V#(){this}
m2 = Object return (){new Object()}

d = class Visitor extends Object{m1m2}

⊢ D ⇀D d · defn∗

⊢ D ⇀A D ⊢ D ⇀D D

⊢ D ⇀D D′′

⊢ D′′ ⇀tg D′

⊢ D ⇀A D′

⊢ Di ;D D′
i i ∈ [1, n]

⊢ D1, . . . ,Dn ⇀D D′
1, . . . ,D

′
n

⊢ D ;D D

⊢ Mj ;m M′
j j ∈ [1, k]

C ⊢ Ai ;M Mi i ∈ [1, n]

⊢ class C · · · {· · ·M1, . . . ,MkA1, . . . ,An · · ·} ;D

class C · · · {· · ·M′
1, . . . ,M

′
k,M1, . . . ,Mn · · ·}

⊢ M ;m M C ⊢ A ;M M

⊢ e ⇀e e

⊢ t m(C x){e} ;m

t m(C x){e}

M1 = t m C return#(V v#){v#.return ()}
M2 = t m(C x){

let v# = new V().init V#(x) in
let tmp# = this.m C s trv#(v#) in
this.m C return#(v#)}

C ⊢ @{CC} t m(C x) with SG[V] ;M

M1M2

⊢ D ⇀tg D

D = D1, . . . ,Dn

D ⊢ D1;D ;tg D1

D ⊢ D2;D1 ;tg D2

...
D ⊢ Dn;Dn−1 ;tg Dn

⊢ D ⇀tg Dn

Figure 4.15: Compilation of AP methods
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d · defn∗ performs three translations that correspond to the three stages of

our translation. First we translate all classes and their adaptive methods

(⊢ D ⇀A D′) to obtain a new set of APCORE definitions D′. The new set

of APCORE classes is then translated further by ⊢ D′ ⇀V D′′ that rewrites

visitor definitions into class definitions yielding a second set of APCORE

definitions D′′. The third rewrite ⊢ D′′ ⇀K defn∗ rewrites D′′ into a set of

CLASSICJAVA class definitions by rewriting all constructor methods and all

calls to constructors. The last step in the ⇀D generates the Visitor class

that contains default implementations for a constructor, an initializer and a

return method.

Translation of APCORE class definitions (⇀A) translates first all class

definitions and methods with ⇀D. The translation of an adaptive method

creates a CLASSICJAVA method that delegates to traversal methods gener-

ated by ⇀tg.

The translation of class definitions relies on ;D which iterates over all

APCORE class definitions and generates CLASSICJAVA methods from AP-

CORE methods. For normal APCORE methods we translate the method

body and leave the method signature intact (;m). For APCORE adaptive

methodswe generate two CLASSICJAVAmethods (;M);m C return#(V v#)

that wraps a call to the visitor’s return method and a CLASSICJAVA method

with the same type as as the APCORE adaptive method that:

1. creates a new instance of the visitor V using the arguments passed to

the adaptive method.

2. calls the traversal method m C s trv#(v#) to start the traversal pass-

ing the newly created visitor object

3. and the last expression in the method’s body calls m C return#.

Our ⇀tg (Figure 4.15) rule deals with the generation of all methods re-

sponsible for traversing strategy selected paths (e.g., m C s trv#). We use
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;tg to process the adaptive methods in each APCORE definition. Each ap-

plication of;tg generates methods inside all CLASSICJAVA class definitions

that take part in a traversal. Each application of ;tg takes as input the re-

sulting program of the previous application of ;tg. The first application of

;tg takes the original program as input.

The generation of traversal methods for each adaptive method (;tg,

Figure 4.16) follows a similar pattern as our⇀tg rule. Given the current AP-

CORE class definition that we are processing,D, we iterate over all adaptive

methods Ai and apply our generation rule for an adaptive method (;A).

The application of;A generates a new program that includes all the neces-

sary traversal methods for an adaptive method A . Each application of;A

takes as input the resulting program of the previous applications of ;A.

The heart of our translation phase deals with the generation of CLASSIC-

JAVA methods that perform object traversals guided by the strategy speci-

fication of an adaptive method. The generation of traversal methods starts

with the definition of ;A. Given the APCORE program text D the current

APCORE class name under translation C the adaptive method to translate

A and the current translated program D′, ;A produces an new translated

program D′′. The rule uses the strategy specification SG given in A to con-

struct the traversal graph (gettg(SG,D) = TG). To start the generation of

CLASSICJAVA code we use our method generation rule

P,Cs, TG,m C,V ⊢m (D′;∅) ⇒ (D′′; S)

where we are providing

• the APCORE program text P,

• Cs, the current class is the source of our strategy (Figure 4.6),

• the traversal graph TG,

• the prefix of the method name to use m C,
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D ⊢ D;D ;tg D

D,C ⊢ A1;D ;A D1

D,C ⊢ A2;D1 ;A D2
...

D,C ⊢ An;Dn−1 ;A D′

D ⊢ class C · · · {· · · A1 . . .An · · ·};D ;tg D′

D,C ⊢ A;D ;A D

SG = (V, E,C, nt) gettg(SG,D) = TG

D,Cs, TG,m C,V ⊢m (D′;∅) ⇒ (D′′; S)

D,C ⊢ @{CC} t m(C x) with SG[V];D′
;A D′′

D,Ck,TG,m,C ⊢m (D;Ck) ⇒ (D;Ck)

TG = (V′, E′, L′) S = V′

P,Ck, TG,m,V ⊢m (D; S) ⇒ (D; S)

TG = (V′, E′, L′) S ⊂ V′ Ck ∈ S

P,Ck, TG,m,V ⊢m (D; S) ⇒ (D; S)

Ck 6∈ S TG = (V′, E′, L′) S ⊂ V′

TG. outgoing(Ck) = E1, . . . , En

TG. incoming(Ck) = I

P,m,Ck,V ⊢ (E1, . . . , En; I) ⇀ M′

D = class C · · · {· · ·M · · ·} · D′′

D0 = class C · · · {· · · M′ ·M · · ·} · D′′

S0 = S ∪ {Ck}
P, target(E1), TG,m,V ⊢m (D0; S0) ⇒ (D1; S1)
P, target(E2), TG,m,V ⊢m (D1; S1) ⇒ (D2; S2)

...
P, target(En), TG,m,V ⊢m (Dn−1; Sn−1) ⇒ (Dn; Sn)

P,Ck, TG,m,V ⊢m (D; S) ⇒ (Dn; Sn)

Figure 4.16: Compilation of AP methods (Part I)
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• the type of the Visitor V,

• the translated program thus far D′,

• the classes that we have already processed, the seen set (initialized to

the empty set),

and the rule produces

• a new translated program D′′,

• an updated seen set S,

Our method generation rule walks the traversal graph and generates

traversal methods accordingly. Method generation maintains a seen set

of traversal graph nodes skipping cycles and terminates when all the TG

nodes have been processed, i.e., TG.nodes = S.

Generation proceeds for a traversal graph node Ck that is not in our seen

set S by first obtaining the outgoing and incoming edge set for Ck. We then

use P,m,Ck,V ⊢ (E1, . . . , En; I) ⇀ M′ to generate traversal methods M′

inside class C, we update the definition of C in the translated program D0

and we include Ck in our seen set. Finally, we recursively call the same rule

passing along the target node of each outgoing edge and weave through

the resulting translated program and seen set.

Code generation for a traversal method is described by P,m,Ck,C ⊢

(E; E) ⇀ M (Figure 4.17). The rule consumes the prefix of the method

name to generate m, the current traversal graph node Ck, the visitor V,

and the outgoing and incoming edge set of Ck. The rule produces a list

of methods (one or two methods to be exact).

For a node Ck we always generate a method m k trv# in class C (Fig-

ure 4.17, rule D,m,Ck,C ⊢m (E; E) ⇀ M). We generate an extra method

m k′′ trv# in C, that delegates tom k trv#, whenwe have an edge (Dk′′ , ⋄↓k
′

,Ck) in our incoming edge set and the annotations on D and C differ (Fig-
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D,m,Ck,C ⊢ (E; E) ⇀ M

∃e : e ∈ I e = (Dk
′′
, ⋄↓k

′
,Ck) k 6= k′′

m,Ck,V ⊢o e;O ⇀ M1;O′

P,m,Ck,V ⊢m (O′; I) ⇀ M2

P,m,Ck,V ⊢ (O; I) ⇀ M1M2

6 ∃e : e ∈ I e = (Dk
′′
, ⋄↓k

′
,Ck) k 6= k′′

P,m,Ck,V ⊢m (O; I) ⇀ M

P,m,Ck,V ⊢ (O; I) ⇀ M

m,Ck,C ⊢o E; E ⇀ M; E

e′ = (Dk
′′
, ⋄↓a,Ck)

6 ∃e : e ∈ O e = (Ck, ⋄↑k
′
,Dk

′′
)

M = Object m k′′ trv#(V v#){this.m k trv#(v#); }

m,Ck,V ⊢o e′;O ⇀ M;O

e′ = (Dk
′′
, ⋄↓a,Ck)

∃e : O = O′ · e e = (Ck, ⋄↑k
′
,Dk

′′
)

M = Object m k′′ trv#(V v#){this.m k trv#(v#); }

m,Ck,V ⊢o e′;O ⇀ M;O′

D,m,Ck,C ⊢m (E; E) ⇀ M

k 6= s

∀k′ ∈ Z ( , ⋄↓k
′
,Ck) 6∈ I

v#,m, this ⊢E O ⇀ e
M1 = Object m k trv#(V v#){e}

P,m,Ck,V ⊢m (O; I) ⇀ M1

k = s

∀k′ ∈ Z ( , ⋄↓k
′
,Ck) 6∈ I

v#, P, this, after ⊢ V;C ⇀v e1
v#,m, e1 ⊢E O ⇀ e2

v#, P, e2, before ⊢ V;C ⇀v e
M1 = Object m k trv#(V v#){e}

P,m,Ck,V ⊢m (O; I) ⇀ M1

k 6= s

∃!(Ck
′

1 , ⋄↓k
′′
,Ck) ∈ I k′, k′′ ∈ Z ∪ {s}

v#,m, this ⊢E E ⇀ e′

fresh(x)
e = let x = super.m k′ trv#(v#) in e′

M1 = Object m k trv#(V v#){e}

P,m,Ck,V ⊢m (O; I) ⇀ M1

k = s

∃!(Ck
′

1 , ⋄↓k
′′
,Ck) ∈ I k′, k′′ ∈ Z ∪ {s}

v#, P, this, after ⊢ V;C ⇀v e1
v#,m, e1 ⊢E O ⇀ e2

v#, P, e2, before ⊢ V;C ⇀v e
′

fresh(x)
e = let x = super.m k′ trv#(v#) in e′

M1 = Object m k trv#(V v#){e}

P,m,Ck,V ⊢m (O; I) ⇀ M1

Figure 4.17: Compilation of AP methods (Part II)
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x,m, e ⊢E E ⇀ e

x,m, e ⊢E • ⇀ e

lk 6∈ {⋄↑k, ⋄↓k} fresh(y)
e1 = let y = this.l.m k′ trv#(x) in e

x,m, e1 ⊢E E ⇀ e′

x,m, e ⊢E ( , lk,Ck
′
) · E ⇀ e′

lk = ⋄↓k

x,m, e ⊢E E ⇀ e′

x,m, e ⊢E ( , lk,Ck
′
) · E ⇀ e′

lk = ⋄↑k fresh(y)
e1 = let y = super.m k′ trv#(x) in e

x,m, e1 ⊢E E ⇀ e′

x,m, e ⊢E ( , lk,Ck
′
) · E ⇀ e′

Figure 4.18: Generation of expressions from a set of edges

ure 4.17, rule m,Ck,C ⊢o E; E ⇀ M; E). When we generate an override

method for a class C we also remove any outgoing edges with ⋄↑ label. 5

The generation of the traversal method m k trv# for traversal graph

node Ck is described by P,m,Ck,C ⊢m (E; E) ⇀ M (Figure 4.17). For a non-

strategy node (i.e., nodes whose annotation is not s) the traversal method

contains a sequence of method calls one for each outgoing edge that is ei-

ther a field edge or a ⋄ ↑ edge. (Figure 4.18). A field edge (Ck, f k
′′
,Ck′)

generates a this.m k′ trv#(v#) expression and an upward inheritance edge

(Ck, ⋄↑k
′′
,Ck′) generates a super.m k′ trv#(v#) expression. Code generation

gives priority to super calls and behaves differently when we have an in-

coming edge with a ⋄↓ label, i.e., (Ck′

1 , ⋄↓
k′′ ,Ck) ∈ I; we wrap the method

body with a super call to m k′ trv#.

For a strategy node we follow a similar pattern but we also include calls

to the appropriate visitor methods. Before methods execute before we tra-

verse any of the edges of the current node and after methods execute after

we have traversed all the edges of the current node. The rule for generating

calls to before and after methods (x,D, e,m ⊢ C;C ⇀v e) is given in Fig-

ure 4.19. We use the function match(m,C,V, P) (Figure 4.22) that traverses

5In a single inheritance language there is only one ⋄↑ edge.
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x,D, e,m ⊢ C;C ⇀v e

match(m,C,V, P) = •

x, P, e,m ⊢ V;C ⇀v e

match(m,C,V, P) = D1, . . . ,Dn

∃!D′ : D′ ∈ D1, . . . ,Dn D′ ≤c
p Di

fresh(y)

x, P, e,m ⊢V;C ⇀v

let y = x.m D′
#(this) in e

Figure 4.19: Compilation of AP methods (Part III)

the visitor type hierarchy in P starting from V and collects all subtypes of

C that appear in a type-expression pair in a visitor method m. From the

result of match, D1, . . . ,Dn we then select D′ that is a subtype of all Di and

prepend a method call to the visitor method for D′.6

The second phase of our translation deals with APCORE visitor defi-

nitions. Figure 4.20 give the definition of ⊢ D ⇀V D and ⊢ V ;V M.

The translation turns each visitor definition to a CLASSICJAVA class defi-

nition. Before and after methods are expanded into a list of CLASSICJAVA

methods; for each type-expression pair we generate a new CLASSICJAVA

method. CLASSICJAVA does not support method overloading so for before

and after methods we encode method overloading by using a naming con-

vention for each type-expression pair; we append the argument type to the

method name e.g., after C. The translation of visitor return methods is

straightforward.

The third phase of our translation deals with APCORE constructormeth-

ods. CLASSICJAVA only supports the default constructor for each class and

fields are initialized through field set expressions. For each APCORE class

C our translation generates a special mangled method init C that has the

same arguments as the APCORE constructor. The body of init C consists

6CLASSICJAVA does not support method overloading; we encode method overload-
ing for a method m by generating a new method for each method implementation. We
generate the new method’s name by appending the argument’s type, e.g., m D′.
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of a sequence of field initializations and returns this.

Finally, Figure 4.21 gives the translation of APCORE expressions to CLAS-

SICJAVA expressions. The translation is straightforward with some excep-

tions. All new expressions are translated into two calls, one to create the

CLASSICJAVA object using the default CLASSICJAVA constructor and then

a call to our generated initialization method to initialize all fields; calls to

new Object() are unaffected. Cast expressions in APCORE have different

syntax than CLASSICJAVA and the sequence expression in APCORE is trans-

lated into a CLASSICJAVA let expression.

4.2.4 Program translation preserves the program’s type

In this subsection we state and prove our type preservation theorem. Given

a well typed APCORE program as input of type t we show that our trans-

lation generates a CLASSICJAVA program whose type is also t.

Theorem 4 (Type Preservation). Given a well typed APCORE program P with

type t and its translated CLASSICJAVA program ⊢ P ⇀P P then P is a well typed

CLASSICJAVA program with type t.

Proof. The proof proceeds in three steps. We prove that each of the CLAS-

SICJAVA predicates on the translated program hold and that all generated

classes are well typed. We then prove that the translation of the program’s

main expression preserves its type.

CLASSESONCE(defn e) We know that in the original APCORE program

class names are unique (ClassesOnce(D)), visitor names are unique

(VisitorsOnce(D)), and that visitor names and class names are dis-

tinct (DistinctVCNames(D)). The translation leaves class names un-

affected, rewrites all visitor definitions as class definitions (⇀V), and

adds the reserved visitor Visitor as a new class definition (⇀D).
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⊢ D ⇀K defn∗ ⊢ D ;K defn

Di ;K defni i ∈ [1, n]

⊢ D1, . . . ,Dn ⇀K defn1, . . . , defnn

K = C(C x,C y){super(x); this. f := y;}
fnames(C) = f1, . . . , fn | x |= p |y |= q

fresh(z1) . . . fresh(zn)
M′ = C init C#(C x,C y){

let z1 = this. f1 = x1 in
let z2 = this. f2 = x2 in

...
let zp = this. fp = xp in
let zp+1 = this. fp+1 = y1 in

...
let zn = this. fn = yq in

this}

⊢ class C extends C′{C f ; K M} ;K

class C extends C′{C f ; M′ ·M}

⊢ D ⇀V D

⊢ class C · · · {· · ·} ⇀V

class C · · · {· · ·}

⊢ Mj ;m M′′
j j ∈ [1, k]

⊢ Vi ;V M′
i i ∈ [1, n]

⊢ visitor V extends V′{· · ·M1, . . . ,Mk V1 . . . Vn} ⇀V

class V extends V′{· · · M′′
1 . . .M

′′
k M′

1 . . .M′
n}

⊢ V ;V M

α ∈ {before , after }
⊢ ei ⇀e ei

⊢ α{C → {e}} ;V

Object α C#(C host){e}

⊢ e ⇀e e

⊢ t return {e} ;V

t return (){e}

Figure 4.20: Translation of constructors methods and Visitors
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⊢ e ⇀e e

⊢ x ⇀e x ⊢ new Object() ⇀e

new Object()

⊢ ei ⇀e ei i ∈ [1, n]

⊢ new C(e1, . . . , en) ⇀e

new C().init C#(e1, . . . , en)

⊢ e ⇀e e
⊢ ei ⇀e ei i ∈ [1, n]

⊢ e.m(e1, . . . , en) ⇀e e.m(e1, . . . , en)

⊢ e ⇀e e

⊢ e. f ⇀e e. f

⊢ e ⇀e e ⊢ e′ ⇀e e
′

⊢ e. f := e′ ⇀e e. f = e′

⊢ ei ⇀e ei i ∈ [1, n]

⊢ super.m(e1, . . . , en) ⇀e super.m(e1, . . . , en)

⊢ e ⇀e e

⊢ (C)e ⇀e view C e

⊢ e ⇀e e ⊢ e′ ⇀e e
′

⊢ let x = e in e′ ⇀e let x = e in e′
⊢ e1 ⇀e e1 ⊢ e2 ⇀e e2 fresh(x)

⊢ e1; e2 ⇀e let x = e1 in e2

Figure 4.21: Translation of expressions

List of visited types visitTypes(C) = C

visitTypes(Visitor) = •

V = visitor V extends V′ { C f ; K M V}

V = before {A → {e}} after {B → {e}}

visitTypes(V) = A · B · visitTypes(V′)

All matching types inside visitor’s before and after methods match(m,C,C,D) = C

match(m,C, Visitor, P) = ∅

visitor V extends V′{· · · m{D1 → {e1} . . .Dn → {en}} · · ·} ∈ P

D′ = D1 . . .Dq q ≤ n C≤c
p Di i ∈ [1, q]

D′′ = match(m,C,V′, P)

match(m,C,V, P) = D′ · D′′

Figure 4.22: Visit types and matching for before and after methods
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FIELDONCEPERCLASS(defn e) In the original APCORE program fields in-

side a class are unique (1FieldPerClass(D)) and fields inside a visitor

are unique (1FieldPerVisitor(D)). The translation does not inject or

modify field definitions.

COMPLETECLASSES(defn e) From the original APCORE programwe know

that classes that are extended are defined (CompleteClasses(D)) and

visitors that are extended are defined (CompleteVisitors(D)). The

translation does not alter any inheritance relationships between user

defined classes and visitors. The extra Visitor class generated by the

translation extends Object .

WELLFOUNDEDCLASSES(defn e) In the original APCORE programwe the

class hierarchy is an order (WFClasses(D)) and that the visitor hi-

erarchy is an order (WFVisitors(D)). The two hierarchies are sepa-

rate (DistinctVCNames(D)) and the translation rewrites visitor defi-

nitions as class definitions without altering any inheritance relation-

ships. The generated Visitor class only extends Object . The result-

ing class hierarchy is an order.

METHODONCEPERCLASS(defn e) From the original APCORE programwe

know that methods inside a class are unique (1MethodPerClass(D))

andmethods inside a visitor are unique (1MethodPerVisitor(D)). The

translation replaces visitor methods, constructors and adaptive meth-

ods with new generated method definitions. We examine each case

separately.

Visitor Methods The ⇀V rule translates visitor definitions in AP-

CORE to class definitions in CLASSICJAVA and generates a new

method definition for each type expression pair found inside a

before or after definition and a new method definition for a

return definition (;V). We know that types inside a before
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method are unique (WFBeforeMethod(D)). Translation gener-

ates a method with the name pattern before C# for each type C

in a before’s type expression pair. Mangling the name ensures

that the generated methods are unique within a translated visi-

tor definition. A similar argument applies to the generation of

after methods. For the returnmethod we know that it is unique

inside the APCORE visitor definition (OneReturnMethod(D)).

The translation generates a CLASSICJAVA method with the same

name.

Constructors For every class and visitor definition in APCORE the

translation replaces constructor definitions with a new method.

The new method ’s name is created from mangling the concate-

nation of the string init and the name of the class or visitor. The

resulting mangled name is always unique inside a class.

Adaptive Methods For an adaptive method m inside a class C the

translation generates four new CLASSICJAVA methods

1. m C return#,

2. a new CLASSICJAVA method m to replace the original adap-

tive method, and

3. a series of methods with the name pattern m C k trv# are

introduced inside classes (including C) that perform the ap-

propriate traversal for the adaptive method’s strategy.

The method name m is unique inside C (1MethodPerClass(D))

and so is themangledmethod namem C return#. For all classes

affected by the generation of traversal code the method names

generated are composed of the adaptive method name m, the

class C within which m is defined, a number k which is the an-

notation from the traversal graph node corresponding to class C,

or the special symbol s, and the mangled string trv#. The gen-
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erated method name does not clash with any of the programmer

defined method names and translation avoids duplicate method

definitions (Figure 4.16). Incorporating the name of the adaptive

method’s defining class avoids name clashes due to overriding.7

The second step in our proof checks that all generated class definitions

are well typed. We check the translation of APCORE classes and adaptive

methods, then APCORE visitors with before, after and return methods, and

finally class and visitor constructors.

Class Definitions An APCORE class definition is rewritten into a CLAS-

SICJAVA class definition by rewriting APCORE method and adaptive

method definitions.

Method Definitions Given a normal method definition t m(C x){e}

inside an APCORE class C, the translation generates a method

with the same method signature and rewrites the method body

expression to e, t m(C x){e}. We know thatD, [this : C, x : C] ⊢s

e : t, by Lemma 6 we can deduce that defn∗, [this : C, x : C] ⊢s

e ⇒ e′ : t.

Adaptive Method Definitions Given an adaptive method definition

@{CC} t m(C x) with SG[V] in an APCORE class C the transla-

tion generates

1. a CLASSICJAVA method m C return#,

2. a CLASSICJAVA method m, and

3. a series of methods injected into the set of classes calculated

by the traversal graph.

We examine each of the preceding cases.

Case 1 The generatedmethod t m C return#(V v#){v#.return ()}

has the same return type as the adaptive method’s return

7An overriding adaptive method cannot use super .
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type. We know that D,C ⊢A @{CC} t m(C x) with SG[V] :

OK, from which we can deduce that mtype(return,V) =

t′ → t where | t |= 0.

Case 2 The generated CLASSICJAVAmethodm has the samemethod

signature as the adaptive method and its method body per-

forms the following operations

1. instantiates and initializes an object of class V. We know

that the adaptive method is well typed and thus we also

know that ktype(V) = C → V. We also know from our

translation that V is now a class and that init V# is de-

fined inside V (;K) with signature C → V.

2. performs the traversal based on the adaptive method’s

strategy by calling this.m C s trv#(v#). Case 3 shows

that the expression this.m C s trv#(v#) is well typed.

3. call m C return#(v#). Case 1 shows that the expression

has type t.

Case 3 From the typing rule for adaptive methods we know that

the current class C (Figure 4.16) is the source of SG and thus

Cs is a member of gettg(SG,D).nodes. Using Lemma 2 we

can deduce that the method Object m C s trv#(V v#) is de-

fined in C. Using Lemma 3 we can deduce that the method

definition is well typed. Translation uses the traversal graph

to inject methods inside classes that appear on a path to a

strategy’s target node. Lemma 2 and Lemma 3 also show

that each generated method Object m C k trv#(V v#){e}

inside a class C′ is well typed.

Visitor Definitions An APCORE visitor definition is rewritten into a CLAS-

SICJAVA class definition by rewriting APCOREmethod definitions and

visitor method definitions.
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Method Definitions This case is similar to the case for method defi-

nitions inside an APCORE class.

Visitor Definitions There are two cases here

• for before and after visitor methods the translation gener-

ates a method for each type expression pair inside before

and after method definitions. For a type expression pair

C → {e} inside a visitor V we know that D, [this : V, host :

C] ⊢s e : Object. The translation of a type expression pair

generates the method Object α C#(C host){e} where α is

either the string before or after and ⊢ e ⇀e e. Using

Lemma 6 we can deduce that defn∗, [this : V, host : C] ⊢s

e ⇒ e′ : Object.

• return visitor methods take no arguments and have a single

expression as the method body. We know that D, [this :

V] ⊢s e : t and that ⊢ e ⇀e e. Using Lemma 6 we can

deduce that defn∗, [this : V] ⊢s e ⇒ e′ : t.

Constructor Methods We know that a well typed constructor method defi-

nition consumes a list of values whose size is equal to all the fields, in-

herited and defined, inside a visitor or class. The constructor rewrite

rule (;K) is used after all visitor definitions have been rewritten as

classes. For each class definition B the rewrite rule ;K generates a

new method (init B#) with type (t → B). This type signature is iden-

tical to the type signature of the constructor method. The body of

the generated method (e) assigns, in order, each value passed as an

argument to the class’ fields and returns the instance.

Using CLASSICJAVA type rule formethodswe can show that defn∗, [this :

B, x1 : t1, . . . , xn : tn] ⊢e e ⇒ e′ : B where x1, . . . , xn are the method’s

formal argument names, t1, . . . , tn are the formal argument types, and

B is the name of the definition (class or visitor) under translation.
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The final step in our proof deals with the APCORE program’s main ex-

pression e. We know that D, [ ] ⊢e e : t and that ⊢ e ⇀e e. Using Lemma 6

we can deduce that defn∗, [ ] ⊢e e ⇒ e′ : t.

Lemma 2 shows that for each adaptive method definition in the orig-

inal APCORE program our translation generates appropriate methods in-

side all the relevant class definitions. The generated method names follow

a specific pattern m D k trv# where m is the name of the original adaptive

method, D is the class where m is defined, k is the annotation of the traver-

sal graph node corresponding to the current class and trv# is a mangled

string. The method’s type signature is always V → Object where V is the

visitor used in the adaptive method’s definition.

Lemma 2. Given a well typed APCORE program ⊢P D e : t and the trans-

lated CLASSICJAVA program ⊢ D e ⇀P defn∗ e, then for every adaptive method

@{CC} t′ m(C x) with SG[V] defined in a class D ∈ D

∀Ck : Ck ∈ gettg(SG,D).nodes ⇐⇒

class C · · · {· · ·meth∗} ∈ defn∗ ∧

Object m D k trv#(V v#){· · ·} ∈ meth∗

Proof. The proof inspects the translation rules for adaptive methods in Fig-

ures 4.16 and 4.17 to show that the appropriate method definition is gener-

ated for all nodes found in an adaptive method’s traversal graph.

⇒ The generation algorithm defined in Figure 4.16 begins at the strategy’s

start node, generates a method for the strategy’s start node and then

recursively proceeds to all outgoing nodes. At each node Ck the algo-

rithm generates a method Object m D k trv#(V v#){e} (Figure 4.16).

⇐ Amethod definition with a mangled name implies that the method was

not part of the original APCORE program but a result of our trans-

lation. A method name of the form m D k trv# can only be created
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by the traversal method generation rule P,m,Ck,C ⊢m (E; E) ⇀ M

(Figure 4.17). The translation only uses the traversal method gen-

eration rule in D,Ck, TG,m,C ⊢m (D;Ck) ⇒ (D;Ck) (Figure 4.16).

In Figure 4.16 the traversal method generation rule is used for each

Ck ∈ TG.

Lemma 3 shows that all generated methods of the form

t m D k trv#(V v#){e} are well typed.

Lemma 3. Given a well typed APCORE program ⊢P D e : t and the translated

CLASSICJAVA program ⊢ D e ⇀P defn∗ e, for all methods

Object m D k trv#(V v#){e1} in a class definition class C · · · {· · ·} ∈ defn∗

then

defn∗, [this : C, v# : V] ⊢s e1 ⇒ e′1 : Object

Proof. The proof proceeds by a case analysis on the definition ofD,m,Ck,C ⊢m

(E; E) ⇀ M (Figure 4.17).

There are four cases in total to consider, two cases for copy nodes Ci

where i ∈ Z and two cases for strategy nodes Cs .

Case Ci Both cases start with the CLASSICJAVA expression this and create

a new CLASSICJAVA expression e1 using v#,m, this ⊢E E ⇀ e′1. Using

Lemma 5 with Γ = [this : C, v# : V] we can deduce that defn∗, Γ ⊢s

e1 ⇒ e′1 : Object. The two cases differ on how they manipulate e1.

1. e′1 = e.

Immediate.

2. e = let x = super.m k′ trv#(v#) in e1

We know that defn∗, Γ ⊢s e1 ⇒ e′1 : Object and we know that

x is a fresh variable name. We also know that there is an in-

coming edge (Ck′

1 , ⋄↓
k′′ ,Ck) and we can deduce that C<

c
p C1. By
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Lemma 2 we also know that the method m k′ trv# is defined in

C1 with method signature V → Object. Using Lemma 8 and

CLASSICJAVA ’s type rule for let we can deduce that defn∗, Γ ⊢s

e ⇒ e′ : Object

Case Cs Both cases start with the CLASSICJAVA expression this and create

a new CLASSICJAVA expression e1 using

1. v#, P, this, after ⊢ V;C ⇀v e3

2. v#,m, e3 ⊢E E ⇀ e2

3. v#, P, e2, before ⊢ V;C ⇀v e1

in this order. Each rule generates a new CLASSICJAVA expression

which is used as the starting expression for the next rule in the se-

quence. We first show that each rule in the sequence generates a

CLASSICJAVA expression of type Object . Then we examine how the

two cases manipulate the resulting expression e1 to obtain the final

CLASSICJAVA expression used as the method’s body.

1. We can show that v#, P, this, after ⊢ V;C ⇀v e3 returns an

expression e3 such that defn∗, [this : C, v# : V] ⊢s e3 ⇒ e′3 :

Object by Lemma 4.

2. Given v#,m, e3 ⊢E E ⇀ e2 we can show that defn∗, [this : C, v# :

V] ⊢s e2 ⇒ e′2 : Object by Lemma 5.

3. Finally given that v#, P, e2, before ⊢ V;C ⇀v e1 we can show

that defn∗, [this : C, v# : V] ⊢s e1 ⇒ e′1 : Object by Lemma 4.

Given e1 the two cases manipulate e1 in the same way as in the case of

copy nodes. The proof proceeds in the same way as in the preceding

case.
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Lemma 4 shows that the generated calls to all the necessary before and

after methods of a visitor are well typed.

Lemma 4. Given a well typed APCORE program ⊢P D e : t and the translated

CLASSICJAVA program ⊢ D e ⇀P defn∗ e

∀C,C′ : C ∈ defn∗ ∧

C′ ∈ defn∗ ∧

D ⊢V C′

such that

∃Γ, e1, x : Γ(x) = C′ ∧

Γ(this) = C ∧

defn∗, Γ ⊢s e1 ⇒ e′1 : t ∧

x,D, e1,m ⊢ C′;C ⇀v e
′′
1

then

defn∗, Γ ⊢s e
′′
1 ⇒ e′′′1 : t

Proof. We examine each case for ⇀v.

1. match(m,C,C′,D) = •.

There are no applicable methods for C in C′; e remains unchanged.

2. match(m,C,C′,D) = D1 . . .Dn.

There is a list of applicable methods in C′ for class C. Applicable

methods have an argument Di that is a supertype of C. The result-

ing expression e′′ is a let expressions with e as then body of the let

expression. The let expression adds a method call to x’s m method

x.m D′
#(this) for D

′ ∈ D1 . . .Dn and D′ ≤c
p Di, i ∈ [1, n]. By ;V we

know that m D′
# is either defined by C′ or inherited from a superclass

of C′ with signature D′ → Object and that C≤c
p D

′. Translation pre-

serves the inheritance relation and thus C ≤c
P D′. The result of this
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method call is bound to a fresh variable y, by Lemma 9 we can deduce

that defn∗, Γ ⊢s e
′′ ⇒ e′′′ : t.

Lemma 5. Given a well typed APCORE program ⊢P D e : t and the translated

CLASSICJAVA program ⊢ D e ⇀P defn∗ e, for any class D ∈ D and any adaptive

method @{CC} t m(C y) with SG[V] ∈ D

and E = gettg(SG,D). outgoing(Dk) where k ∈ Z ∪ {s}

and ∃Γ, e1, x : Γ(x) = V ∧

Γ(this) = D ∧

defn∗, Γ ⊢s e1 ⇒ e′1 : t
′ ∧

x,m D, e1 ⊢E E ⇀ e′′1

then defn∗, Γ ⊢s e
′′
1 ⇒ e′′′1 : t′

Proof. The proof proceeds by induction on the size of E.

Case |E |= 0 Immediate.

Case |E |= n+ 1 There are three cases based on the definition of x,m, e ⊢E

E ⇀ e′′ (Figure 4.17).

1. E = ( , ⋄↓k, ) ∪ E′. The rule skips all edges with label ⋄↓k, thus

by the induction hypothesis we can deduce x,m, e ⊢E E′ ⇀ e′′

and defn∗, Γ ⊢s e
′′ ⇒ e′′′ : t.

2. E = (Ck
1 , ⋄↑

k′ ,Ck′′) ∪ E′. The rule creates a new expression e1 =

let y = super.m k′′ trv#(x) in e. From Lemma 2 we know

that class C contains the method m k′′ trv# with signature V →

Object. By Lemma 9 we can deduce that defn∗, Γ[y : Object] ⊢s

e : t. By the induction hypothesis we can deduce that x,m, e1 ⊢E

E′ ⇀ e′′ and defn∗, Γ ⊢s e
′′ ⇒ e′′′ : t.
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3. E = (Ck
1 , l

k′ ,Ck′′) ∪ E′ and lk 6∈ {⋄↓k, ⋄↑k}. The rule creates a

new expression e1 = let y = this.l.m k′′ trv#(x) in e. From

Lemma 2 we know that class C contains the method m k′′ trv#

with signature V → Object. By Lemma 9 we can deduce that

defn∗, Γ[y : Object] ⊢s e : t. By the induction hypothesis we can

deduce that x,m, e1 ⊢E E′ ⇀ e′′ and defn∗, Γ ⊢s e
′′ ⇒ e′′′ : t.

Lemma 6. Given ⊢P D e : t and ⊢ D e ⇀P defn∗ e, for any APCORE expression

e and type environment Γ such that D, Γ ⊢s e : t and ⊢ e ⇀e e then defn∗, Γ ⊢s

e ⇒ e′ : t.

Proof. We know that D, Γ ⊢s e : t and by the definition of ⊢s we know that

D, Γ ⊢e e : t′ for some t’ and D ⊢t t′ and t′ ≤c
p t. By Lemma 7 we can

deduce that defn∗, Γ ⊢e e ⇒ e′ : t′. Translation does not alter the inheritance

relation defined by APCORE classes and thus we can deduce that defn∗ ⊢t t
′

and t′ ≤c
P t.

Lemma 7 shows that our translation of APCORE expressions preserves

their type.

Lemma 7. Given ⊢P D e : t and ⊢ D e ⇀P defn∗ e, for any APCORE expression

e and type environment Γ such that D, Γ ⊢e e : t and ⊢ e ⇀e e then defn∗, Γ ⊢e

e ⇒ e′ : t.

Proof. The proof proceeds by induction on the height of the derivation tree

of ⊢ e′ ⇀e e. We show all the cases for e at the last derivation step.

Case e ≡ x. We know that e ≡ x and that x ∈ domain(Γ) thus defn∗, Γ ⊢e

x ⇒ x : Γ(x)

Case e ≡ let x = e1 in e2. We know that e ≡ let x = e1 in e2 and that

D, Γ ⊢e e : t. We also know that D, Γ ⊢e e1 : t1 and D, Γ[x : t1] ⊢e
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e2 : t. By the induction hypothesis we know that ⊢ e1 ⇀e e1 and that

defn∗, Γ ⊢e e1 : t1. Similarly ⊢ e2 ⇀e e2 and defn∗, Γ[x : t1] ⊢e e2 : t,

thus defn∗, Γ ⊢e e ⇒ e′ : t.

Case e ≡ new Object(). The expression remains unaffected by the transla-

tion. The expressions type, Object, does not depend on Γ and remains

the same.

Case e ≡ new C(e1, . . . , en). We know that e ≡ new C().init C#(e1, . . . , en)

where the type of new C() is C and does not depend on Γ. Further-

more, we know that ktype(C) = t → C and from the translation (⇀K)

we also know that the translated class C contains the method init C#

with type t → C. By the induction hypothesis we can deduce that

⊢ ei ⇀e ei and defn∗, Γ ⊢e ei ⇒ e′i : ti for all i ∈ [1, n]. Using CLAS-

SICJAVA ’s type rule for method calls we can deduce that e has type

C.

Case e ≡ e1. fi. We know that e ≡ e1. fi, by the induction hypothesis we

can deduce ⊢ e1 ⇀e e1 and defn∗, Γ ⊢e e1 ⇒ e′1 : t1. We know that

fieldType(t1, fi) = t and that fieldType returns the field type from the

declaration found at the minimum (i.e., furthest from the root) super-

class. The same behavior as CLASSICJAVA ’s ∈c
P relation. Using CLAS-

SICJAVA ’s type rule for field access we can deduce that defn∗, Γ ⊢e

e ⇒ e′ : t.

Case e ≡ e1. fi := e2. We know that e ≡ e1. fi = e2. By the induction hypoth-

esis we know that ⊢ e1 ⇀e e1 and ⊢ e2 ⇀e e2 and defn∗, Γ ⊢e e1 ⇒ e′1 :

t1 and defn∗, Γ ⊢e e2 ⇒ e′2 : t. Also, we know that fieldType(t1, fi) = t

and that CLASSICJAVA ’s ∈c
P relation agrees with fieldType. The type

rule for field set in both APCORE and CLASSICJAVA allows for sub-

sumption and thus we can deduce defn∗, Γ ⊢e e ⇒ e′ : t.
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Case e ≡ (C) e1. We know that e ≡ view C e1. By the induction hypothesis

we know that ⊢ e1 ⇀e e1 and defn∗, Γ ⊢e e1 ⇒ e′1 : t1. We also know

that t1≤
c
p C thus we can deduce defn∗, Γ ⊢e e ⇒ e′ : t.

Case e ≡ e1; e2. We know that e ≡ let x = e1 in e2 where x is a fresh

variable name. By the induction hypothesis we have that ⊢ e1 ⇀e e1

and ⊢ e2 ⇀e e2 and that defn∗, Γ ⊢e e1 ⇒ e′1 : t1 defn
∗, Γ ⊢e e2 ⇒ e′2 : t2.

Using Lemma 8 and the type rule for let from CLASSICJAVA we can

deduce defn∗, Γ ⊢e e ⇒ e′ : t.

Case e ≡ e0.m(e1, . . . , en). We know that e ≡ e0.m(e1, . . . , en). By the induc-

tion hypothesis we can deduce that ⊢ ei ⇀e ei and defn∗, Γ ⊢e ei ⇒

e′i : ti for i ∈ [0, n]. We also know that mtype(m, t0) = t1, . . . , tn → t

and by its definition mtype returns the method type signature found

at the minimum (i.e., furthest from the root) superclass. Translation

maintains the visitor hierarchy and connects it to the class hierarchy

at Object , thus mtype and CLASSICJAVA ’s ∈c
P relation agree on the

types returned for methods defined inside visitors. Using CLASSIC-

JAVA ’s type rule for method calls we can deduce defn∗, Γ ⊢e e ⇒ e′ : t.

Case e ≡ super.m(e1, . . . , en). The reasoning is similar to the previous case.

Lemma 8. If defn∗, Γ ⊢e e ⇒ e′ : t and x 6∈ fv(e) then defn∗, Γ[x : t′] ⊢e e ⇒

e′ : t

Proof. There are two cases to consider

Case x ∈ domain(Γ) Since x 6∈ fv(e) then x is either

• bound inside e. In this case [x : t′] shadows x in Γ and the

binding inside e shadows x for a second time in Γ[x : t′]. Since

defn∗, Γ ⊢e e ⇒ e′ : t we can conclude that defn∗, Γ[x : t′] ⊢e e ⇒

e′ : t
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• not bound inside e. Since x 6∈ fv(e) then it does not contribute to

the type derivation of e.

Case x 6∈ domain(Γ) By Lemma 9.

Lemma 9 (Free8). If defn∗, Γ ⊢e e ⇒ e′ : t and x 6∈ domain(Γ) then defn∗, Γ[x :

t′] ⊢e e ⇒ e′ : t.

Proof. The claim follows by reasoning about the shape of the derivation.

8Similar to Lemma 14 from [14]





CHAPTER 5

Demeter Interfaces

The first half of this chapter informally describes the extensions to DAJ to

accommodate Demeter Interfaces (DI). Our extension is implemented as a

rewrite from the extended DAJ syntax for DIs to the original DAJ system

with WYSIWYG and constraints. The second half of this section discusses

the application of Demeter Interfaces in the development of a design by

contract system for Java showing some of the benefits of DIs. The chapter

concludes with a discussion on some of the shortcomings of DIs.

Demeter Interfaces provide a mechanism to encapsulate adaptive code

while at the same time abstract over class dictionaries. Typically adaptive

code deals with a subset of the class dictionary and not the whole of the

class dictionary. Currently there is no mechanism to encapsulate the rele-

vant parts of a class dictionary used by adaptive code. Developing adaptive

code over a large class dictionary, such as the class dictionary that defines a

grammar for Java programs, becomes difficult.

Furthermore, in situations where the structure of different subparts of

the class dictionary are similar but class names differ, there is nomechanism

to abstract over class names in adaptive code. To deal with these similarities

programmers tend to either

• have similar strategies and visitors that differ only in the class names

used inside strategy and visitor definitions, or,

125
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• develop very general strategies (using the * pattern) and either have

visitor definitions that perform multiple tasks (if possible) using a

large number of before methods, or separate visitors for each task.

Maintaining similar adaptive code that differs only in the class names

used inside strategies is cumbersome and error prone. Overly general strate-

gies with “fat” visitor implementations decreases separation of concerns,

induces unnecessary dependencies between visitors and the class dictio-

nary, and makes reasoning about visitor behavior difficult. Furthermore,

general strategies capture a large set of valid paths which need to be con-

sidered by developers making the design of visitors more challenging.

Demeter Interfaces aim at providing an abstraction mechanism that al-

lows programmers to capture only the important–to the adaptive code–

subparts of the class graph. The abstraction provided by DIs defines the

boundaries within which adaptive code operates leading to modular adap-

tive code.

At the same time DIs provide a mechanism to abstract over class dic-

tionary class names and the means to provide an “instantiation” for each

abstract name using a mapping from a DI’s abstract names to a class dictio-

nary class names. The ability to abstract over class dictionary names and to

instantiate (possibly multiple times within the same class graph) a DI leads

to higher code reuse.

5.1 Support for Demeter Interfaces

Our extension to DAJ1 to support Demeter Interfaces is implemented as a

rewrite from the extended DAJ syntax for DIs to the original DAJ system

with WYSIWYG and constraints. We extend DAJ’s syntax to allow for the

definition of DIs, and extend class dictionary definitions to allow for nam-

ing the class dictionary and allow for mapping(s) and instantiations of DIs.

1DIs and normal traversal files can co-exist.
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We use our list example (Figure 5.1) to assist with our description of the

syntax and translation of Demeter Interfaces.

5.1.1 Defining a Demeter Interface

A Demeter Interface [39] (DI) consist of:

• an Interface Class Graph [33, 30] (ICG). The ICG is a class dictionary

that acts as an interface between adaptive code (strategies, traversal

declarations, and, visitor definitions) and a concrete class dictionary.

The ICG captures only the relevant–to the adaptive code–classes and

their relationships.

• a set of strategy and traversal declarations. Strategies define interest-

ing sets of paths on the ICG. Traversals bind visitors to these strate-

gies.

• constraint annotations on adaptive methods.

Figure 5.1 gives the definition of the FlatListDI for flat lists. The inter-

face class graph defines four types, FList, two types that extend FList, Mt

and Cons and a type E that represents list elements.

The FlatList DI also defines seven adaptive methods:

1. getFirst, defined in FList, returns the first element in a flat list,

2. getRest, defined in FList, returns the tail of a flat list,

3. getLastElement, defined in FList, returns the last element in a flat

list,

4. size, defined in FList, returns the total number of elements in a flat

list,

5. asString, defined in FList, takes a StringBuffer as an argument a

returns a string representation of a flat list,
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di FlatList {
// ICG for flat lists
FList : Mt | Cons.
Mt = .
Cons = <f> E <r> FList.
E = .

// strategy specifications
declare strategy: toFirst : from FList via Cons to E.
declare strategy: toRest : from FList to Cons.
declare strategy: toAll : from FList to ∗.
declare strategy: cons2rest : from Cons via (→∗,r,∗) to FList.
declare strategy: toLast : source:FList → FList

FList → target:E.

// traversal specifications
@constraint {unique(toFirst)}
declare traversal: public E getFirst() : toFirst(GetEV);
@constraint {unique(toRest)}
declare traversal: public FList getRest() : toRest(GetRestV);
declare traversal: public E getLastElement() : toLast(GetEV);
declare traversal: public int size() : toAll(CountV);
declare traversal: public String asString(StringBuffer sb) : toAll(AsStringV);
declare traversal: public String asCommaSepString(): toAll(AsCommaSepStringV);
declare traversal: public E atIndex(int i) : toAll(AtIndexV);
@constraint {unique(cons2rest)}
declare traversal: public FList getR() : cons2rest(GetRV);

}

Figure 5.1: The Demeter Interface for flat lists.

6. asCommaSepString, defined in FList, is similar to asString but sepa-

rates list elements with a comma,

7. atIndex, defined in FList, takes an index i as an argument and re-

turns the element found at index i in a flat list, and,

8. getR, defined in Cons, returns the member r of a Cons type.2

The strategy toLast uses the graph based notation where each line de-

fines an edge in the strategy graph with the keywords source and target

specifying the strategy source and target node respectively. The toLast

strategy graph contains a self loop on FList and an edge from FList to E.

2Helper method for getRest
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class AsCommaSepStringV extends AsStringV {

AsCommaSepStringV(StringBuffer sb){ super(sb); }

public void before(E host){
this.sb = sb.append(host.toString()).append(”, ”);

}

public String return(){
return this.sb.reverse().delete(0,2).reverse().toString();

}
}

class AsStringV {
protected StringBuffer sb;

AsStringV(StringBuffer sb){ this.sb = sb; }

public void before(E host){
this.sb = sb.append(host.toString()).append(” ”);

}

public String return(){ return this.sb.toString(); }
}

Figure 5.2: Visitor implementations used with the FlatList DI, part I.

The self loop on FList allows the strategy to select paths that contain one

or more FList objects on the way to an E object.

The visitors used by each adaptive method in FlatList are given in

Figures 5.2 and 5.3.

Figure 5.2 gives the definitions of AsStringV and AsCommaSepStringV.

The AsStringV visitor uses a class field sb and accumulates the string rep-

resentation of each element E along a traversal. The AsCommaSepStringV vis-

itor extends AsStringV and appends a comma after each element E. At the

end of its traversal the AsCommaSepStringV visitor removes the last comma

added in its local variable sb and returns sb’s string representation.

Figure 5.3 gives the definitions of the remaining five visitors used inside

the FlatList DI. The AtIndexV visitor maintains a running counter of E ob-

jects encountered during traversal and stores the element found at index i.

At the end of the traversal the visitor returns the stored E object or throws a
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class AtIndexV {

private int index;
private int count;
private E res;

AtIndexV(int index){
this.index = index;
this.count = 0;
this.res = null;

}

public void before(E host){
if (count == index) res = host;
count = count + 1;

}

public E return(){
if (res == null)
throw new RuntimeException(”Index ” + this.index + ” not found”);

else return res;
}

}

class CountV {
private int res;

CountV(){ this.res = 0; }

public void before(E host){
this.res = res + 1;

}
public int return() { return this.res; }

}

class GetEV {
private E res;

GetEV(){ this.res = null; }

public void before(E host){
this.res = host;

}
public E return() { return this.res; }

}

class GetRV{
private FList res;

GetRV(){ this.res = null; }

public void before(FList host){
this.res = host;

}
public FList return() { return this.res; }
}

class GetRestV {
private FList res;

GetRestV(){ this.res = null; }

public void before(Cons host){
this.res = host.getR();

}
public FList return() { return this.res; }

}

Figure 5.3: Visitor implementations used with the FlatList DI, part II.
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runtime exception if the visitor has not encountered i E objects. The CountV

visitor counts all E objects encountered during a traversal, the GetEV visitor

returns the last E object encountered while the GetRV visitor returns the last

FList object encountered during a traversal. Finally, the GetRestV visitor

uses the adaptive method getR on the last Cons object encountered during

a traversal.

The FlatList DI attaches constraints to adaptive methods that capture

the properties expected by a flat list implementation and assists in defining

the appropriate behavior for each adaptive method. For example, consider

the behavior of the visitor GetEV and the behavior of the getFirst adaptive

method. The implementation of GetEV visitor returns the last E object en-

countered in a traversal. Our getFirst adaptive method has to return the

first E object in a flat list. The constraint given on getFirst ensures that any

traversal starting at Flist going through a Cons object and terminating at

an E object has one path, leading to one E object. Similarly, the definitions

of the getRest and getR adaptive methods enforce a unique path to their

targets.

This uniqueness restriction might appear redundant at first sight, it is

not. The DI is going to be mapped on a concrete class graph where the

mapping might introduce more than one path to a strategy’s targets. Also,

the DI might be correctly mapped to a concrete class graph but evolutions

of the class graph might introduce multiple paths to a strategy’s targets.

Constraints guard against these situations.

5.1.2 Mapping a Demeter Interface

To use the functionality defined in a Demeter Interface we need to map

the Demeter Interface’s ICG to a concrete class dictionary. We first use a

straightforward mapping for our FlatList DI to explain the extensions to

class dictionaries and their mappings to DIs. We then provide more com-
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cd LoIntegers {
//Class Dictionary
LoI : MtLoI | ConsLoI.
MtLoI = .
ConsLoI = Integer LoI.

//Mappings
for FlatList (prefix all loi ){
use (=>, FList,Mt)
as LoI → MtLoI.

use (=>, FList, Cons)
as LoI → ConsLoI.

use (→, Cons,f, E)
as ConsLoI → Integer.

use (→, Cons,r, FList)
as ConsLoI → LoI.

}
}

Figure 5.4: An implementation for a list of integers that implements the
FlatList DI.

plex mappings of FlatList to further explain their behavior.

First we consider a flat list of integers as our concrete class dictionary.

Figure 5.4 gives the definition of LoIntegers that implements FlatList.

The body of a class dictionary consists of the definition of classes and

their relationships, as in DAJ, and a list of mapping definitions. A valid

class dictionary can provide mapping definitions for each DI implemented

by the class dictionary.

A mapping for a DI has to map each ICG edge once, and each ICG node

has to be mapped to one and only one class dictionary class. Figure 5.4

shows the mapping for the FlatList DI. A mapping specification starts

with the keyword for followed by the name of the DI for which we are

providing a mapping. Following the DI’s name we can optionally define

a renaming for the adaptive methods defined in the DI. In Figure 5.4 we

prefix the seven adaptive methods in FlatListwith the string loi .

A renaming specification consists of a list of renaming directives. A

renaming directive is either a pair of method names (strings), for example,

(search,songSearch) (Figure 2.26) or a renaming recipe such as prefix all
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or suffix all. Given a renaming directive (s1, s2) where s1 and s2 are

method names (strings), the adaptivemethod s1 is renamed to s2 in the class

dictionary. The renaming recipe (prefix all s) prefixes all adaptive meth-

ods in the DI with the string s. Similarly the renaming recipe (suffix all s)

adds the suffix s to each adaptive method name defined in the DI.

The mapping consists of a list of mapping directives. A mapping di-

rective can be either a use-as statement that maps an ICG edge to a path

in the concrete class dictionary, or, an application of a mapping function

(Figure 5.5).

An ICG edge is given using the syntax (edge-type,source,label,target),

where label is optional. An edge-type is either an inheritance edge (=>) or

a has-a edge (→), source and target are ICG classes, and, labels are field

names as defined in the ICG. The path can be any graph-based WYSIWYG

strategy that contains a single source and single target, i.e., strategies can-

not use the star pattern, *. to select all classes or the optional pattern { }

as their source or target nodes. The paths used in mappings are selectors

over the class graph. Restricting paths to be WYSIWYG strategies allows

for the mappings to be general and share the same benefits as with strategy

definitions. We also maintain consistency in the way selectors for paths in

class graphs are used throughout the DI.

Amapping function serves as a syntactic abstraction overmapping spec-

ifications. We can define a mapping function by using the keyword mdef

followed by the name of the mapping function, a list of arguments and

the mapping function’s body which is a mapping definition. For exam-

ple, in Figure 5.5 the mapping function oneElement takes one argument, an

Element. We can apply a mapping functionm bywriting the mapping func-

tion’s name followed by a list of arguments that can be either class dictio-

nary class names and/or strategies over the class dictionary as arguments

to m. The application of a mapping function results in an “expansion” of

the mapping function’s body, with the appropriate substitution for each of



134 CHAPTER 5. DEMETER INTERFACES

the mapping function arguments. For example in Figure 5.5 the first appli-

cation of oneElement(Integer) gives:

use (=>, FList, Mt) as LoX → MtLoX.

use (=>, FList, Cons) as LoX → ConsLoX.

use (→, Cons,f, E) as ConsLoX → Integer.

use (→, Cons,r, FList) as ConsLoX → LoX.

Given a mapped DI, DAJ generates the necessary traversal code and

specialized visitors for each adaptive method using the strategies and the

mapping(s) provided.

Given a DID and a class graph C that implementsD, DAJ first calculates

the traversal graph t for each strategy s in D using D’s ICG as the class

graph. DAJ validates any constraints given on adaptive methods in D that

use strategy s. Once all strategies in the DI have been processed DAJ turns

to class dictionaries that implement the DI and verifies that their mappings

are valid, i.e., for each mapping given in class dictionary C each ICG edge

is mapped exactly once and each ICG node is mapped to one and only once

class dictionary class.

From each of themapping definitions DAJ creates twomaps; M contains

mappings of ICG nodes to class dictionary nodes, and E contains mappings

of ICG edges to class dictionary strategies (Figure 5.6).

DAJ uses the two maps M and E in order to expand strategy specifi-

cations of the DI D in the class graph C. For each ICG edge e1 ∈ E with

mapped strategy s1, DAJ calculates the traversal graph t1 under the class

graph C. DAJ restricts mapping definitions so that each ICG edge is mapped

once, and each ICG node is mapped once. In order to calculate the valid

paths in C that satisfy the mapped strategy s in D, DAJ uses the mapping E

to rewrite the strategy s. The rewriting of s replaces each edge e ∈ swith its

mapped strategy from the map E, i.e., E(e). Because of the restrictions on

mappings imposed by DAJ (map each ICG edge and each ICG node once)

the rewrite of strategy s using a the mapping from class graph C yields a
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cd LoX {
//Class Dictionary
LoX :MtLoX | ConsLoX.
MtLoX = .
ConsLoX = <x> X <y> Y LoX.
X = Integer.
Y = String.

//Mappings
mdef oneElementList(Element) {
use (=>, FList,Mt) as LoX → MtLoX.
use (=>, FList, Cons) as LoX → ConsLoX.
use (→, Cons,f, E) as ConsLoX → Element.
use (→, Cons,r, FList) as ConsLoX → LoX.

}

//Instantiations
for FlatList (prefix all loi ){
oneElementList(Integer).

}

for FlatList (prefix all los ){
oneElementList(String).

}
}

Figure 5.5: Example of a mapping function. The FlatList is mapped twice,
the first mapping allows programs to view an LoX list as a list of integers,
the second mapping allows programs to view an LoX list as a list of strings.

M := FList 7→ LoI

Mt 7→ MtLoI

Cons 7→ ConsLoI

E 7→ Integer

E := (⇒, FList, Mt) 7→ LoI → MtLoI

(⇒, FList, Cons) 7→ LoI → ConsLoI

(→, Cons, f, E) 7→ ConsLoI → Integer

(→, Cons, r, FList) 7→ ConsLoI → LoI

Figure 5.6: The maps M and E for the list of integers example.
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valid (single source single target) strategy graph for C.

Observe that for a valid strategy s in a Demeter Interface D will have a

single source and a single target. Also, for each node v ∈ s, v is reachable

from the strategy’s source node and the strategy’s target node is reachable

from v (Definition 2, page 80). Since a mapping m has a one to one corre-

spondence between nodes and edges in the DI and the class dictionary C,

our substitution will yield a valid strategy s′ for C.

Turning to our list of integers example and to the toLast strategy in

the FlatList DI the traversal graph for toLast using the DI’s ICG contains

three edges,

FList Cons E

r

f

with FList as the source and E as the target. There is one edge from

Cons to FList and that is the edge labeled r. The upwards inheritance edge

from Cons to FList is not in the traversal graph because that would result

in a path with two consecutive edges being ⋄↓, ⋄↑ and this is not allowed

(Figure 4.7, page 89).

The three edges are mapped in E to the strategies LoI → ConsLoI,

ConsLoI → LoI and ConsLoI → Integer respectively.

Replacing the edges in toLast’s strategy graph with the three preceding

edges we obtain the strategy graph for the mapped toLast strategy over

the concrete class graph LoIntegers.

LoI ConsLoI Integer

DAJ the calculates all valid paths in the concrete class graph using the

mapped strategy for toLast. In this example the traversal graph for the

mapped strategy toLast is equal to its traversal graph.
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class $GetEV$ {
private Integer res;
$GetEV$(){ this.res = null; }
public void before(Integer host){ this.res = host; }
public Integer return() { return this.res; }

}

Figure 5.7: The generated visitor for GetEV using the mapping in
LoIntegers. Names enclosed in $ $ stand for unique mangled names in
the generated program.

DAJ uses the same approach in order to rewrite strategies that appear in

constraint annotations on adaptive methods. Once all strategies in a Deme-

ter interface have been rewritten, DAJ verifies all constraints in adaptive

methods. Each constraint contains now a rewritten strategy over the class

dictionary and the constraint is evaluated against the class dictionary.

DAJ generates specialized versions of the visitors used inside a mapped

DI. Visitor definitions use the ICG class names in their method implemen-

tations. For each mapping in the class dictionary DAJ generates a new vis-

itor, with a fresh unique name, by rewriting the original visitor implemen-

tation replacing ICG class names with their mapped class dictionary class

names. Figure 5.7 shows the generated visitor for GetEV using the mapping

in LoIntegers.

Finally, DAJ generates the traversal code with appropriate calls to the

newly generated visitors. Adaptive method renaming takes place only if a

renamingmap is givenwith the DI’s mapping definition. The final program

is then compiled using the original DAJ compiler.

Consider a more interesting example where we use the FlatList DI

with a class dictionary for doubly linked lists. Figure 5.8 shows the class

dictionary with two mappings for FlatList.

Themappings define two sets ofmethods, one set prefixedwith forward

traverse the doubly linked list in the forward direction using the next filed

in ConsDLList. The second send of methods prefixed with backward tra-
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cd DLList {
//Class Dictionary
DLList :MtDLList | ConsDLList.
MtDLList = .
ConsDLList = <prev> DLList <val> Integer <next> DLList.

//Mappings
mdef direction(dir) {
use (=>, FList,Mt)
as DLList → MtDLList.

use (=>, FList, Cons)
as DLList → ConsDLList.

use (→, Cons, f, E)
as ConsDLList → Integer.

use (→, Cons, r, FList)
as ConsDLList → DLList via (→, ConsDLList, dir, DLList).

}

//Instantiations
for FlatList (prefix all forward ){
direction(next).
}

for FlatList (prefix all backward ){
direction(prev).
}
}

Figure 5.8: The DLList class dictionary with the mapping for FlatList.

verse the doubly linked list in the backward (reverse) direction by using the

prev field in ConsDLList.

Observe that if we remove the bypassing directive from the mapping in

Figure 5.8, i.e.,

use (→, Cons, r, FList) as ConsDLList → DLList

we violate the constraint annotation on the getR adaptive method resulting

to a compile time error.

Constraints on Demeter Interfaces can safeguard against some evolu-

tions/mappings of the DI but cannot capture all possible evolutions/map-

pings of a DI that result in undesired behavior. For example, consider ex-

tending our original class dictionary for lists of integers to allow for nested

lists (Figure 5.9).
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cd LoIntegers {
//Class Dictionary
LoI : MtLoI | ConsLoI.
MtLoI = .
ConsLoI = IorList LoI.
IorList : WrappedInteger | LoI.
WrappedInteger = Integer.

//Mappings
for FlatList {
use (=>, FList,Mt)
as LoI → MtLoI.

use (=>, FList, Cons)
as LoI → ConsLoI.

use (→, Cons,f, E)
as ConsLoI → Integer.

use (→, Cons,r, FList)
as ConsLoI → LoI.

}
}

Figure 5.9: Extended LoIntegers to allow for nested lists.

The new class dictionary defines an abstract type IorList that is either

WrappedInteger3 or LoI. Note that Figure 5.9 does not alter any of the orig-

inal mappings from Figure 5.4. The extended class dictionary does not vi-

olate any of the DI constraints; there is still a unique path from ConsLoI to

Integer and from ConsLoI to LoI through the field r. However, the behav-

ior of the adaptive methods defined in FlatList does not take into account

any element of a list that is itself a list. For example, a call to the adaptive

method size on an instance of a list of integers that only contains lists as el-

ements returns 0. The reason for this behavior is due to the mapping of the

edge Cons, E. The mapping in Figure 5.9 maps (→, Cons, f, E) to the strategy

ConsLoI → Integer. Calculating the valid paths in the concrete class graph

for the strategy ConsLoI → Integer selects the subgraph

3We cannot alter the definition of Java’s Integer class to extend IorList.
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cd LoIntegers {
//Class Dictionary
LoI : MtLoI | ConsLoI.
MtLoI = .
ConsLoI = IorList LoI.
IorList : WrappedInteger | LoI.
WrappedInteger = Integer.

//Mappings
for FlatList {
use (=>, FList,Mt)
as LoI → MtLoI.

use (=>, FList, Cons)
as LoI → ConsLoI.

use (→, Cons,f, E)
as source:ConsLoI → ConsLoI

ConsLoI → target:Integer.
use (→, Cons,r, FList)
as ConsLoI → LoI.

}
}

Figure 5.10: Naive extension to the mapping in order to accommodate for
nested lists causes a compile time error.

ConsLoI IorList WrappedInteger Integer

The WYSIWYG condition forces the paths selected to have only one oc-

currence of ConsLoI and Integer.

Notice however that a naive modification to the mapping of FlatList

(Figure 5.10) in LoIntegers that allows for E to be mapped to all reachable

Integers from ConsLoI violates the uniqueness constraint on the getFirst

adaptive method.

The strategymapped to the edge Cons, f, E contains a self loop on ConsLoI

and therefore selects all Integer objects reachable through one or more

ConsLoI objects. Calculating the valid paths in the concrete class graph for

this strategy selects the subgraph
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SimpleCompound
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Mul Add
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Numerical
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Figure 5.11: The UML equivalent of Simple Equations Class Graph.

ConsLoI IorList WrappedInteger Integer

LoI

The constraint on getFirst in FlatList requires that there is a unique

path from FList to E via a Cons object. But with the mapping definition

in Figure 5.10 we have mapped Cons (ConsLoI) to E (Integer) in a way

that allows for more than one distinct path to reach E (Integer) from Cons

(ConsLoI) thus violating the DI constraint.

Demeter Interfaces and constraints assist with disallowing the applica-

tion of adaptive code on class dictionaries that violate the DI’s constraints.

The behavior of a correctly mapped DI still needs to be validated by pro-

grammers. Programmers have to rely on testing to ensure that the mapped

adapted code behaves as expected.
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EqSystem = <equations> BList(Equation).
Equation = <lhs> Variable "=" <rhs> Expr.
Expr : Simple | Compound .
Simple : Variable | Numerical.
Variable = Ident.
Numerical = <val> Integer.
Compound = "(" <lrand> Expr <op> Op <rrand> Expr")".
Op : Add | Sub | Mul | Div.
Add = "+".
Sub = "-".
Mul = "*".
Div = "/".
BList(S) ˜ "(" S {";" S} ")".

Figure 5.12: Class dictionary in DAJ for simple equations.

5.1.3 A simple equation system with Demeter Interfaces

Our example in this subsection is about systems of equations in which we

want to check that all used variables are defined (we call this a semantic

checker). We first discuss a solution in DAJ without Demeter Interfaces and

then proceed to provide a solution using Demeter Interfaces and compare

the two solutions.

We define a simple equation system where each equation introduces

a new variable binding and bindings have global scope, e.g., x = 5; y =

9; z = x+ y;. Figure 5.12 shows the class dictionary for the simple equation

system and Figure 5.14 shows the traversal, visitor and main class that im-

plements the semantic checker. A cd file is a textual representation of the

object oriented structure of the program which specifies classes and their

members. Figure 5.11 provides the UML representation of the class dictio-

nary in Figure 5.12. DAJ uses a class dictionary as a grammar definition,

providing a language that can parse in sentences and create the appropriate

object instances. Tokens in the class dictionary surrounded in quotes define

the generated language’s syntax tokens (Figure 5.13). Parametrized classes

are defined in class dictionaries using a tilde (“~”) operator, e.g., BList(S)

defines a list enclosed in parentheses of one (or more) elements of type S
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(x = 5;
y = (x − 2);
z = ((y−x) + (y+9)))

Figure 5.13: An instance of a simple equations system given as input to
DAJ.

each element separated by a semicolon.

In our simple equation system the strategy defined visits all Variable

objects starting form an EqSystem object and bypassing any edge with the

name rhs along the way. This strategy selects all bindings in a set of equa-

tions. The traversal method getDefined uses the strategy defined and the

visitor CollectDef to collect all bindings in a set of equations.

In a similar manner the strategy used selects all Variable objects from

each equation in EqSystem by bypassing any edge with the name lhs. The

traversal method getUsed uses the strategy used and the same visitor class

CollectDef to collect all uses of bindings in a set of equations. Both traver-

sal methods return return a set of bindings and the method check checks

that the set of used bindings is a subset, or equal to, the set of defined bind-

ings. The method check is introduced in the class EqSystem.

With the completed AP implementation of the semantic checker in place

we can now evaluate our solution and verify the claims made, both in fa-

vor and against, AP. For the simple equation system example, modifying

the system so that equations are now in prefix notation does not affect the

program’s behavior. Doing so requires a single modification to the class

dictionary,

Compound = ‘‘(’’ <op> Op <lrand> Expr <rrand> Expr ‘‘)’’.

No other changes are needed to the traversal file or the visitor. The modifi-

cation simply changed the order between the Op data member and the first

Expr data member of the Compound class. This is not surprising since even

in plain Java, switching the order of member definitions does not change a
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// SemanticChecker.trv
aspect SemanticChecker {
declare strategy : defined: from EqSystem bypassing (→ ∗,rhs,∗) to Variable;
declare traversal: public Set getDefined(): defined(CollectDef);
declare strategy : used : from EqSystem bypassing (→ ∗,lhs,∗) to Variable;
declare traversal: public Set getUsed():used(CollectDef);

public boolean EqSystem.check(){
return this.getUsed().subseteq(this.getDefined());

}
}
// CollectDef.java Visitor
class CollectDef{
Set res;

public CollectDef() { this.set = new Set(); }
public void before (Variable v) { this.res.add(v); }
public Set return () { return this.res; }

}

Figure 5.14: The traversal file (SemanticChecker), visitor class (CollectDef)
for the system of simple equations in DAJ.

program’s behavior. Lets consider a more drastic extension, lets add expo-

nent operations to our system but also impose precedence between oper-

ators. Listing 5.15 shows the complete class dictionary file, the definitions

have been factored to accommodate for operator precedence. Again, no

other changes are need to either the traversal file or the visitor. The seman-

tic checker still functions correctly.

Why is the semantic checker unaffected by these changes? In both cases

the modifications to the cd file did not falsify the strategy (i.e., there is still a

path from source to the target) and it did not affect the way by which vari-

ables are defined and used in the equation system (i.e., there is no other way

of binding a variable to equations other than ‘‘=’’ and variables still have

global scope). Any modification to the class dictionary that does not falsify

the strategy and does not alter the assumptions about variable definition

and usage within the equation systemwill not affect the semantic checker’s

code.

However any alteration that either
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EqSystem = <equations> BList(Equation).
Equation = <lhs> Variable "=" <rhs> Expr.
Expr : AddExp | SubExp | Term.
AddExp = Add Expr Term.
SubExp = Sub Expr Term.
Term : MulTerm | DivTerm | Expo.
MulTerm = Mul Term Expo.
DivTerm = Div Term Expo.
Expo : Raised | Factor.
Raised = "**" Expo Factor.
Factor : Simple | BExpr.
BExpr = "(" Expr ")".
Simple : Variable | Numerical.
Variable = Ident.
Numerical = <val> Integer.
Add = "+".
Sub = "-".
Mul = "*".
Div = "/".
BList(S) ˜ S {";" S}.

Figure 5.15: Extended class graph accommodating exponents and operator
precedence.

• modifies class and/or class member variable names that are explicitly

referenced by traversals and/or visitors,

• or, breaks an assumption about the system on which adaptive code

depends on (e.g., adding a new variable binding construct to the equa-

tion system like let for local bindings or functions with arguments).

will alter the program’s behavior.

For example, altering the equation system to allow for function defini-

tions with arguments causes no compile time error, but results in erroneous

program behavior. This modification breaks two assumptions:

1. There is only one new Variable defined at each equation.

2. All variables have global scope and thus can be used anywhere.

Adaptive methods, as well as the visitor, depend on these assumptions.

However these assumptions are not explicitly captured in AP programs.
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There is no tool support to stop such modifications. In fact naively extend-

ing the equation system to accommodate for functions parameters, as in

Listing 5.16, will generate a valid AP program that will provide the wrong

results for the semantic checker.

With larger AP programs, it becomes nearly impossible to find all these

implicit assumptions and even harder to predict which modifications will

cause erroneous behavior. Programmers have to rely on exhaustive testing

in order to increase their confidence that the program still behaves accord-

ing to its specification. This in turn limits the effectiveness of AP and its

application in iterative development since modifications to the data struc-

ture due to an iteration can introduce bugs in parts of the code developed

in previous iterations.

These dependencies impede parallel development and decrease pro-

ductivity. Addressing these issues requires

• The ability to define the assumptions made by adaptive code about

the underlying data structure,

• Tool support to allow for the verification of these assumptions,

• Decrease the dependency on class and class member variable names,

• The modularization of only the relevant data structure information

for each adaptive behavior instead of the whole class dictionary.

A Demeter Interface resides between a class graph and the implemen-

tation of adaptive behavior, i.e., adaptive methods and visitor implemen-

tations. Figure 5.17 shows the Demeter Interface for the simple equation

system with strategies, traversals and constraints, as well as with its vis-

itor implementation. Observe that the ICG given in Figure 5.17 does not

contain any lists, but rather, it is a simple, flat (no lists) representation of

an equation system. The ICG defines an ESystem as having a Definition.

A Definition contains in turn an equation that has a left hand side and a
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EqSystem = <equations> BList(Equation).
Equation = <lhs> VarOrFunc "=" <rhs> Expr.
VarOrFunc : Variable | Function.
Function = "fun" <fname> Variable

"(" <args> CList(Variable)")".
Expr : FunCall | Simple | Compound .
Simple : Variable | Numerical.
Variable = Ident.
FunCall = <fname> Variable "(" <fargs> CList(Simple) ")".
Numerical = <val> Integer.
Compound = "(" <lrand> Expr <op> Op <rrand> Expr")".
Op : Add | Sub | Mul | Div.
Add = "+".
Sub = "-".
Mul = "*".
Div = "/".
BList(S) ˜ "(" S {";" S} ")".
CList(S) ˜ S {"," S}.

Figure 5.16: Class Graph for equation systems with functions of one argu-
ment.

// ExprICG.di File
di ExprICG {
//ICG
ESystem = Definition.
Definition = <def> DThing ”=” <body> Body.
Body = UThing.
UThing = Thing.
DThing = Thing.
Thing = .

// Strategies
declare strategy: gdefinedIdents: from ESystem via DThing to Thing.
declare strategy: gusedIdents: from ESystem via UThing to Thing.
declare strategy: definedIdent: from Definition via DThing to Thing.

// Traversals
@constraints{unique(definedIdent) &&

(unique(gdefinedIdents) || nonempty(gdefinedIdents))}
declare traversal: void printDefined(): gdefinedIdents(DVisitor);
@constraints{unique(gusedIdents) || nonempty(gusedIdents)}
declare traversal: void printUsed(): gusedIdents(DVisitor);

}
// DVisitor.java File
class DVisitor {
public void before(Thing t){ System.out.println(t.toString()); }

}

Figure 5.17: The Demeter Interface for the simple equations system.
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right hand side. A binding is found on the left hand side of the definition

and a use of a binding is found on the right hand side of the definition.

The DI also defines three strategies, gdefinedIdents finds a binding

starting from ESystem and navigating via a DThing to a Thing. The strat-

egy gusedIdents, in a similar way, finds all binding uses in an ESystem by

navigating via a UThing to a Thing. The third strategy definedIdent starts

from a Definition and navigates via DThing to Thing.

The DI also defines two traversal methods, printDef uses the strategy

gdefinedIdents and the DVisitor to print all binding definitions. 4 Simi-

larly, the traversal method printUsed prints all uses of a binding.

Both traversal methods are annotated with constraints. The constraints

on printDefined ensure that there is one, and only one, path starting from

Definition via DThing to Thing and expect that there is one or more paths

that lead to a Thing starting from ESystem and navigating via a DThing. The

pattern unique(s) || nonempty(s) can be thought of as specifying a one

to many relationship on the paths selected by strategy s. This is similar

to the UML notation for associations where we specify 1..* on UML dia-

grams to the multiplicity of an association as one or more. The annotation

on printUsed only requires that there is one or more paths that satisfy the

strategy gusedIdents. This annotation on gusedIdents specifies that we

can use this DI with class graphs that allow for a one or more uses of a

binding to occur in a definition’s right hand side.

Figure 5.18 gives an example implementation of the ExprICG Demeter

Interface (on the right) along with a driver class (on the left). The con-

crete class dictionary InfixEQSystem (Figure 5.18) provides a definition of

its equation system and a mapping M between the classes in its class graph

and all the classes in ExprICG’s interface class graph. The mapping in Fig-

ure 5.18 maps an ESystem to EquationSystem, a Definition to Equation.

4Altering the DI code to collect all binding definition and binding uses as sets, just
like the preceding DAJ implementation requires that we use the same visitor as before,
CollectDef but replace all occurrences of Variable with Thing.
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import java.io.∗;

class Main {
public static void main(String[] args){
try {
InfixEQSystem ieqs = InfixEQSystem.

parse(new File(args[0]));
System.out.println("IDs in def:");
ieqs.printDefined();
System.out.println("IDs in use:");
ieqs.printUsed();

}catch(Exception e){
e.printStackTrace();

}
}

}

cd LetEQSystem{
EquationSystem = <eqs> List(Equation).
List(S) ˜ "(" {S} ")".
Equation = <lhs> Variable "=" <rhs>

Expr.
Expr : Simple | Compound.
Simple : Variable | Numerical.
Variable = Ident.
Numerical = <v> Integer.
Compound = <lrand>List(Expr) <op>

Op <rrand>List(Expr).
Op : Add | Sub | Mul | Div.
Add = "+".
Sub = "-".
Mul = "*".
Div = "/".

//Mappings
for ExprICG (
use (→, ESystem, Definition)
as EquationSystem to Equation.

use (→, Definition, DThing)
as (→, Equation,lhs,∗) to Variable.

use (→, Definition, Body)
as Equation to Expr.

use (→, Body, UThing)
as (→, Equation,rhs,∗) to Variable.

use (→, UThing, Thing)
as Variable to Ident.

use (→, DThing, Thing)
as Variable to Ident.

)
}

Figure 5.18: InfixEQSystem defines a class graph and a mapping of the
entities in the class graph to the interface class graph of ExprICG. The driver
class Main uses the adaptive methods introduced by ExprICG.
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The mapping also maps a DThing to all reachable Variable objects reach-

able from Equation via an edge labeled lhs. The ICG class Body is mapped

to Expr and a UThing is mapped to all the Variable objects reachable from

Equation via an edge labeled lhs. The last two mapping directives map

UThing and DThing to Variable and Thing to Ident.

With the simple equation system implemented usingDemeter Interfaces

we now extend the system by performing the same sequence of program

evolutions as with the DAJ solution to the semantic checker. As a first evo-

lution step we want to change from infix notation to prefix notation. This

is a modification that does not alter the program’s behavior even in the

original DAJ solution. Moving to a prefix notation requires to change the

definition of Compound in InfixEQSystem to

Compound = <op> Op <lrand> List(Expr) <rrand> List(Expr).

This change does not affect the Demeter Interface at all. We update the

equation system class graph while keeping the original mapping M. All

constraints of the DI are still satisfied after they are mapped into the actual

interface class graph and the adaptive methods function correctly.

It is important to note that during this evolution step, only the DI and

the concrete implementation of the interface class graph was needed. Un-

der the assumption that the DI’s constraints capture the semantic checker’s

intend, the static assurances provided by the tool because of the DI, suf-

fice to show that the strategies pick the correct paths and that the semantic

checker still operates as expected. The Demeter Interface allows in this case

for separate development and ease of evolution. The concrete class graph

and its mapping can be a maintained separately while adaptive code can

be developed based on the publicly available DI. Alterations made to the

concrete class graph do not need to be visible to adaptive code maintainers

unless it affects the mapping to an implemented DI. This form of data hid-

ing through the Demeter Interface also provides for easier maintainability
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// ParamExprICG.di File
di ParamExprICG {

ESystem = Definition.
Definition = <def> DThing <fnc> DFThing <body> Body.
DThing = Thing.
DFThing = <fname> DThing <fparam> DThing.
Body = <fc> UFThing UThing.
UFThing = <name> UThing <aparam> UThing.
UThing = Thing.
Thing =.

// Strategies
declare strategy: definedIdents : from ESystem to DThing.
declare strategy: usedIdents : from ESystem to UThing.
declare strategy: dName : from DFThing via (→, ∗,fparam,∗) to Thing.
declare strategy: uName : from UFThing via (→, ∗,aparam,∗) to Thing.
declare strategy: dFName : from DFThing via (→, ∗,fname,∗) to Thing.
declare strategy: uFName : from UFThing via (→, ∗,name,∗) to Thing.

// Traversals
@constraints{unique(definedIdents) || nonempty(definedIdents)}
declare traversal: LinkedList getDefined(): definedIdents(PVisitor);
@constraints{unique(usedIdents) || nonempty(usedIdents)}
declare traversal: LinkedList getUsed(): usedIdents(PVisitor);
@constraints{unique(dName)}
declare traversal: LinkedList getDefName(): dName(PVisitor);
@constraints{unique(uName)}
declare traversal: LinkedList getUsedName(): uName(PVisitor);
@constraints{unique(dFName)}
declare traversal: LinkedList getDefArg(): dName(PVisitor);
@constraints{unique(uFName)}
declare traversal: LinkedList getUsedArg(): uName(PVisitor);

//Introduction of a helper method
public boolean ESystem.checkBindings(LinkedList l1, LinkedList l2){
// checks appropriate variable usage (elided)

}
}

Figure 5.19: The evolved Demeter Interface that deals with one argument
functions.

and higher system modularity.

As our next evolution step we extend the set of operators to include ex-

ponents and add operator precedence. Keeping the headers and mapping

definition the same as in InfixEQSystem and replacing the data structure

definition by that of Figure 5.15 gives us a working AP system. The mod-

ifications made to the data structure to accommodate for exponents and
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operator precedence do not invalidate any of the DI’s constraints and the

resulting AP program behaves as expected.

In the next evolution step we want to add functions with one argument

to the equation system. This evolution step affects information that is rele-

vant to the semantic checker. The semantic checker has to deal with param-

eter names on each function definition but also uses of function definitions

that may appear on the right-hand side of equations. Unlike definitions so

far function parameters do not have global scope, their scope is local to the

function definition. A naive approach would be to alter the class dictio-

nary as in Figure 5.20.5 Altering the data structure and only the mapping

to DThing results in a compile time error. The reason for this error is the

predicate unique(definedIdent) from ExprICG, no longer holds. The mod-

ification to allow functions with one parameter breaks one of the assump-

tions of the interface, in particular the fact that we can reach more than one

variable through the left hand side of the equal sign. With one argument

functions the meaning of what is defined and what is its scope has changed

and these changes have to be reflected in the Demeter Interface.

It is important to note that for this evolution step that the interface has

to change (Figure 5.19). With a new interface class graph ParamExprICG we

can abstractly reason about semantically checking systems with one argu-

ment functions. The two strategies definedIdent and usedIdents are used

to navigate to definitions and references of variable names, both function

names as well as simple variables. The strategies dName and uName are then

used to collect arguments (at function definition) and actual arguments (at

function invocation) respectively. Similarly dFName and uFName collect func-

tion names at function definitions and function usage respectively. The

traversal declarations use the strategies to collect Thing objects. The im-

plementation of the method checkBindings is introduced into ESystem and

5To keep the example simple we do not allow the usage of function calls as arguments
to other functions, i.e., f ( f (3))
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cd ParamEquations {
EqSystem = <equations> BList(Equation).
Equation = <lhs> VarOrFunc "=" <rhs> Expr.
VarOrFunc : Variable | Function.
Function = "fun" <fname>Variable "("<args>Variable")".
Expr : FunCall | Simple | Compound .
Simple : Variable | Numerical.
Variable = Ident.
FunCall = <fname> Variable "(" <fargs> Simple ")".
Numerical = <val> Integer.
Compound = "("<lrand>Expr <op>Op <rrand>Expr")".
Op : Add | Sub | Mul | Div.
Add = "+".
Sub = "-".
Mul = "*".
Div = "/".
BList(S) ˜ "(" S {";" S} ")".

// Mappings
for ExprICG (
use (→, ESystem, Definition)
as EquationSystem to Equation.

use (→, Definition, DThing)
as (→, Equation,lhs,∗) to Variable.

use (→, Definition, Body)
as Equation to Expr.

use (→, Body, UThing)
as (→, Equation,rhs,∗) to Variable.

use (→, UThing, Thing)
as Variable to Ident.

use (→, DThing, Thing)
as Variable to Ident.

)
}

Figure 5.20: Extending the class dictionary to accommodate function defi-
nitions using the ExprICG DI.
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cd ParamEquations {
EqSystem = <equations> BList(Equation).
Equation = <lhs> VarOrFunc "=" <rhs> Expr.
VarOrFunc : Variable | Function.
Function = "fun" <fname> Variable "(" <args> Variable")".
Expr : FunCall | Simple | Compound .
Simple : Variable | Numerical.
Variable = Ident.
FunCall = <fname> Variable "(" <fargs> Simple ")".
Numerical = <val> Integer.
Compound = "(" <lrand> Expr <op> Op <rrand> Expr")".
Op : Add | Sub | Mul | Div.
Add = "+".
Sub = "-".
Mul = "*".
Div = "/".
BList(S) ˜ "(" S {";" S} ")".

for ParamExprICG(
use (→, ESystem, Definition) as EqSystem to Equation.
use (→, Definition, DFThing) as Equation to Function.
use (→, Definition, Body) as Equation to Exp.
use (→, Definition, DThing) as (→, Equation, lhs,∗) to Variable.
use (→, DFThing, fname, DThing) as (→, Function, fname, ∗) to Variable.
use (→, DFThing, fparam, DThing) as (→, Function, args, ∗) to Variable.
use (→, Body, fc, UFThing) as Exp to FunCall.
use (→, Body, UThing) as Exp bypassing FunCall to Variable.
use (→, UFThing, name, UThing) as (→, FunCall, fname, ∗) to Variable.
use (→, UFThing, aparam, UThing) as (→, FunCall, fargs, ∗) to Variable.
use (→, UThing, Thing) as Variable to Ident.
use (→, DThing, Thing) as Variable to Ident.
)

}

Figure 5.21: Modifications to the concrete class dictionary to accommodate
single argument functions.

it is used to check the correct usage of variable and function definitions.

The inputs to this function are two lists where the first represents variable

and function definition names at different scopes and the second represents

names of variables and functions references at their corresponding scope.

Figure 5.21 shows the class graph that implements ParamExprICG. The map-

ping in Figure 5.21 maps ESystem to EqSystem, Definition to Equation,

DFThing to Function and Body to Expr. The ICG class DThing is mapped to

all reachable Variable objects via an edge with source Equation and label
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import java.util.LinkedList;

class PVisitor {
LinkedList env;

PVisitor(){ this.env = new LinkedList(); }
public void before(Thing t) { env.add(t); }
public void before(UFThing ud) {
LinkedList rib = getUsedName();
rib.addAll(getUsedArg());
env.add(rib);

}
public void before(DFThing ud) {
LinkedList rib = getDefName();
ribaddAll(getDefArg());
env.add(rib);

}
public LinkedList return(){ return env; }

}

import java.io.∗;

classMain {
public static void main(String[] args){
boolean codeOk ;

PVisitor defV = new PVisitor();
PVisitor useV = new PVisitor();
ParamEquations pe = ParamEquations.

parse(new File(args[0]));
codeOk = pe.checkBindings( pe.getDefined(

defV), pe.getUsed(useV));
if (!codeOk)
System.out.println(" Variables used

before they where defined");
}

}

Figure 5.22: Changes to the interface affect Main. The definition of PVisitor
is used to check for the local parameter names in parametric equations.

lhs. The ICG edge labeled fname with source DFThing and target DThing

is mapped to all reachable Variable object starting at an edge in the class

graph with source Function and label fname. Similarly, the ICG edge la-

beled fparamwith source DFThing and target DThing is mapped to all reach-

able Variable objects starting at the class graph edge labeled args with

Function as the edge source. The mapping also maps UFThing to FunCall

and the edge (Body, UThing) to all reachable Variable objects starting at Exp

and bypassing FunCall. The two edges in ICG from UFThing to UThing la-

beled name and aparam are mapped to all reachable Variable objects start-

ing at FunCall and navigating via the edge labeled fname (for name) and

fargs (for aparam). The last two mapping directives in Figure 5.21 map

UThing and DThing to Variable and Thing to Ident. Figure 5.22 shows the

visitor implementation and the driver class.

In this evolution step, the Demeter Interface helped by disallowing a

naive extension that would violate the intended behavior of the original
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Demeter Interface. The nature of the evolution required an extension of the

interface and that resulted to changes in the driver class and a new concrete

class dictionary. It is important to note how the Demeter Interface exposed

the erroneous usage of the ExprICG interface for this evolution step and

assisted in updating all the dependent components due to the definition of

ParamExprICG.

Although Demeter Interfaces are a big improvement over traditional

AP, their usage does not completely remove the need for testing adaptive

code after modifications are made to the class graph. The mechanisms be-

hind Demeter Interfaces rely on the appropriate constraints and mapping

between the ICG and the class dictionary. Constraints in the interface could

be too permissive allowing modifications to a class dictionary that lead to

unintended behavior. Through testing we can verify the program’s behav-

ior and strengthen the program’s constraints accordingly. The abstraction

provided by the ICG assist programmers in this task allowing them to focus

on the relevant subset of their application.

5.2 Case Study

In this section we discuss our case study, a re-implementation of a Design

by Contract (DbC) system for Java originally implemented in DAJ. The

original implementation CONAJ [38, 32] uses the original DAJ system, the

re-implementation DCONAJ uses our extended DAJ implementation that

supports WYSIWYG strategies and Demeter Interfaces.

Both systems extend a subset of Java’s6 syntax to accommodate for pre-

conditions, post-conditions and invariant specifications in a class definition.

Both systems, CONAJ and DCONAJ, rewrite all input files by commenting

out all contract definitions and create AspectJ aspect definitions that are

responsible for the runtime evaluation of contracts. The runtime evaluation

6Java version 1.3, without packages, arrays and nested class/interface definitions.
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of contracts (pre and post-conditions) takes into account the type hierarchy

and follows the work of Findler et. al. [12, 13].

Figure 5.23 shows the implementation of a stack in our extended Java

syntax with contracts. Contract definitions contain a boolean Java expres-

sion that allows for the keywords old and result. The keyword old is

used in post-condition definitions to refer to the state of the object at the

time when the method was called. The keyword result is also used inside

a post-condition definition and refers to the value returned by the method’s

execution. Both systems expect contract definitions to be side effect free but

do not enforce this restriction. To support the usage of old the generation

phase introduces a clonemethod inside every class that uses old in one (or

more) of its contract definitions. The implementation of the clone method

implements a shallow clone on the class’ fields.

The rewrite process is split into two steps. First we collect information

about classes and their supertypes, classes and their invariants, methods

and their signatures and contracts. The tool verifies that each contract defi-

nition is valid, i.e., pre-conditions refer to method arguments and methods

that are visible within the class. The second step walks over the abstract

syntax tree (AST) and generates Java classes and AspectJ aspects.

Informally CONAJ generates one aspect for each class that contains con-

tract definitions. Aspect generation goes through the following steps:

1. Generate pointcuts that capture calls to methods for which we have

contracts defined. For each method m in type t we generate two

pointcuts; one pointcut to capture calls to method m on an instance

whose static and runtime type is t, and one pointcut to capture calls

to method m on an instance whose static type is t′ and its runtime

type is t where t 6= t′ and t is a subtype of t′.

2. Generate before and after advice for each generated pointcut. Be-

fore advice validates pre-conditions and after advice validates post-
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class MyStack {
@invariant{0<=size() && size()<=maxSize}
protected Vector elements;
protected int maxSize;
protected int size;

MyStack(int n){
elements = new Vector(n);
maxSize = n;
size = 0;

}
public int size() { return size; }
public void push(int i){
@pre{!full()}
@post{!empty() && top()==i && size()==old.size() + 1}
Integer val = new Integer(i);
elements.add(val);
size=elements.size();

}
public int pop(){
@pre{!empty()}
@post{!full() && size()==old.size() − 1}
Integer result = (Integer) elements.lastElement();
elements.remove(elements.lastIndexOf(result));
size = elements.size();
return result.intValue();

}
public int top(){
@post{size() == old.size()}
Integer result = (Integer) elements.lastElement();
return result.intValue();

}
public boolean full(){return (size() == this.maxSize);}
public boolean empty(){return elements.isEmpty();}

}

Figure 5.23: Stack implementation with contracts. The Vector class is an
implementation that has the same methods as java.util.Vector.
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conditions. The body of before and after advice is a modified version

of the contract definition provided by the programmer. The pointcuts

bind the running instance of the object (the target instance to amethod

call) and update the contract definition so that any calls to the instance

are redirected appropriately. Before advice calls the clone method if

old is used inside the method’s post-condition. After advice binds the

value returned by the method if result is used inside the method’s

post-condition.

3. Generate a clonemethod if necessary.

4. Generate helpermethods to carry out the necessary hierarchical checks

on pre and post-conditions.

We discuss parts of the implementations of DCONAJ that differ from

CONAJ. We then evaluate the advantages and disadvantages of DIs.

Central to the generation phase is the manipulation of methods and

specifically their formal argument list. Method arguments are used in con-

tract definitions and are essential for pointcut generation. The generated

pointcut definitions use both the types and the names given to formal ar-

guments in the Java program for two purposes:

1. formal argument types assist with disambiguation between overloaded

versions of a method in the input program,

2. formal argument types and formal argument names are used to bind

values passed as arguments to a method call in the original program,

to their appropriate name within aspect definitions.

AspectJ provides the pointcut descriptor args which takes a list of ar-

guments that can either be a list of types, or a list of variable names. When

a list of types is given to args then a call pointcut matches method calls

whose argument list has the same types (in order) as those given to args.
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di List {

//ICG
List :Mt | Cons.
Mt = .
Cons = E List.
E = .

// strategy specifications
declare strategy: toFirst : from List via Cons to E.
declare strategy: toRest : from List to Cons.
declare strategy: toAll : from List to ∗.
declare strategy: cons2rest : from Cons via (→∗,r,∗) to List.

// traversal specifications
@constraint {unique(toFirst)}
declare traversal: public E getFirst() : toFirst(GetEV);
@constraint {unique(toRest)}
declare traversal: public FList getRest() : toRest(GetRestV);
declare traversal: public int size() : toAll(CountV);
declare traversal: public String asString(StringBuffer sb) : toAll(AsStringV);
declare traversal: public E atIndex(int i) : toAll(AtIndexV);
@constraint {unique(cons2rest)}
declare traversal: public FList getR() : cons2rest(GetRV);

// extra adaptive methods not in FlatList.di
declare traversal: public String asSepString(String s, StringBuffer sb): toAll(AsSepStringV);
declare traversal: public int getIndex(E e) :toAll(GetIndexV);
declare traversal: public String selectedIndexes(java.util.List indxs, String s, StringBuffer sb

) :toAll(SelectedIndexV);
}

Figure 5.24: The List DI used inside DCONAJ.

When a list of variable names is given7 args binds the values passed as

arguments to a method call to these names. AspectJ’s args pointcut des-

ignator allows * to appear at positions that the type (or name) is not to be

used for matching (or binding) arguments.

We use the ListDI to introduce behavior for generating the arg pointcut

designators inside pointcut definitions. The List DI (Figure 5.24) is similar

to FlatList (Figure 5.1) and uses the same CountV, AsStringV and AtIndex

visitors. Figure 5.25 shows the implementation of the three extra visitors

AsSepStringV, GetIndexV, and SelectIndexV.

7These are the names of the pointcut’s formal arguments.
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class AsSepStringV extends AsStringV {
protected String sep;
AsSepStringV(String sep, StringBuffer sb){
super(sb);
this.sep = sep;

}
public void before(E host){ this.sb = sb.append(host.toString()).append(sep); }
public String return(){ return this.sb.reverse().delete(0,2).reverse().toString(); }

}

class GetIndexV{
private E e;
private int count;
private boolean found;
private int res;

GetIndexV(E e){
this.e = e;
this.count = 0;
this.res = 0;
this.found = false;

}
public void before (E host) {
if (host.equals(e)) { this.found = true; }
this.count++;

}
public int return(){
if (found) { return res;}
else {
throw new RuntimeException("Element "+ e.toString() + " not found");

}
}

}

import java.util.List;
class SelectedIndexV extends AsSepStringV {
private int count;
private List indxs;
private String s;

SelectedIndexV(List indxs, String s, StringBuffer sb){
super(",", sb);
this.count = 0;
this.s = s;
this.indxs = indxs;

}
public void before (E host) {
if (indxs.contains(this.count)) { super.before(host); }
else { this.sb = sb.append(s).append(this.sep);}
this.count++;

}
}

Figure 5.25: The three extra visitors used inside List DI.
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The adaptive methods defined in List DI are straightforward with the

exception of selectedIndexes. The adaptivemethod selectedIndexes takes

in a list (a standard Java list) indxs, a string s and a StringBuffer. The first

argument is a list of integers that designate the index of method arguments

that are also used in the definition of a contract. The SelectedIndexV visi-

tor generates the argument list for args replacing all positions that are not

in indxswith s (typically *).

DI (Figure 5.1) is mapped three times (Figure 5.26) on the subtree of

the AST that represents formal arguments. Each mapping gives a different

view of the formal arguments list, one view maps the elements of the list

to the formal argument (first mapping in Figure 5.26), another maps ele-

ments to the formal argument types (second mapping in Figure 5.26) and

the last view maps elements to formal argument names (third mapping in

Figure 5.26).

We use the three mappings on formal arguments in the generation of

method pointcuts in order to distinguish between overloaded versions of

themethod in the input program and bind the appropriate values formethod

arguments inside advice. In the case where a contract specification does not

refer to any of the method’s arguments the args pointcut designator lists

the method’s argument types in order, e.g., args(int,bool,String) selects

calls to a method whose formal argument list has three arguments with

types int, bool and String in exactly this order.

In the case where some of the method’s arguments are used in the con-

tract the pointcut generated contains two arg pointcut designators; the first

contains all argument types, e.g., args(int,bool,String), the second pro-

vides names to bind values passed as arguments, e.g., args(index,*,name)

binds the first argument to index, does not bind the second argument, and

binds the third argument to name. The names given to the args pointcut

designator are the names of the pointcut’s formal arguments. For example,

given a method m in class Cwith formal arguments int i and String s and
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cd Conaj
{
//elided parts ...
//related cd definitions with parsing directives removed
FormalParameterList : FormalParameterMt | FormalParameterCons.
FormalParameterMt = .
FormalParameterCons = FormalParameter ”,” FormalParameterList.
FormalParameter = [ CFinal ] Type VariableDeclaratorId .
VariableDeclaratorId = Identifier .
//elided parts ...
//mappings

mdef formalArgs(T) {
use (=>, List, Mt)
as FormalParameterList → FormalParameterMt.

use (=>, List, Cons)
as FormalParameterList → FormalParameterCons.

use (→, Cons, E)
as FormalParameterCons → T.

use (→, Cons, List)
as FormalParameterCons → FormalParameterList.

}

for List (prefix all fargs ){ formalArgs(FormalParameter). }

for List (prefix all ftypes ){ formalArgs(Type). }

for List (prefix all fname ){ formalArgs(VariableDeclaratorId). }
}

Figure 5.26: Mappings for the List DI with the relevant section from the
class dictionary.

both i and s are used inside m’s precondition, the generated pointcut will

be

pointcut m_pcd(int i, String s) :

//call pointcut designator elided

&& args(int,String)

&& args(i,s);

Implementing the same behavior in CONAJ without DIs andWYSIWYG

strategies pauses a design dilemma
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1. design the traversal file with a general strategy using * as the target

and use specialized visitors that contain specific before and after op-

erations for types of interest (Figure 5.27), or,

2. design the traversal file with more specific strategies that navigate

to types of interest along with visitors that can be reused between

strategies (Figure 5.29).

Figure 5.27 gives the definition of FormalParams traversal file which

uses the general strategy from FormalParameterList to *. Traversal dec-

larations mimic the operations introduced by List DI in Figure 5.24. With

the exception of asString, for each traversal declaration in List DI, the

FormalParams traversal file defines one method for each AST node that we

operate on, e.g., countFP, countTypes and CountIDV count the number of

FormalParameter objects, Type objects, and VariableDeclaratorId objects

respectively. The visitors for the count operations CountFormalParameterV,

CountTypeV and CountIDV are similar and differ only on the argument type

of their return method.8 The visitors for the remaining operations follow a

similar pattern.

Figure 5.29 gives the definition of FormalParametersSpecific traversal

file which uses four strategies; the same general strategy as in Figure 5.27,

a strategy that navigates to all FormalParameter objects, a strategy that

navigates to all Type objects and a strategy that navigates to all objects

of type VariableDeclaratorId. The use of specific strategies allows for

some traversal specifications to share the same visitor implementation. For

traversal declarations that return the same type and operate on Type and

VariableDeclaratorId objects, e.g., countTypes and countNames their re-

spective strategies ensure that VariableDeclaratorId objects cannot be tra-

versed by the strategy toFP, and Type objects cannot be traversed by the

strategy toID. The visitor CountTypeOrIDV (Figure 5.30) takes advantage of

8DAJ does not support Generics. Subsection 5.2.1 discusses the use of Generics to
implement the same adaptive behavior.
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aspect FormalParams {
declare strategy: toAll : from FormalParameterList to ∗.

// traversal specifications
// counters
declare traversal: public int countFP() : toAll(CountFormalParameterV);
declare traversal: public int countTypes() : toAll(CountTypeV);
declare traversal: public int countNames() : toAll(CountIDV);

declare traversal: public String asString(StringBuffer sb) : toAll(AsStringFormalParamsV);

// atIndex
declare traversal: public FormalParameter atIndex(int i) : toAll(AtIndexFPV);
declare traversal: public Type atIndex(int i) : toAll(AtIndexTV);
declare traversal: public VariableDeclaratorId atIndex(int i) : toAll(AtIndexIDV);

// asSepString
declare traversal: public String asSepStringFP(String s, StringBuffer sb): toAll(

AsSepStringFPV);
declare traversal: public String asSepStringT(String s, StringBuffer sb): toAll(

AsSepStringTV);
declare traversal: public String asSepStringID(String s, StringBuffer sb): toAll(

AsSepStringIDV);

// getIndex
declare traversal: public int getIndex(FormalParameter fp) :toAll(GetIndexFPV);
declare traversal: public int getIndex(Type t) :toAll(GetIndexTV);
declare traversal: public int getIndex(VariableDeclaratorId id) :toAll(GetIndexIDV);

// selectIndex
declare traversal: public String selectedIndexesFP(java.util.List indxs, String s, StringBuffer

sb) :toAll(SelectedIndexFPV);
declare traversal: public String selectedIndexesT(java.util.List indxs, String s, StringBuffer

sb) :toAll(SelectedIndexTV);
declare traversal: public String selectedIndexesID(java.util.List indxs, String s, StringBuffer

sb) :toAll(SelectedIndexIDV);

}

Figure 5.27: Using a general strategy.
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abstract class CountV {

protected int count;

public int return() {
return this.count;

}
}

class CountFormalParameterV extends
CountV {

public CountFormalParameterV(int count){
this.count = count;

}

public void before(FormalParameter host){
this.count++;

}
}

class CountTypeV extends CountV {
public CountTypeV(int count) {
this.count = count;

}

public void before(Type host){
this.count++;

}
}

class CountIDV extends CountV {
public CountIDV(int count){
this.count = count;

}

public void before(VariableDeclaratorId
host){

this.count++;
}

}

Figure 5.28: Count Visitors.

this fact and defines two before methods. The visitor is used for both the

countFP traversal specification and the countID traversal specification. The

visitors for the remaining operations follow a similar pattern.

Comparing the two approaches (Figure 5.27 and Figure 5.29) we can

observe that we increase strategy reuse with a general strategy. A general

strategy however requires that each visitor used is specifically designed

for each traversal declaration. It is more difficult to use visitors that can

perform multiple tasks (i.e., CountTypeOrIDV in Figure 5.30) with general

strategies. More specialized visitors decreases reuse leading to multiple

similar visitor implementations. 9 The ability to define visitors that can

contain before/after methods on any type in the class graph makes visitor

implementations brittle. Evolutions/modifications to AST can easily yield

9If DAJ supported generics the number of visitors could be significantly reduced (Sec-
tion 5.2.1).
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aspect FormalParametersSpecific {
declare strategy: toAll : from FormalParameterList to ∗.
declare strategy: toFP : from FormalParameterList to FormalParameter.
declare strategy: toType : from FormalParameterList to Type.
declare strategy: toID : from FormalParameterList to VariableDeclaratorId.

// traversal specifications
// counters
declare traversal: public int countFP(): toFP(CountFormalParameterV);
declare traversal: public int countTypes(): toType(CountTypeOrIDV);
declare traversal: public int countNames(): toID(CountTypeOrIDV);

declare traversal: public String asString(StringBuffer sb):toAll(AsStringFormalParamsV);

// atIndex
declare traversal: public FormalParameter atIndex(int i): toFP(AtIndexFPV);
declare traversal: public Type atIndex(int i): toType(AtIndexTV);
declare traversal: public VariableDeclaratorId atIndex(int i): toID(AtIndexIDV);

// asSepString
declare traversal: public String asSepStringFP(String s, StringBuffer sb): toFP(

AsSepStringFPV);
declare traversal: public String asSepStringT(String s, StringBuffer sb): toType(

AsSepStringTOrIDV);
declare traversal: public String asSepStringID(String s, StringBuffer sb): toID(

AsSepStringTOrIDV);

// getIndex
declare traversal: public int getIndex(FormalParameter fp): toFP(GetIndexFPV);
declare traversal: public int getIndex(Type t):toType(GetIndexTOrIDV);
declare traversal: public int getIndex(VariableDeclaratorId id):toID(GetIndexTOrIDV);

// selectIndex
declare traversal: public String selectedIndexesFP(java.util.List indxs, String s, StringBuffer

sb) :toFP(SelectedIndexFPV);
declare traversal: public String selectedIndexesT(java.util.List indxs, String s, StringBuffer

sb) :toType(SelectedIndexTOrIDV);
declare traversal: public String selectedIndexesID(java.util.List indxs, String s, StringBuffer

sb) :toID(SelectedIndexTOrIDV);

}

Figure 5.29: Using specific strategies.
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class CountTypeOrIDV extends CountV {
public CountTypeOrIDV(int count) {
this.count = count;

}

public void before (VariableDeclaratorId host){
this.count++;

}

public void before(Type host){
this.count++;

}
}

Figure 5.30: Visitor for counting Type and VariableDeclaratorId objects.

valid adaptive programs with unexpected behavior.

On the other hand, specific strategies make their intend explicit and for

traversal declarations that define generic behavior (i.e., count) we can im-

plement more reusable visitors. Visitor reuse in this case depends on the

set of types operated on during traversal; operations that depends on non-

overlapping types during traversal can be grouped together into one visitor.

The implementation of CONAJ uses both general and specific strategies.

As part of the rewrite operation both systems build internal data struc-

tures to keep information about classes/interfaces along with their fields

and supertypes, and methods along with their types and contracts. Fig-

ure 5.31 shows the DI used to obtain information about methods. We main-

tain a map from class name to a list of method records one for each method

defined inside the class. A method record contains the method’s name, the

method’s signature (the list of formal argument types and the return type),

the list of formal argument names and themethod’s pre and post-condition.

The ICG in Methods captures methods declarations, but only the parts

that we are interested in; method name, return type, formal arguments and

any pre or post-condition definitions. The DI defines strategies and adap-

tive methods that retrieve the necessary information to create a method
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import java.util.List;

di Methods {

//ICG
MethodDef = ReturnType MName LFArgs Pre Post.
ReturnType : Type | Void.
MName = Ident.
Pre = .
Post = .
Type = Ident.
Void = .
LFArgs : LFArgsMt | LFArgsCons.
LFArgsMt = .
LFArgsCons = FArg LFArgs.
FArg = Type Name.
Name = Ident.

// strategy specifications
declare strategy: toMName : fromMethodDef viaMName to Ident.
declare strategy: toPre : fromMethodDef to Pre.
declare strategy: toPost : fromMethodDef to Post.
declare strategy: toRType : fromMethodDef via ReturnType to {Ident,Void}.
declare strategy: toFArgTypes : fromMethodDef via FArg via Type to Ident.
declare strategy: toFArgNames : from MethodDef via FArg via Name to Ident.

// traversal specifications
@constraint{unique(toMName)}
declare traversal: public String mnameAsString() : toMName(IdentV);
@constraint{unique(toRType)}
declare traversal: public String rtypeAsString() : toRType(RTypeV);
@constraint{unique(from FArg to Type)}
declare traversal: public List fargsTypesAsList() : toFArgTypes(IdentListV);
@constraint{unique(from FArg to Name)}
declare traversal: public List fargsNamesAsList() : toFArgNames(IdentListV);
declare traversal: public Pre getPre() : toPre(PreV);
declare traversal: public Post getPost() : toPost(PostV);
declare traversal: publicMakeMTableRecordV.MTableRecord buildMTableRecord() :

toMName(MakeMTableRecordV);
}

Figure 5.31: The Demeter Interface for Java method definitions with con-
tracts.
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class PreV {
private Pre p;

PreV() { p = new Pre(); }
public void before (Pre host) { this.p = host;}
public Pre return() { return this.p; }

}

class PostV {
private Post p;

PostV() { p = new Post(); }
public void before (Post host) { this.p = host;}
public Post return() { return this.p; }

}

Figure 5.32: Visitors for retrieving pre and post-condition definitions from
a method’s definition.

record. Figures 5.32 and 5.33 contain the definitions for the visitors that re-

trieve pre and post-conditions, a single identifier (used to retrieve amethod’s

name), a special visitor to retrieve a method’s return type (including void),

and a list of identifiers (used to retrieve formal argument names or types).

The last adaptive method relies on the previous adaptive methods to

build an instance of MTableRecord. MTableRecord is defined as an inner

class of the MakeMTableRecordV visitor (Figure 5.36). In MakeMTableRecordV

we use inner classes to define helper classes that we want to use and return

as results. These classes are not part of the ICG and therefore do not need to

bemapped. Members of MTableRecord however can be ICG classes, e.g., Pre

and Post appear as members to MTableRecord. By defining MTableRecord

as an inner class of MakeMTableRecordV the contents of MTableRecord is also

rewritten for class names that are in the ICG. Uses of Pre and Post inside

MTableRecord get rewritten to their mapped classes.

The relevant parts of the class dictionary for the MethodsDI are given in

Figure 5.34 and themapping for the MethodsDI is given in Figure 5.35. Even

though the MethodsDI is mapped once it is a good example that shows how

DIs can be used to provide a smaller interface to the class dictionary.
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import edu.neu.ccs.demeter.∗;
class IdentV {
protected StringBuffer sb;

IdentV() { this.sb = new StringBuffer(); }
public void before(Ident host) { sb = sb.append(host); }
public String return() { return this.sb.toString(); }

}

import edu.neu.ccs.demeter.∗;
class RTypeV extends IndentV {
RTypeV() { super(); }
public void before(Void host) { sb = sb.append(”void”); }

}

import java.util.List;
import java.util.ArrayList;
import edu.neu.ccs.demeter.∗;

class IdentListV {
List l;
IdentListV() { this.l = new ArrayList(); }
public void before(Ident host){ l.add(host.toString()); }
public List return() { return l; }

}

Figure 5.33: Visitors for retrieving an identifier and a list of identifiers.
RTypeV retrieves a method’s return type as a string and extends IdentV to
deal with void.

The implementation of DCONAJ uses some other smaller DIs for smaller

tasks,

• the HasADI is used to check for the existence of a old or result inside

post-condition definitions,

• the HashMap creates a map between a key and a list of values. HashMap

is used to build a map of class names to a list of their supertypes and

a map of class names to their list of fields.

• the GetterDI is used to generate getter methods that need to traverse

to reach their targets.

In the case of DCONAJ DIs help to abstract certain operations on the
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cd Conaj
{
//elided parts ...
//related cd definitions with parsing directives removed
MethodDeclaration = MethodModifiers MethodSignature AnyBlock .
MethodSignature = ResultType MethodDeclarator [ ”throws” NameList ] .
AnyBlock : A Block | A SemiColon .
A Block = BlockHead BlockStatements BlockTail.
BlockHead = OpenBrace [PreCondition] [ PostCondition] .
BlockTail = [PreCondition] [PostCondition] CloseBrace .
A SemiColon = SemiColon [PreCondition] [PostCondition] .
MethodDeclarator = MethodName FormalParameterList .
MethodName = Identifier.
FormalParameterList : FormalParameterMt | FormalParameterCons.
FormalParameterMt = .
FormalParameterCons = FormalParameter ”,” FormalParameterList.
FormalParameter = [ CFinal ] Type VariableDeclaratorId .
VariableDeclaratorId = Identifier.
ResultType : Void | Type .
Void = ”void”.
Type = Identifier.
//elided parts ...
//mappings are given in Figure 5.35
}

Figure 5.34: The relevant parts of the class dictionary for the Methods DI.
The mapping definition is given in Figure 5.35

class dictionary. The abstraction provided by DIs allows for more code

reuse than in the case of CONAJ. Also, the ability to carve out the sub-

parts of the class dictionary allows for smaller, cleaner interfaces that make

adaptive code development easier.

5.2.1 Java Generics and DAJ

DAJ does not support generics. Figure 5.27 and Figure 5.29 are prime ex-

amples where generics can be used to abstract over similar visitor imple-

mentations. For example, we could reimplement the counting visitors in

Figure 5.28 into one generic visitor (Figure 5.37).

The use of generics significantly reduces the number of visitor defini-

tions needed in order to achieve the same behavior as List DI without

Demeter Interfaces.
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for Methods{
use (→, MethodDef, ReturnType)
asMethodDeclaration → ResultType.

use (→, MethodDef,MName)
asMethodDeclaration → MethodName.

use (→, MName, Ident)
asMethodName → Identifier.

use (→, MethodDef, LFArgs)
asMethodDeclaration → FormalParameterList.

use (→, MethodDef, Pre)
asMethodDeclaration → PreCondition.

use (→, MethodDef, Post)
asMethodDeclaration → PostCondition.

use (=>, ReturnType, Void)
as ResultType → Void.

use (=>, ReturnType, Type)
as ResultType → Type.

use (→, Type, Ident)
as Type → Identifier.

use (=>, LFArgs, LFArgsMt)
as FormalParameterList → FormalParameterMt.

use (=>, LFArgs, LFArgsCons)
as FormalParameterList → FormalParameterCons.

use (→, LFArgsCons, FArg)
as FormalParameterCons → FormalParameter.

use (→, LFArgsCons, LFArgs)
as FormalParameterCons → FormalParameterList.

use (→, FArg, Name)
as FormalParameter → VariableDeclaratorId.

use (→, FArg, Type)
as FormalParameter → Type.

use (→, Name, Ident)
as VariableDeclaratorId → Identifier. }

Figure 5.35: Mappings for the Methods DI.

Generics can also be used in the implementation of DIs. Demeter in-

terfaces are implemented as a rewrite that that generates specialized visi-

tor implementations. For each mapping provided to an ICG node that also

appears in a visitor implementation our generation creates a new visitor

where all occurrences of the ICG node are replaced with its mapped name.

We can skip this generation step if we define generic visitors using the ICG

node(s) as type parameter(s). Figure 5.38 gives the implementation of the

same visitors as Figure 5.25.
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import java.util.List;

class MakeMTableRecordV {
privateMTableRecord res;
MakeMTableRecordV() { this.res = new MTableRecord(); }

public void before(MethodDef host) {
this.res.setMname(host.mnameAsString());
this.res.setMsig(

new MType(host.rtypeAsString(),host.fargsTypesAsList()));
this.res.setFargsNames(host.fargsNamesAsList());
this.res.setPre(host.getPre());
this.res.setPost(host.getPost());

}
public MTableRecord return() { return this.res; }

public static class MTableRecord {
private String mname;
private MType msig;
private List fargNames;
private Pre pre;
private Post post;
// constructors setter and getter methods omitted
public boolean equals(MTableRecord mtRec){
return this.mname.equals(mtRec.getMname()) &&
this.msig.equals(mtRec.getMsig());

}
}

public static class MType {
private String rtype;
private List fargTypes;
// constuctors setters and getters omitted.
public boolean equals(MType mt){
return this.rtype.equals(mt.getRtype()) &&
this.fargTypes.equals(mt.getFargsTypes());

}
}

}

Figure 5.36: MakeMTableRecordV relies on the other adaptive methods de-
fined in Methods DI and builds a record that contains the method’s name,
the method’s signature with the method’s return type and the types of all
its arguments, a list of the methods formal argument names and any pre
and post-conditions.
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class CountV<X> {
protected int count;

public CountV(int count){
this.count = count;

}

public void before(X host){
count++;

}

public int return(){
return this.count;

}
}

Figure 5.37: Generic count visitor.

5.2.2 Comparing DCONAJ with CONAJ

DCONAJ has a smaller code base than CONAJ (approximately 400 lines of

code less). We have also compared parts of the DCONAJ implementation

(DI implementations) with corresponding code in DAJ using Java generics.

The Demeter Interface implementation tends to contain more lines of code

than its corresponding DAJ implementation with generics. For Demeter In-

terfaces with a small ICG andmultiplemappings in the class graph, the code

size of the DI implementation was comparable to the DAJ implementation

with generics (e.g., List DI implementation is 123 lines of code, and the

corresponding implementation in DAJ with generics is 112 lines of code).

However in the cases where the Demeter interface contains a large ICG and

is only mapped once (e.g., Methods in Figure 5.31, DCONAJ implementation

is 329 lines of code, DAJ implementation with generics is 294 lines of code),

the DAJ implementation is smaller. The DI implementation contains extra

lines compared to the DAJ implementation with generics for the ICG, and

the mapping(s).

Demeter interfaces provide a clear separation during development of

adaptive code and the class dictionary. This separationmakes development
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class AsSepStringV<E> extends AsStringV {
protected String sep;
AsSepStringV(String sep, StringBuffer sb){
super(sb);
this.sep = sep;

}
public void before(E host){ this.sb = sb.append(host.toString()).append(sep); }
public String return(){ return this.sb.reverse().delete(0,2).reverse().toString(); }

}

class GetIndexV<E>{
private E e;
private int count;
private boolean found;
private int res;

GetIndexV(E e){
this.e = e;
this.count = 0;
this.res = 0;
this.found = false;

}
public void before (E host) {
if (host.equals(e)) { this.found = true; }
this.count++;

}
public int return(){
if (found) { return res;}
else {
throw new RuntimeException("Element "+ e.toString() + " not found");

}
}

}

import java.util.List;
class SelectedIndexV<E> extends AsSepStringV<E> {
private int count;
private List indxs;
private String s;

SelectedIndexV(List indxs, String s, StringBuffer sb){
super(",", sb);
this.count = 0;
this.s = s;
this.indxs = indxs;

}
public void before (E host) {
if (indxs.contains(this.count)) { super.before(host); }
else { this.sb = sb.append(s).append(this.sep);}
this.count++;

}
}

Figure 5.38: The three extra visitors used inside List DI with generics.
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easier as we only have to consider ICG(s) and their behavior. Furthermore,

Demeter interfaces make testing of adaptive code easier. Taking the ab-

stract names in the ICG DAJ can generate stub classes and independently

test adaptive code before we instantiate the DI on a concrete class graph.

Also, Demeter interfaces minimize dependencies between visitors and

the class graph. Even in situations were a Demeter interface uses a gen-

eral strategy (e.g., toAll from Figure 5.24) the mapping restricts the appli-

cability of adaptive code to specific parts of the class graph. Consider for

example the mapping of List (Figure 5.26) and the implementations with-

out DIs in Figures 5.27 and 5.29. The toAll strategy, common to all three

implementations, in Figures 5.27 and 5.29 allows for a visitor implementa-

tion to define before or after methods on any of the classes reachable from

FormalParameterList. The DI implementation, for the same strategy al-

lows visitor implementations to define before and after advice only on sub-

graphs rooted at FormalParameterList. For example the first mapping in

Figure 5.26 none of the methods prefixed with fargs can operate on Type

or VariableDeclaratorId through a before or after method defined in their

visitors.

The use of Demeter interfaces admits some limitations. Demeter inter-

faces and their mappings impose an extra redirection that programmers

need to keep inmind. This becomes important when behavior added through

one DI is being used by another DI. Programmers need to read and under-

stand the mappings in order to ensure which adaptive methods are avail-

able in a class definition. Also, a Demeter interface that contains a large ICG

introduces more complexity since mapping the Demeter interface requires

that programmers map each edge in the ICG.





CHAPTER 6

Related Work

This chapter presents a brief survey on research areas and tools that share

similarities with Adaptive programming. The chapter covers Adaptive pro-

gramming tools (Demeter Tools), Strategic Programming, Scrap your Boil-

erplate, Haskell Type classes and views. We conclude this chapter with a

section on related work in the area of XML processing and related technolo-

gies, in terms of their features, to AP.

6.1 The Demeter Tools

The set of Demeter Tools, DemeterJ, DJ, and DAJ, are incarnations of AP

tools that rely on different techniques and technologies but share the same

algorithm and semantics. DemeterJ and DAJ are generative in nature, DJ

is a pure Java library that employs Java’s reflection API. DemeterJ takes as

input

1. a class dictionary; a textual representation of a class graph that also

serves as the grammar definition for an input language, and,

2. a set of behavior files; each behavior file defines methods (adaptive or

simple Java methods) grouped by class name.

DemeterJ generates a Java program that includes a lexer and parser for

the input language, a set of classes that mimic the class graph defined in

179
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the class dictionary and injects methods defined in behavior files into each

class. Adaptive method definitions are expanded into a series of Java meth-

ods.

DAJ follows a similar setup as DemeterJ but can also obtain the class

graph from a given set of Java source code. DAJ optionally accepts a class

dictionary as input and can generate a parser and lexer for the input lan-

guage defined in the class dictionary. DAJ takes a set of traversal files (§ 2)

and generates a mixture of Java and AspectJ source code. DAJ uses Java to

generate class definitions and AspectJ aspects, inter-type and advice defini-

tions to implement the behavior of adaptive methods.

DJ is a pure Java library that relies on Java’s reflection API in order to in-

fer the program’s class graph and to perform traversals. Adaptive methods

in DJ reflectively traverse an object’s structure and dispatch to visitor before

and after methods. All three Demeter Tools rely on the AP library to calcu-

late valid paths in a class graph given a strategy specification. We focus on

the AP library and specifically on the semantics of strategy definitions and

the computation of the traversal graph.

6.1.1 Strategies

All Demeter tools use general strategies and share the same semantics for

strategy specifications. The semantics for general strategies define a path

expansion of a strategy edge A → B over a class graph CG as all paths

from A to B in CG. There is not restriction on the nodes that appear in the

expansion. The notion of valid path under general strategies is similar to the

notion of a valid path for WYSIWYG strategies; given a strategy SG and a

class graph CG then for a path in q in SG, a path p in CG is valid path if and

only if expansion(p, q, CG.nodes).

Even though the semantics between the general strategies and WYSI-

WYG strategies differ, WYSIWYG strategies are a subset of the AP library
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semantics. Given strategy SG and a class graph CG such that under WYSI-

WYG semantics the strategy selects a path set P in CG, we can systemat-

ically rewrite SG to SG’ such that SG’ and CG under general strategy se-

mantics the strategy SG’ selects the same path set P in CG.

Informally the transformation of SG takes each edge (A, B) in SG and

generates a new strategy for the edge bypassing all nodes in SG except B

and all outgoing edges of B. We construct the complete, rewritten strategy

SG’ by taking the union of all the generated strategies, e.g., using the edge

notation of DemeterJ, given strategy A → B → C we obtain

{ A → B bypassing { →B,∗,∗,

⇒B,∗,

SG.nodes \ {B} }

B → C bypassing { →C,∗,∗,

⇒C,∗,

SG.nodes \ {C}} }

The directive → B, ∗, ∗ denotes any field edge with source B that can

have any label and any target node; ⇒ B, ∗ denotes any inheritance edge

with source B and any target node. We use SG.nodes \ {C} to denote the set

of all strategy nodes except C. The rewrite enforces the WYSIWYG condi-

tion that no strategy node appears in the expansion of a strategy edge. The

rewrite generates longer strategies; the length of the generated strategy is

bounded by |SG.nodes |.

The reverse argument cannot be made for WYSIWYG strategies since

our definition of strategies does not allow for parallel edges or optional

edges in a strategy graph. Given a strategy graph SG and a class graph CG

such that SG under the general strategy semantics selects a path set P in

class graph CG we cannot always generate a new strategy SG’ such that the

path set selected by SG’ under WYSIWYG semantics in CG is P.
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6.1.2 Traversal Graph

The notion of a traversal graph was first introduced in [28]. The authors

in [28] provide an algorithm that given a class graph and a strategy graph

returns the traversal graph. The algorithm is a variation on the algorithm

for calculating the cross product of the two automata, the class graph and

the strategy graph. The algorithm in Chapter 4 is inspired by [28].

Informally the algorithm in [28] given a strategy graph SG = (V, E)

and a class graph CG = (V′, E′) where | E |= k creates k copies of the class

graph. For each edge ei ∈ E the algorithm prunes the ith class graph copy

CG i retaining only nodes and edges that lead from ei.source to ei.target. The

algorithm then introduces intercopy edges between class graph copies for all

strategy nodes. The source node of these intercopy edges is then changed

to point to the incoming nodes of v in each class graph copy. The intercopy

edge is annotated with the same label as the label on the incoming edge.

The traversal graph is used to guide traversal of object graphs at run-

time in the same manner as in Chapter 3, and for generating code that

responsible for performing traversals on object graphs. The construction

of the traversal graph, however, yields a graph that is non-deterministic

in nature. A second algorithm is defined in [28] to generate methods re-

sponsible for performing object graph traversals. The generation algorithm

maintains a set of tokens during traversal in order to keep track of the le-

gal traversal possibilities. The algorithm is similar to the NFA simulation

technique from [7].

Our algorithm for calculating and generating code given in Chapter 4

is inspired by the algorithm given in [28]. The use of WYSIWYG strategies

ensures that every time we reach a strategy node then this node is not part

of an expansion. If we reach a strategy node in the traversal graph then we

know for sure that we have reached a milestone that is part of the strategy.

Code generation becomes simpler and there is no longer the need for tokens
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to keep track of traversal possibilities.

Our new algorithm can generate static traversal code that does not rely

on runtime information resulting in faster traversal execution. However, in

the case where both algorithm’s implement traversals by generating meth-

ods, our new algorithm generates more method definitions and thus larger

programs.

The idea of abstracting over a class graph in adaptive programs using

an interface class graph was first introduced with adaptive plug-and-play-

components (APPCs) [33]. The mapping of interface class graphs to class

dictionaries allowed for the mapping of a class name to a class name and

for an edge to an edge or strategy. APPCs have no provision for further

constraints on interface class graphs or on concrete class dictionaries. Fur-

thermore, APPCs rely on the AP library and share the same issues with all

of the Demeter Tools.

The JAsCo system [40] is a dynamic aspect oriented (AOP) approach

that aims to combine the ideas of AOP and component based software de-

velopment. JAsCo extends the notion of a Java bean and defines aspect

beans and connectors. An aspect bean contains Java methods and hooks.

Hooks define pointcuts–points in the program’s execution during which

the aspect bean intervenes–and code to execute when a step in the pro-

gram’s execution satisfies a given pointcut. An aspect bean can contain ab-

stract pointcuts that can be extended by other aspect beans. Furthermore,

aspect beans can define a special method called isApplicable that serves

as an extra triggering condition for a hook that decides at runtime whether

the pointcut is valid or not. Aspect beans need to be instantiated before

they can be used. JAsCo provides connectors to instantiate an aspect bean.

An extension to the JAsCo [45] system accommodates for AP by allow-

ing pointcuts to be given by strategy definitions and aspect beans to act as

visitors. JAsCo’s extension introduces a new connector for aspect beans that

contain strategy specifications. The AP extension to JAsCo borrows strat-
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egy specifications and the AP library implementation as is and thus inherits

non-WYSIWYG strategies. The implementation of AP ideas in JAsCo share

a lot with DJ where the class graph and the traversal graph are computed at

runtime. Aspect beans used as visitors can advice any object encountered

during traversal.

The AP extension to JAsCo does not alter the meaning of strategies and

does not enforce any interface between the strategy and its attached aspect

beans. Modifications to the class graph can lead to correct programs with

unexpected behavior as in the case of DAJ (§ 2). Furthermore, errors in strat-

egy specifications are discovered at runtime and there is nomechanism that

parallels constraints that allows programmer’s to state and statically verify

path properties. One could however encode path properties at runtime by

using isApplicable methods, however this is cumbersome to encode and

incurs a runtime overhead.

6.2 Strategic programming

Strategic Programming (SP) [21] is a generic programming idiom for pro-

cessing compound data such as graphs, trees etc. Even though SP has its

roots in term rewriting it has been successfully applied to other program-

ming paradigms such as functional programming [20] and object oriented

programming [19].

SP relies on two concepts basic data processing computations and traver-

sal schemas. Traversals are composed by passing data processing computa-

tions as arguments to traversal schemas. Using a combinator style, traversal

schemas are defined from a set of primitive traversal schemas. For example,

any SP incarnation should provide the following strategy combinators

• id - the identity strategy combinator applied to a datum simply re-

turns that datum.
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• fail - the fail strategy combinator fails and returns immediately.

• seq(s,s’) - the sequence combinator takes two strategy combinators

as arguments and applies first s and then s’.

• choice(s,s’) - the choice combinator attempts s first and returns its

result on success, on failure it applies s’.

• adhoc(s,a) - the adhoc combinator consumes a strategy combinator

and an action (a computation that deals with data of a specific type t).

If the datum has the same type as the one dealt by a then apply a to

the datum else proceed with s.

• all(s) - process all immediate subcomponents of a composite datum.

• one(s) - process one of the immediate subcomponents of a composite

datum. If all subcomponents fail then return failure, else select one

that succeeds.

This set of combinators is enough to define an AP specific language [25].

TheOO incarnation of SP [19] generalizes visitor [15] objects tomodel strate-

gies. Combinators are encoded as a type hierarchy rooted at a generalized

Visitor type with a visit method. To enable generic access to immediate

sub-objects data structures traversed must support a Visitable interface.

Failure is encoded through a specialized Java exception. The double dis-

patch protocol of ordinary visitors is complemented by a visitor combinator

that forwards any class specific visit method to a generic visit method. The

combinator style of first class visitors relies on parametrized constructors

for visitors. JJForester is a generative tool that introduces the Visitable

interface, the generic Visitor and the forwarding visitor combinator. Fig-

ure 6.1 shows the implementation of a topdown traversal over a binary tree

with types Node and Leaf.

The object oriented incarnation of SP provides programmable, reusable,

generic traversal schemas that allow the encoding a variety of traversal
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class Sequence implements Visitor {
Visitor first;
Visitor then;

public Sequence(Visitor first, Visitor then){
this.first = first;
this.then = then;

}

public void visit Node(Node node){
node.accept(first);
node.accept(then);

}
public void visit leaf(Leaf leaf){
leaf.accept(first);
leaf.accept(then);

}
}

class All implements Visitor {
Visitor v;

public All(Visitor v){
this.v = v;

}

public void visit Leag(Leaf leaf) { }
public void visit Node(Node node){
node.left.accept(v);
node.right.accept(v);

}
}

class TopDown implements Sequence {
public TopDown(Visitor v){
super(v,null);
then = new All(this);

}
}

Figure 6.1: An SP implementation for a top down traversal over a binary
tree

variations. AP on the other hand does not allow the same flexibility on

traversal specification. The definition of where to go and what to do in

SP is encapsulated inside visitors and relies on object composition blurring

the distinction of traversal code and behavior. SP’s approach to traversal

generation is dynamic; there is no notion of static verification between the

traversal and the data to be traversed. While AP and WYSIWYG strategies

use static meta-information that make it easier to optimize traversal code,

SP takes a more dynamic approach making difficult to optimize traversal

code.

6.3 Scrap your boilerplate

The Scrap your Boilerplate (SyB) series of papers [22, 23, 24] present a lightweight

approach to generic programming in Haskell. The goal of SyB is to write
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code that traverses data structures and performs operations on them. Func-

tions take a traversal combinator which specifies which nodes in the data

structure it should apply its argument to. The traversal combinator’s argu-

ment is itself a function, a type-extender, that takes as argument the func-

tion to be called at each node. The type extender function behaves as its

argument function when applied to nodes of interest and as the identity

function when applied to uninteresting nodes. Interesting nodes are the

nodes whose types match the argument type of the function given to the

type-extender. There is a direct correspondence between SyB code and AP.

Traversal combinators correspond to strategies, the application of a type-

extender to a function corresponds to adaptive methods. Visitors in AP

define the interesting nodes in a traversal.

Unlike AP, SyB inspects the data structure being traversed at runtinme

and explores each immediate child of a recursive data structure. AP relies

on meta information and optimizes traversals by pruning the search space

and ignoring parts of the data structure for which there is no chance of

reaching a target object. SyB traverses all data structure parts, the type-

extender is responsible for performing computation at interesting parts of

the data structure. The traversal combinator allows for different traversal

scheme much like in SP, while AP does not provide the ability to alter the

traversal scheme used to walk a data structure.

6.4 Haskell Type classes and Views

The Haskell programming language [4] provides type system constructs

that support ad-hoc polymorphism called type classes [48]. Type classes pro-

vide a principled way to qualify polymorphic types by defining a type class

and specifying which types are members or instances of it.

For example, one of Haskell’s predefined type class, Eq, defines opera-

tions related to equality that members of the type class should implement.
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class Eq a where

(==), (/=) :: a → a → Bool

x == y = not (x /= y)

x /= y = not (x == y)

The declaration of Eq can be read as, a type a is an instance of the class

Eq only if there are operations == and /= that consume two arguments of

type a and return Bool. The last two lines of the declaration are default

implementations for the two operations.

We can specify which types are instances of a class through instance

declarations. For example, using the primitive Haskell function IntegerEq,

Haskell defines Integer as an instance of Eq with the following instance

declaration

instance Eq Integer where

x == y = IntegerEq x y

Haskell also supports a notion of inheritance between type classes. In-

heritance between type classes allows one type class to “inherit” operations

from its super class. Haskell also supports multiple inheritance allowing for

a type class to inherit operations from more than one super class. The no-

tion of inheritance allows for better decomposition and reuse of operations

between type classes.

Instance declarations in Haskell can also contain constraints on the val-

ues manipulated by operations. A typical example is the definition of bi-

nary trees and equality between binary trees.

data Tree a = Leaf a | Branch (Tree a) (Tree a)

instance Eq a => Eq (Tree a)where

Leaf a == Leaf b = a == b

Branch l1 r1 == Branch l2 r2 = l1 == l2 && r1 == r2

== = false

The instance declaration says that we can compare trees of a’s if we

know how to compare a’s for equality.
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The ability of DIs to define a set of operations (adaptive methods) that

we can then introduce (instantiate) onto a concrete class graph, provides a

similar notion of ad-hoc polymorphism as type classes. The set of adaptive

methods defined inside a DI can be viewed as the operations defined in a

type class declaration. The mapping of DIs is analogous to the instantiation

declaration in Haskell in that it is the step that provides the final concrete

implementation of the operation/method.

There are however difference, in DIs the implementation of the oper-

ation, i.e., the strategy and Visitor implementation, is given at the same

abstraction level as the ICG. The mapping of the DI “customizes” (makes

concrete) the implementation to the given class graph. In the case of type

classes, each type provides its own implementation for the operations de-

fined in a type class.

Type classes in Haskell are part of the type system and extend the Hind-

ley/Milner polymorphic type system while DIs have no support for type

inference. There is no notion of inheritance, similar to the notion of inheri-

tance for type classes, or any other means of sharing between DIs and this

limits their reuse and the way we decompose adaptive code into DIs.

Even though DIs and type classes try to address ad-hoc polymorphism

under two different paradigms with analogous functionality, type classes

are better embedded into Haskell’s type system and provide better support

for reuse.

6.4.1 Views

Views [47] provide a mechanism that allows any type to be viewed as a free

data type and be visible. Views were developed to resolve the mismatch

between data abstraction and pattern matching in languages like Haskell.

Consider for example the definition of exponentiation over a Peano repre-

sentation of numbers.
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data Peano ::= Zero | Succ Peano

power x Zero = 1

power x (Succ n) = x ∗ power x n

The definition of power uses pattern matching (left hand side) on the

type Peano. It is easy to check that the definition of power deals with both

cases for Peano numbers and that no case was omitted; a check that can (and

is made) by compilers in languages like Haskell and ML. The definition

however has defined the representation for numbers (at least the number

used for the exponent) as the free data type Peano even though other rep-

resentation might be preferred (e.g., for performance reasons). Ideally we

would like to abstract away the representation details, so that we could use

any representation of numbers that we see fit, while keeping the definition

of power the same.

Views are a mechanism that allows programs to “view” an arbitrary

data type as a free data type, so for example we could view the build-

in integer type as if it were of type Peano, thus allowing definitions like

power while the underlying implementation manipulates numbers using

the built-in integer type. The following view definition allows us to view

built-in ints as Peano.

view int :: = Zero | Succ int

in n = Zero, if n = 0

= Succ ( n 1), if n > 0

out Zero = 0

out Succ n = n + 1

The view introduces the names Zero and Succ that can be used for pat-

tern matching (on the left hand side of definitions) or in terms (on the right

hand side of definitions). The in and out clauses are similar to function def-

initions and are used to map values from the Peano type to int and from

int to Peano. These functions are used to map values from one type to

the other inside definitions (like power). A view is well defined only if the
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functions defined by the in and out are inverses.

Another example taken from [47] deals with lists and how we can view

lists backwards.

data List a ::= Nil | a Cons (List a)

view List a ::= Nil | (List a) Snoc a

in (x Cons Nil) = (Nil Snoc x)

in (x Cons (xs Snoc x’)) = (x Cons xs) Snoc x’

out (Nil Snoc x) = x Cons Nil

out ((x Cons xs) Snoc x’) = x Cons (xs Snoc x’)

The List view allows us to view (1 Cons (2 Cons Nil)) as ((Nil Snoc

1) Snoc 2). Note that some left hand sides in the in close contain Snoc.

Matching against these Snoc values will cause recursive invocations of in.

The out clause is recursive in a similar way.

DIs can also be used to provide different ways to view/manipulate a

concrete class graph. The example of the doubly linked list (Figure 5.8,

page 138) provides two views, a forward and a backward view, of a dou-

bly linked list. Using the FLatList DI (Figure 5.1, page 128) we can de-

fine a new DI to view a list in reverse order. We define an abstract visitor

ReverseV that traverses to all elements of a FlatList and builds the list in

reverse order storing the result as a field. We then create visitors that wrap

the behavior of ReverseV and before a visitors return’s we call the original

methods from FlatList on the reversed version of the list.

Our new DI ReverseList defines the same ICG as FlatList, uses one

strategy, the same as toAll from FlatList and defines the same adaptive

method names but uses the toAll strategy for all of them and new visitors.

Each visitor used in ReverseList extends ReverseV and contain a return

method that calls the adaptive methods from FlatList on the inherited

field from ReverseV that holds the list in reverse order.

AgainDIs can provide analogous functionality as views inHaskell. With

a DI we can create visitors that will perform the transformation from one
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representation to the other and provide the necessary operations on both

representations. In the case of the reverse list, the ReverseList DI depends

on the adaptive method names given during the mapping of the FlatList

DI since all visitors used in ReverseList wrap calls to adaptive methods

introduced by the mapping of FlatList.

Unlike views, there is no direct mapping with exact inverse functions

between representations. With DIs the programmer is responsible for get-

ting the mapping correct making the process susceptible to human error.

DIs compared to type classes and views fromHaskell share partial func-

tionality from each Haskell feature. DIs provide ad-hoc polymorphism for

AP programs and at the same time provide different views to concrete class

graphs. Unlike type classes and views DIs do not have the same reusability

as type classes nor the type safety guarantees provided by Haskell’s type

system and by views.

6.5 XPath

Ideas in AP can be found in other technologies where the separation be-

tween navigation code and computation is necessary. According to the

abstractions that strategies allow, the problems of surprise behavior are

present in these systems as well. XML [1] and XPath [2] queries are tech-

nologies widely used today that share similar issues with AP. Specifically

one can think of a DTD as a class dictionary and XPath expression as strate-

gies [31]. The problems of surprise behavior are prominent in these tech-

nologies as well since modifications to the XML document might break as-

sumptions that the XPath query depends upon. Consider the following

DTD

<?xml version=‘‘1.0’’?>

<!ELEMENT busRoute (bus∗)>

<!ELEMENT bus (person∗)>

<!ELEMENT person EMPTY>
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<!ATTLIST bus number CDATA #REQUIRED>

<!ATTLIST person

name CDATA #REQUIRED

ticketprice CDATA #IMPLIED>

that defines busRoute containing a list of buses. Each bus contains a list of

person which in turn contains a name for the person and a ticketprice for

the bus fare. Consider the following XPath query

var nodes=xmlDoc.selectNodes(".//person")

that collects all person elements from a busRoute. We can think of a simple

Java script that will iterate through nodes and calculate the total amount of

money received by the current passengers riding the bus.

Making a correspondence between a DTD to class dictionary and an

XPath query to a strategy it is straightforward to create a corresponding

DAJ program. In fact, the two systems are so alike in this respect that they

also share the same problems when it comes to modifications of their un-

derlying data structure.

Leaving the JavaScript code and the XPath query the same we can ex-

tend the DTD (Figure 6.2) to accommodate for villages with bus stops along

the bus route. The resulting amount this time is not the total of all passen-

gers riding the bus, but instead the total amount for all passengers, both rid-

ing andwaiting at bus stops. Similar problems are found in other XML tech-

nologies that use XPath like mechanisms, such as XLinq [5] and XQuery [3],

to select elements from a graph like structure.

Ideas from Demeter Interfaces can help to stop this kind of situations.

Just like any XML document can define the DTD to which it confronts to,

DTDs can define the XPath interfaces that they support and a mapping be-

tween the DTD’s elements and the elements of the XPath interfaces that

they implement. For instance, if the current total of all passengers riding the

bus is to be supported by the DTD representing bus routes then it should



194 CHAPTER 6. RELATEDWORK

<?xml version=”1.0”?>
<!ELEMENT busRoute (bus∗,village∗)>
<!ELEMENT bus (person∗)>
<!ELEMENT village (busStop∗)>
<!ELEMENT busStop (person∗)>
<!ELEMENT person EMPTY>
<!ATTLIST bus number CDATA #REQUIRED>

<!ATTLIST person
name CDATA #REQUIRED
ticketprice CDATA #IMPLIED>

Figure 6.2: Extended DTD with BusStops

make available an interface with XPath queries and constraints on these

queries. The constraints are the guarantees provided to programmers by

DTDs. At the same time, the mapping between the interface and the DTD

itself allows for changes to the DTD to both names of entities as well as

structure within the bounds of the constraints without imposing modifica-

tions to client code.

The usage of Demeter Interfaces also provides a clear distinct separation

of responsibilities. In the case where an modification to the DTD breaks one

of the XPath constraints then the blame lies with the DTD maintainer for

breaking an interface that the DTD claims to implement.



CHAPTER 7

Conclusion and future work

In this chapter we iterate over some possible future directions that will al-

low for even better support for iterative software development for AP fol-

lowed by our concluding remarks.

7.1 Future directions

7.1.1 Parametrized Demeter Interfaces

Even though Demeter interfaces encapsulate adaptive code and allow for

separate development and testing inter dependencies between Demeter in-

terfaces remain ad-hoc. Consider a program with two Demeter interfaces

A and B where a traversal in A depends on an adaptive method in class C

defined in B. Demeter interfaces in their current incarnation do not provide

any mechanism to capture this dependency. Currently the two Demeter in-

terfaces will appear independent making static errors detectable only after

translation to DAJ.

An extension to Demeter interfaces that will allow to explicitly define

dependencies between Demeter interfaces and provide static checking at

the interface level will yield more modular adaptive code.

195
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7.1.2 Tool support

The required mapping between a Demeter interface and the class graph can

be complex and tedious. Tool support to assist with assigning ICG edges to

class graph paths would make the process smoother. A graphical repre-

sentation of both the ICG and the class graph that will allow to indicate

mappings of ICG edges interactively would help programmers to visualize

and automatically generate mappings for Demeter interfaces.

7.2 Conclusion

We have introduced three extensions to Adaptive programming, WYSI-

WYG strategies, constraints and Demeter interfaces. WYSIWYG strategies

are a subset of general strategies. We have defined the semantics of WYSI-

WYG strategies using a simpler and more intuitive model based on au-

tomata theory and we have also proved the correctness and soundness of

our new approach. We have also given a simpler code generation algorithm

for WYSIWYG strategies producing programs that do not rely on runtime

information for traversing object structures. The generation algorithm uses

a second algorithm, based on the notion of a traversal graph, providing a

secondway to calculate valid paths forWYSIWYG strategies and extending

previous work on traversal graphs [28].

The addition of constraints provides a mechanismwith which program-

mers can express structural invariants on the underlying data structure.

Constraints are statically checked and provide early detection of inappro-

priate uses of adaptive code resulting to more resilient adaptive programs.

Demeter interfaces encapsulate adaptive code by providing an inter-

face (the ICG) between the programs OO structure and the adaptive code

(strategies and visitor definitions). We have shown that the encapsulation

provided by Demeter interfaces allows for separate development and pro-

vides more opportunities for reuse.
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Our three extensions provide for more modular, reusable and resilient

Adaptive programs that better support iterative software development.
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