
Functional Adaptive Programming

A dissertation presented

by

Bryan Chadwick

to the Faculty of the Graduate School

of the College of Computer and Information Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Northeastern University

Boston, Massachusetts

September, 2010

Abstract

The development of complex software requires the implementation of op-

erations over recursively defined data structures. Complex data structures

lead to an increase of code dealing with structure access and navigation.

This ‘boilerplate’ code in turn makes programs tedious to develop, difficult

to maintain, prone to errors, and separates important functionality, all of

which result in the loss of clarity. Generic (or polytypic) programming and

higher-order functions can resolve some of these issues, but are usually too

general to be practically useful for large collections of data types.

This dissertation proposes a new approach to developing structure-based

functions and describes an implementation of these ideas in Java, called

DemeterF. Our approach uses function-objects over an adaptive traversal to

implement deep, fold-like functions over data structures. Function-classes

(and objects) provide a useful and flexible form of generic programming

that adapts to different data structures using a type-based multiple dispatch.

We model DemeterF with function sets and structural recursion, and give it

a type system that shows our function-objects, multiple dispatch, and traver-

sals can be checked for safety. In order to show that our approach is efficient

we present the results of several performance tests comparing DemeterF to

handwritten methods and visitor implementations in Java.

i

Acknowledgments

I would first like to thank Karl, my adviser. Without his flexibility1 this entire

process would have been impossible. I am grateful for his support, incite,

ideas, and for gently forcing me to graduate.

I thank the rest of my committee (Riccardo Pucella, Rajmohan Rajara-

man, and Yannis Smaragdakis) for their valuable feedback and suggestions,

and, of course, for accepting me into the club.

I will forever be in debt to the professors and students of Northeastern’s

PRL for the atmosphere and ideas that they promote. Without their implicit

support, the last 5 years2 would have been meaningless.

I thank my family and friends for their support over the years, and while

this doesn’t really mean I have to “get a real job,” it does put me one step

closer. The Chadwicks, Ryans, and Posts deserve special mention: though

the rest of this document may not be your cup of tea (get it?), I am grateful.

Special thanks to Jen3 for being there throughout most of the process and

completion. This is likely as exciting for you as it is for me.

I would also like to thank Olivier Danvy and the other HOSC/Mitchfest

editors and reviewers for their comments, and suggestions on what became

a large part of this dissertation. In particular, Olivier’s patience and shep-

herding has improved both the content and presentation in many of the

chapters.

1After all, he is a yoga instructor.
2Technically 7, or maybe 11, but who’s counting now...
3Note the single ‘n’.

iii

iv ACKNOWLEDGMENTS

Finally, since you’ve made it this far, I will also thank you, the reader, for

whom this document was ultimately written.

Contents

Abstract i

Acknowledgments iii

Contents v

List of Listings ix

List of Figures xi

List of Tables xiii

1 Introduction 3

1.1 My Thesis . 5

1.2 Dissertation Outline . 6

1.3 Background . 7

1.3.1 Data Structures and Operations 7

1.3.2 Implementing Operations 12

2 DemeterF 21

2.1 Structures and Classes . 21

2.1.1 Class Dictionaries . 22

2.1.2 Behavior Files . 24

2.1.3 Parametric Polymorphism 26

2.1.4 Running Example . 28

v

vi CONTENTS

2.2 Functions and Traversals . 29

2.2.1 Function-Classes . 29

2.2.2 DemeterF Traversals 30

2.2.3 Case Abstraction and Specialization 32

2.3 Traversal Control . 33

2.3.1 Efficient Recursion 35

2.4 Traversal Contexts . 36

2.4.1 Update Methods . 36

2.5 Extensible Functions . 39

2.6 Mutual Recursion . 40

2.7 Generic Programming . 42

2.7.1 Generic Function-Classes 42

2.7.2 Generating Function-Classes 44

2.8 Errors and Assumptions . 49

3 A Model of DemeterF 51

3.1 Syntax . 51

3.1.1 Subtyping . 52

3.1.2 Example . 53

3.2 Well-Formedness Rules . 53

3.3 Semantics . 54

3.3.1 From Reduction to Evaluation 58

3.3.2 Example . 59

3.4 Type System . 60

3.4.1 Functions . 61

3.4.2 Expressions . 61

3.4.3 Traversals . 62

3.4.4 Function Set Coverage 64

3.4.5 Typing Example . 65

3.5 Type Soundness . 66

vii

4 DemeterF Implementation 75

4.1 Traversal Library . 75

4.2 Class Generator . 76

4.2.1 Traversal Usage . 77

4.3 Type Checking . 78

4.3.1 Relation to Soundness 79

4.3.2 Traversal Inlining . 79

5 Algorithms 81

5.1 Concepts and Notation . 81

5.1.1 Trees . 82

5.1.2 Signatures . 83

5.1.3 Graph Cartesian Products 86

5.1.4 Algorithm Notation 87

5.2 Method Selection and Dispatch 89

5.2.1 Reflective Selection 89

5.2.2 Static Selection and Residue 91

5.3 Method Coverage . 96

5.3.1 Definition : LEAF-COVERING 96

5.3.2 LEAF-COVERING is coNP-Complete 97

5.3.3 Solutions . 98

5.3.4 Fixed-Parameter Tractability 102

5.3.5 Decision Versus Search 103

6 Performance 107

6.1 Performance Factors . 107

6.1.1 Traversal . 108

6.1.2 Dispatch . 108

6.2 Generating Traversals . 109

6.2.1 Traversal Inlining . 109

6.2.2 Dispatch Inlining . 110

viii CONTENTS

6.2.3 Parallel Traversal . 112

6.3 Experiments and Results . 114

6.3.1 Boolean Expressions 115

6.3.2 DemeterF . 120

7 Related Work 123

7.1 Demeter Tools and Generators 123

7.2 Visitors and Multi-methods 125

7.3 Generic and Strategic Programming 126

7.4 Attribute Grammars . 128

7.5 Language Models . 129

8 Conclusions 131

8.1 Contributions . 131

8.2 Future Work . 132

8.2.1 Improve Usability . 132

8.2.2 Language Implementation of AP-F 133

8.2.3 Type System Enhancements 133

Bibliography 135

List of Listings

1.1 Boolean expression structures in Java. 8

1.2 Boolean expression evaluation in Java. 9

1.3 Datatype extension in Java . 10

1.4 Boolean expression structures in Scheme. 10

1.5 Boolean expression evaluation in Scheme 11

1.6 Operational extension in Scheme 12

1.7 Visitor Interfaces in Java . 13

1.8 Accept methods for BExps . 14

1.9 Visitor-based eval implementations 14

1.10 Fold function for BExp structures 18

1.11 Fold-based eval implementation 19

2.1 CD file describing functional integer BSTs 23

2.2 IntBST uses: constructors and parsing 24

2.3 BEH definitions for integer BST insertion 25

2.4 Combined CD and BEH in IntNode.java 26

2.5 CD definitions for parametrized BSTs. 27

2.6 BEH definitions for generic BST insertion 27

2.7 Generic BST instantiation and uses 28

2.8 CD definitions for Boolean expressions 28

2.9 ToString function-class . 30

2.10 Traversal invocation for ToString 30

2.11 DemeterF-based strict Boolean expression evaluation 32

2.12 DemeterF-based non-strict Boolean expression evaluation . . . 34

ix

x List of Listings

2.13 Cached Traversal for efficient recursion 35

2.14 Adding Var and Sign contexts 37

2.15 BExp negation normalization 38

2.16 Copy: functional updates for BExps 39

2.17 BExp simplification, using Copy 40

2.18 Mutually-recursive structures 41

2.19 Copy additions and Simplify extension for Let 41

2.20 Collect used variables in a BExp using TU 43

2.21 Invert True/False instances using TP 44

2.22 Show generation template . 46

2.23 Show generated for BExps . 47

2.24 TU generation template . 47

2.25 TU generated for BExps . 48

2.26 TP generation template . 48

2.27 TP generated for BExps . 49

2.28 Function-class that causes a dispatch error 50

3.1 Model Example: Boolean expression structures 53

3.2 Model Example: Boolean expression evaluation 59

6.1 Traversal generation template 109

6.2 Simplify traversal method for Neg 111

6.3 Simplify traversal method for Let 111

6.4 Traversal result interface . 112

6.5 Synchronized parallel traversal 112

6.6 Sequential traversal wrapper 113

6.7 Parallel traversal method for And 114

List of Figures

2.1 Simplified Class Dictionary (CD) syntax 22

2.2 BEH File Syntax . 24

3.1 AP-F Model Language Syntax 52

3.2 Subtyping Rules . 53

3.3 Values, runtime expressions, and evaluation contexts 55

3.4 Reflection and Substitution Definitions 56

3.5 Function Selection Meta-functions 56

3.6 Reduction Rules . 57

3.7 Functions for one-step reduction 58

3.8 Reduction-based Evaluation Function 59

3.9 Variable and Traversal Environments 60

3.10 Function Typing Rule . 61

3.11 Expression Typing Rules . 62

3.12 Traversal Typing Rules . 63

4.1 High-level view of the DemeterF class generator 77

5.1 List classes and hierarchy tree 82

5.2 Arithmetic expression classes and hierarchy tree 82

5.3 Graph Cartesian product rooted at (Exp, List). 86

5.4 Notation Example: Fibonacci. 87

5.5 Notation Example: IntBST insertion and elements as a list. . . . 88

5.6 Reflective Selection Algorithm. 90

xi

xii LIST OF FIGURES

5.7 Residual Selection Algorithm. 94

5.8 Brute-Force Leaf-Covering Algorithm. 99

5.9 Search for an uncovered leaf using inclu exclu 104

List of Tables

6.1 Performance results for BExp functions (1) 115

6.2 Performance results for BExp functions (2) 117

6.3 Parallel performance results for BExp functions 119

6.4 DemeterF performance (speedup) generating DemeterF structures 120

6.5 DemeterF performance (speedup) generating .NET CIL structures 121

xiii

1

There are two ways of constructing a software design: one way is

to make it so simple that there are obviously no deficiencies, and

the other way is to make it so complicated that there are no obvious

deficiencies.

— Tony Hoare

CHAPTER 1

Introduction

The development of complex software requires programmers to implement

operations over a variety of recursively defined data structures. While the

design and modeling of interesting data structures can be difficult, complex

data leads to more complex operations. A typical side-effect of complex

data structures is an increase in so-called boilerplate code (c.f., listings 1.2

and 1.2) that deals with data structure access and navigation. Boilerplate

code makes programs tedious to develop, prone to errors, and difficult to

maintain, and entangles and scatters important functionality, resulting in a

loss of software clarity.

In object-oriented methodology the scattering of interesting code is ob-

vious (and extreme), since functions (i.e., methods) are grouped by class.

Abstract classes can be viewed as types, with concrete subclasses akin to

value constructors.1 Each class contains all of its related methods, though

common cases can be moved up to a common superclass.

In functional languages the scattering of functionality is a bit more sub-

tle. Since each function handles a single type, it usually contains cases for

all value constructors of a datatype. When implementing a single opera-

tion over small, self-recursive datatypes, a single function will suffice. Com-

plex data structures are, however, typically made up of multiple mutually-

1More accurately, an abstract class is like a type constructor in, say, Haskell.

3

4 CHAPTER 1. INTRODUCTION

recursive types. Since each type requires a separate function, our initial

cohesion is lost.

Taming increases in the structural complexity of software requires a dif-

ferent approach, and typical solutions differ by implementation language

and paradigm. In class-based object-oriented languages, such as Java [30]

or C# [33], the visitor design pattern [27] is traditionally used as a guide

to separate operations from data structures. In functional languages like

Haskell [39], ML [58], or Scheme [40], reusable computation is abstracted

into higher-order functions called folds [36]. Neither one is a perfect solu-

tion.

The visitor pattern is useful for abstracting certain parts of an implemen-

tation, e.g., case dispatch or data structure traversal, but there is a tension

between safety and flexibility. Many instantiations of the pattern, including

the original description, opt for imperative, i.e., void, methods rather than

forcing clients to deal with return types, contravariance, and composition.

Imperative methods force clients to implement functionality via mutation

to shared state, which makes functions difficult, if not impossible, to under-

stand. The pattern can be functionalized [43, 61], but not without inhibiting

safety, flexibility, or data structure extension. Overall, the visitor pattern is

simply a pattern for separating operations from structures, and is not meant

to help programmers deal directly with complex data hierarchies.

In contrast, functional languages typically separate the definitions of

functions and data structures. Since functions are values, programmers

typically write structurally recursive functions, called folds, that act as re-

cursion operators, replacing value constructors, like cons, with client func-

tions. Generalized folds [55, 65] provide a blueprint for writing (or gener-

ating) fold abstractions for user-defined datatypes, but with more complex

datatypes containing multiple or mutually-recursive types, the number and

order of functions that must be passed can quickly become overwhelming.

Polytypic programming [38, 54, 28, 9] provides a similar service, allowing

1.1. MY THESIS 5

programmers to define functions that are applicable to all datatypes. There

are situations where this is useful, but functions are usually defined over a

universal datatype consisting of binary sum and product types. The univer-

sal nature of the definitions makes writing functions that require high-level

datatype notions impossible. For example, an evaluation function for an

abstract syntax tree must operate on expressions and values, structural infor-

mation which is lost in the low level encoding.

1.1 My Thesis

This dissertation presents a complete reformulation of Adaptive Program-

ming (AP) [52] to provide a flexible, safe, and efficient approach to writing

side-effect free operations over complex data structures in an object-oriented

setting. We refer to the approach as functional adaptive programming, or AP-

F. The goals of AP-F are to: (1) eliminate the boilerplate code associated

with the implementations of data structures and operations, (2) separate

and modularize interesting functionality while retaining safety, and (3) pro-

vide maximum flexibility in both function and traversal implementations,

while maintaining a high level of performance.

We achieve these goals by grouping methods of an operation into a

function-class, instances of which (i.e., function-objects) are applied over a

data structure by a generic traversal. After an object’s fields have been pro-

cessed, the traversal uses a type-based multiple dispatch to select an ap-

propriate method that matches the type of the current object and the types

of the recursive results. The separation of traversal, function-objects, and

dispatch supports four important features:

• Function-class extension: new methods can be added using normal

object-oriented inheritance,

• Case abstraction: a single method can be called for multiple type cases,

6 CHAPTER 1. INTRODUCTION

• Case specialization: a more specific method/signature can override a

more general one, and

• Traversal control: recursion can be easily controlled/limited for effi-

ciency and/or algorithm correctness.

This brings me to my thesis:

Function-objects applied over data structure traversals are a useful,

safe, and efficient way to write functions.

In support of this thesis I have developed DemeterF [16, 19], a library and

collection of tools that enable flexible, safe, and efficient traversal-based

(generic) programming with function-objects/classes. My implementation

combines features of object-oriented traversals, adaptive programming [52],

higher-order functions, and multiple dispatch to support the development of

traversal-based functions that are flexibly typed, provably safe, and efficient

to execute.

1.2 Dissertation Outline

The rest of this dissertation is structured as follows:

• The rest of this chapter gives a background on functions, data struc-

tures, and traversals.

• In chapter 2, I introduce DemeterF, its class generator, and its traversal

library. I use examples to demonstrate my approach to traversal-based

programming with function-objects and how they can be used for both

specific and generic programming.

• I then present a model of DemeterF’s essential features in chapter 3,

providing syntax, a small-step operational semantics, and a type sys-

tem. I prove that our model of dispatch is type safe, meaning that

well-typed traversals do not go wrong.

1.3. BACKGROUND 7

• Chapter 4 describes the implementation of DemeterF and its connec-

tion to the model. In particular I focus on the use of traversals, function

objects, and algorithms within the context of the system’s class/traver-

sal generation and type checking.

• Chapter 5 discusses abstractions of several algorithms involved in the

implementation, safety, and performance of DemeterF-based programs.

• The final portion of my thesis is addressed in chapter 6, where I discuss

empirical results of testing the performance of a number of DemeterF-

based programs, including DemeterF itself.2

• Chapter 7 discusses previous works related to AP-F, DemeterF, and my

implementation.

• Chapter 8 completes the dissertation with conclusions and a discussion

of future work.

1.3 Background

I complete the introduction by giving a background of data structures, oper-

ations, and traversals, sprinkled with a brief review of related work.

1.3.1 Data Structures and Operations

There are two main schools of thought as to the definition and extension of

data structures and operations. The first is well known by object-oriented

programmers, where operations are grouped together with the structure to

which they apply. I refer to this organization as datatype-centric, since it

allows programmers to easily extend their datatypes, but adding new oper-

ations requires programmers to add a new method to each of the classes of

related datatypes. On the other side is the more function-based approach

2DemeterF is, of course, implemented in DemeterF.

8 CHAPTER 1. INTRODUCTION

that one uses, for instance, in Scheme. I refer to this as function-centric,

since it allows programmers to easily add new functions to her system, but

adding a new datatype case requires an addition to the functions of all re-

lated datatypes.

Of course, this data versus function dilemma is not new. It is tradition-

ally called the expression problem (a term coined by Wadler [71]) and has

been studied extensively [43, 74, 14, 68, 1, 60]. To make the idea more

concrete, we will illustrate using representations of an abstract syntax tree

(AST) of Boolean expressions. Our initial structures will include Boolean

literals (True and False), unary negation, and binary And and Or.

1.3.1.1 Datatype-Centric: Java

We begin by representing the structures in a typical class-based object-oriented

language, namely Java. Listing 1.1 shows straightforward class definitions

that describe our types to represent Boolean expressions, BExps. We use

// Boolean Expression
abstract class BExp{}

// Literals
abstract class Lit extends BExp{}
class True extends Lit{}
class False extends Lit{}

// Negation
class Neg extends BExp{

BExp inner;
Neg(BExp inner){ /*...*/ }

}

// Binary And
class And extends BExp{

BExp left , right;
And(BExp left , BExp right)
{ /*...*/ }

}

// Binary Or
class Or extends BExp{

BExp left , right;
Or(BExp left , BExp right)
{ /*...*/ }

}

Listing 1.1: Boolean expression structures in Java.

abstract classes to represent disjoint unions, e.g., BExp and Lit, and con-

crete classes to represent variants, e.g., True and False. An instance of BExp

that represents the expression (true ∧ ¬false) can be constructed as follows:

new And(new True(),

new Neg(new False ()))

1.3. BACKGROUND 9

If we follow good object-oriented style, then implementing an operation over

BExps requires that we add a new method to each class. Listing 1.2 shows an

implementation of evaluation, eval(), which reduces a BExp to a Lit rep-

resenting true or false. The comments above the methods describe into

// Added to BExp
abstract Lit eval ();

// Added to Lit
abstract Lit eval ();
abstract boolean isTrue ();

// Added to True
Lit eval (){ return this; }
boolean isTrue (){ return true; }

// Added to False
Lit eval (){ return this; }
boolean isTrue (){ return false; }

// Added to Neg
Lit eval (){

if(inner.eval (). isTrue ())
return new False ();

return new True ();
}
// Added to And
Lit eval (){

if(left.eval (). isTrue ())
return right.eval ();

return new False ();
}
// Added to Or
Lit eval (){

if(!left.eval (). isTrue ())
return right.eval ();

return new True ();
}

Listing 1.2: Boolean expression evaluation in Java.

which class they should be placed. We use Lit rather than boolean in or-

der to provide a fair comparison between later implementations in different

languages.

Within the Lit and BExp classes we introduce an abstract method,

eval() that will be implemented in concrete subclasses. For True and False

we simply return this instance of Lit. To determine the representative

boolean value of a Lit we introduce another abstract helper method,

isTrue(), within Lit, and provide implementations in True and False. The

eval methods for other concrete classes are straightforward, testing the re-

sult of recursive eval calls to subcomponents and returning the correct re-

sult.

Operation Extension Adding a new operation requires us to add a new

method to each class. For example, adding an operation to convert a BExp

to a String requires the addition of a toString() method to each class.

10 CHAPTER 1. INTRODUCTION

Most method implementations will follow a similar pattern to eval, but will

nonetheless be spread throughout our class definitions.

Datatype Extension In contrast, adding a new datatype is comparatively

easy. For example, adding an Xor expression variant only requires that we

add a new class, shown in listing 1.3. The class extends BExp, and provides

class Xor extends BExp{
BExp left , right;
Or(BExp left , BExp right){ /*...*/ }

Lit eval (){ /*...*/ }
String toString (){ /*...*/ }

}

Listing 1.3: Datatype extension in Java

implementations for each of its operations, similar to And and Or.3

1.3.1.2 Function-Centric: Scheme

Similar Boolean expression structures can also be defined in a functional

language. Listing 1.4 shows a structure-based Boolean expression represen-

tation written in Scheme. Our use of define-struct is analogous to our

;; A BExp is one of Lit, Neg, ...
;; A Lit is one of True or False
;; (make-True)
(define-struct True ())
;; (make-False)
(define-struct False ())

;; (make-Neg BExp)
(define-struct Neg (inner))
;; (make-And BExp BExp)
(define-struct And (left right))
;; (make-Or BExp BExp)
(define-struct Or (left right))

Listing 1.4: Boolean expression structures in Scheme.

concrete classes in Java. Comments take the place of abstract classes, doc-

umenting our intended unions, e.g., BExp and Lit, and the expected values

to be stored in our concrete structures. A value representing the expression

(true ∧ ¬false) can be constructed as follows:

3We could actually have extended And or Or in order to partially reuse an implementa-
tion of eval, but this is clearer, and maintains our implicit ideal of subsumption.

1.3. BACKGROUND 11

(make -And (make -True)

(make -Neg (make -False)))

In Scheme we can implement most operations on BExps as a single func-

tion. We use a cond expression to differentiate between the structure vari-

ants, and decompose the concrete structure to compute a result. For exam-

ple, listing 1.5 shows an implementation of evaluation, eval, which reduces

a BExp to a Lit representing #t or #f.4 There is a cond-clause for each de-

;; eval: BExp -> Lit
(define (eval e)

(cond [(True? e) e]
[(False? e) e]
[(Neg? e) (if (True? (eval (Neg-inner e)))

(make-False)
(make-True))]

[(And? e) (if (True? (eval (And-left e)))
(eval (And-right e))
(make-False))]

[(Or? e) (if (False? (eval (Or-left e)))
(eval (Or-right e))
(make-True))]))

Listing 1.5: Boolean expression evaluation in Scheme

fined structure that handles its particular case, but the implementation is

otherwise identical in spirit to the Java methods.

Datatype Extension Adding a new datatype requires us to add a new case

to each previously defined function. Following our Java example, adding

a new Xor structure requires us to update the implementation of eval by

adding a new case to the cond. If there are more operations on BExps then

our necessary updates are scattered throughout the program.

Operation Extension On the other hand, adding a new operation only re-

quires that we add a new function. Following our Java example, adding an

operation to convert a BExp to a string is shown in listing 1.6. The imple-

mentation follows a similar pattern to eval, selecting branches of the cond

based on the structure type, but all our functionality is centrally located.
4In Scheme examples we will use both parentheses () and square brackets [] within

code for readability.

12 CHAPTER 1. INTRODUCTION

;; tostring: BExp -> string
(define (tostring e)

(cond [(True? e) "true"]
[(False? e) "false"]
[(Neg? e) #|...|#]
[(And? e) #|...|#]
[(Or? e) #|...|#]
[(Xor? e) #|...|#]))

Listing 1.6: Operational extension in Scheme

1.3.2 Implementing Operations

While the organization of datatypes and operations differs in our two ex-

amples, they do have something in common. When implementing oper-

ations (functions and methods) over a data structure, each operation re-

quires a large amount of code that deals with structural recursion. Our

function/method has a recursive call at every point where our data structure

is recursive.5 In many situations the code dealing strictly with structural re-

cursion is almost identical across all operations. In this section we review

solutions that attempt to remove structural boilerplate code. We discuss the

limitations of these solutions and mention related work and extensions to

the approaches.

1.3.2.1 Visitors and Traversals

It is likely that every object-oriented programmer has seen or heard of the

visitor pattern in one form or another. The original description by Gamma

et al. [27] uses a combination of accept and visit methods to define op-

erations over a collection of classes (i.e., a class hierarchy). Operation spe-

cific behavior is modularized into a Visitor instance that implements visit

methods. The accept methods are placed within the class hierarchy to im-

plement a traversal over the structures while making calls to a visitor object’s

visit methods.

5Sometimes recursive calls may be to other functions/methods that coordinate to im-
plement the same operation.

1.3. BACKGROUND 13

A Java imperative visitor interface, ImpVis, is given in listing 1.7(a).

Shown in listing 1.7(b) is a functional visitor interface, FunVis, similar to

interface ImpVis{
void visit(True e);
void visit(False e);
void visit(Neg e);
void visit(And e);
void visit(Or e);

}

(a) Imperative

interface FunVis <R>{
R visit(True e);
R visit(False e);
R visit(Neg e, R inner);
R visit(And e, R lft , R rht);
R visit(Or e, R lft , R rht);

}

(b) Functional

Listing 1.7: Visitor Interfaces in Java

the presentation of Oliveira et al. [61]. An imperative visitor implements

void methods that communicate using the visitor’s local state. In contrast,

the functional visitor is parametrized by a type R, which represents the return

type of the operation to be implemented. In addition to this type parameter,

the functional visit methods also have more method arguments than the

corresponding imperative methods. The functional visit methods for com-

posite classes like Neg and And have extra arguments that represent recursive

results of visiting corresponding subcomponents.

The final piece of the visitor puzzle is the implementation of accept

methods that must be added to our BExp classes. The corresponding accept

methods are shown in listing 1.8: (a) shows imperative accept methods

and (b) shows the functional counterpart.6 False and Or cases are left out

since they are similar to True and And, respectively. Together, the accept

methods implement the traversal of a BExp instance. The visitor’s visit

methods are called at interesting points, effectively implementing double-

dispatch. Calls to the specific visit methods are statically resolved within

each class by the type of their first parameter, e.g., v.visit(this, ...),

since the type of this is known.7

6Because the parameter types are different, these implementations can coexist in the
same class hierarchy, though usually one visitor type is chosen over the other.

7technically the type of this cannot be known until runtime, but the Java compiler can
at least determine a reasonable static bound.

14 CHAPTER 1. INTRODUCTION

// Added to BExp
abstract void accept(ImpVis v);

// Added to True
void accept(ImpVis v)
{ v.visit(this); }

// Added to Neg
void accept(ImpVis v){

inner.accept(v);
v.visit(this);

}
// Added to And
void accept(ImpVis v){

left.accept(v);
right.accept(v);
v.visit(this);

}

(a) Imperative Traversal

// Added to BExp
abstract <R> R accept(FuncVis <R> v);

// Added to True
<R> R accept(FuncVis <R> v)
{ return v.visit(this); }

// Added to Neg
<R> R accept(FuncVis <R> v){

return v.visit(this ,
inner.accept(v));

}
// Added to And
<R> R accept(FuncVis <R> v){

return v.visit(this ,
left.accept(v),
right.accept(v));

}

(b) Functional Traversal

Listing 1.8: Accept methods for BExps

With both forms of the visitor pattern in place, we can use visitors to

implement Boolean expression evaluation. Using a visitor, we can now im-

plement the operation outside of our BExp class definitions. Listing 1.9(a)

and (b) give visitor implementations of eval in imperative and functional

styles, respectively. Again, we elide the methods for False and Or since

class EvalImp implements ImpVis{
Stack <Lit > stack = /*...*/;
void visit(True e)
{ stack.push(e); }
void visit(Neg e){

if(stack.pop(). isTrue ())
stack.push(new False ());

else

stack.push(new True ());
}
void visit(And e){

if(stack.pop(). isTrue () &&
stack.pop(). isTrue ())

stack.push(new True ());
else

stack.push(new False ());
}
Lit eval(BExp e){

e.accept(this);
return stack.pop();

}
}

(a) Imperative visitor

class EvalFun implements FunVis <Lit >{

Lit visit(True e)
{ return e; }
Lit visit(Neg e, Lit inn){

if(inn.isTrue ())
return new False ();

return new True ();
}

Lit visit(And e, Lit lft , Lit rht){
if(lft.isTrue () && rht.isTrue ())

return new lft();
return new False ();

}

Lit eval(BExp e)
{ return e.accept(this); }

}

(b) Functional visitor

Listing 1.9: Visitor-based eval implementations

1.3. BACKGROUND 15

they are almost identical to those for True and And respectively. Because

the imperative visitor, EvalImp, must operate via mutation, it keeps a Stack

of evaluated Lit results. After the traversal of sub-expressions is complete,

each accept method calls visit, passing the original BExp. Within the cor-

responding visit method the necessary values are popped from the stack,

tested, and the resulting Lit is pushed back on the stack.

The functional version, EvalFun, is implemented similarly. After sub-

expressions have been traversed, each accept method will call visit, pass-

ing the original BExp and the recursive accept results. Our functional ver-

sion is much less complicated, since it uses the implicit call stack to manage

recursion. In fact, it is almost identical to our earlier object-oriented version

(listing 1.2), though it is now separated from the class definitions.

Each of the visitors also includes an eval entry point that invokes the

initial accept method with this instance of the visitor. The imperative vis-

itor must do a little more work. Since its return is stored in the stack, upon

completion of the traversal the eval method must return the top of the stack

(i.e., pop()). Each of the operations can be invoked by creating a visitor

instance and calling eval on a BExp:

new EvalImp (). eval(a_bexp);

And similarly for EvalFun.

1.3.2.2 Visitor Limitations and Extensions

We have organized our methods this way (i.e., accept and visit) so that

the work done writing the accept methods (i.e., the traversal) can be reused

when we write new operations that follow this pattern. In theory visitors can

be used to write all different kinds of operations, but in practice visitor im-

plementations have a number of limitations. Consequently, there have been

many extensions to the pattern to deal with implementation challenges.

16 CHAPTER 1. INTRODUCTION

Necessary Methods The visitor implementation at a minimum requires

the addition of accept methods to the relevant portions of a class hierarchy.

When the programmer does not have control over the classes (e.g., they are

provided in binary form) this is much more difficult. When the programmer

has control, writing these methods can be tedious and error prone.

Palsberg and Jay [63] introduced a special visitor, called Walkabout, that

uses Java reflection to mimic double dispatch. Using reflection supports

visitor extensions (e.g., new visit methods) and allows the traversal to be

implemented over unmodified class hierarchies. Grothoff [31] took a similar

approach by compiling double-dispatch at runtime with Runabout, and the

performance was greatly improved, In Aspect-Oriented Programming [41]

this notion of making changes without prior knowledge is typically referred

to as obliviousness.

Fixed Traversal Implementing a fixed traversal strategy within the class

hierarchy makes writing different operations difficult, inefficient, or even

impossible. For this reason most programmers simply use the visitor pattern

as a way to modularize case dispatch, eliminating recursive accept calls

within the class hierarchy. If, for example, we remove inner.accept(v)

from Neg in the imperative case, or use inner in place of inner.accept(v)

in the functional case, then the visitor can control its own traversal.

When the visitor is in charge of traversal, Buchlovsky and Thielecke [15]

refer to them as external visitors, as the traversal is external to the datatypes.

Oliveira et al. [61] demonstrated a functional visitor library8 that works with

both external and internal accept implementations. Lämmel et al. [51, 44,

70] introduced composable strategies to define and constrain the order and

depth of a traversal. Lieberherr et al. [52, 53] use a domain specific language

to describe traversal strategies with imperative visitors.

In this dissertation we focus on a new approach that uses external traver-

8The approach is actually more of an instance of the pattern that makes use of
Scala’s [59] abstract types.

1.3. BACKGROUND 17

sals with different implementations. In the next chapter (section 2.3) we

discuss traversal control (a simplified version of Lieberherr et al.’s traversal

strategies) as an alternative to fixed recursion schemes.

Side-Effects Using void methods forces programmers to use local mu-

tation to communicate between different parts of a structure. In practice

void methods allow visitors to handle multiple/mutually-recursive hierar-

chies consistently and slightly easier to extend, since a default behavior of

“do nothing” is always an option. However, using mutation makes imperative

visitors difficult to understand, visit-order dependent, difficult to compose,

and expensive to parallelize.

Recent visitor work [61, 60] has focused on providing a functional alter-

native, but places added constraints on visitor extensions and return types.

In particular, mutually-recursive datatypes require multiple, separate visi-

tor definitions, and shared visitor references, which must be initialized via

mutation.

In this dissertation we will use a functional approach that eliminates

the need for side-effects. As a result, our traversals will be implicitly (and

trivially) parallelizable.

1.3.2.3 Higher-Order Functions

Every seasoned functional programmer has witnessed the value of higher-

order functions. While iteration functions like map are used extensively for

predefined structures like lists, higher-order functions are also very useful

with user-defined structures. One of the most common uses of higher-order

functions has been to abstract traversals by creating structural recursion op-

erators, typically called folds [65, 55].

Returning to our Scheme implementation of BExps, we can use our data

definitions as a guide to create a function that folds BExps into a different

structure, shown in listing 1.10.

18 CHAPTER 1. INTRODUCTION

;; fold-bexp: BExp A A (A -> A) (A A -> A) (A A -> A) -> A
(define (fold-bexp e tru fals nott andd orr)

(cond [(True? e) tru]
[(False? e) fals]
[(Neg? e) (nott (fold-bexp (Neg-inner e)

tru fals nott andd orr))]
[(And? e) (andd (fold-bexp (And-left e)

tru fals nott andd orr)
(fold-bexp (And-right e)

tru fals nott andd orr))]
...))

Listing 1.10: Fold function for BExp structures

The comment preceding fold-bexp describes its signature. The function

accepts five arguments, one for each structure definition (i.e., concrete vari-

ants of BExp). We use A as a place-holder for the return type of our function,

since it should be the same throughout. The individual functions passed

to fold-bexp match the arity of the corresponding value constructors (e.g.,

make-Neg), but instead of zero-argument functions we use values for True

and False.

For each datatype case we replace the original constructor by calling the

corresponding function argument with the results of recursively folding the

immediate fields of the structure. We elide the case for Or, since it is almost

identical to And. Using a cond expression to do case dispatch is analogous

to the double-dispatch of our visitor’s accept/visit methods.

Once we define the necessary helper functions, we can use fold-bexp to

give a more succinct definition of eval, without mentioning any structural

recursion. Our functions are shown in listing 1.11. For each compound

constructor (e.g., Not or And) we create a function that will be called on the

recursive results to produce a single Lit.

Our implementation of eval has successfully been reduced to a concise,

two-line function. Similar to our visitor solution, the traversal of our data

structure has now been neatly separated from our operation specific imple-

mentation, and we can reuse our fold to write other functions that match

this pattern of structural recursion.

1.3. BACKGROUND 19

;; eval: BExp -> Lit
(define (eval e)

(fold-bexp e (make-True) (make-False) not-lit
and-lit or-lit))

;; not-lit: Lit -> Lit
(define (not-lit a)

(if (True? a) (make-False) (make-True)))
;; and-lit: Lit * Lit -> Lit
(define (and-lit a b)

(if (and (True? a) (True? b)) a (make-False)))
;; or-lit: Lit * Lit -> Lit
(define (or-lit a b) ...)

Listing 1.11: Fold-based eval implementation

1.3.2.4 Limitations and Extensions

As is common with the visitor pattern, the fold functions take many different

forms, but in practice implementations suffer from a number of limitations.

Structures and Fixed Recursion How the fold is implemented is impor-

tant. Deep folds where the traversal recursively walks all nested objects,

as we have implemented here in fold-bexp, are more expressive than shal-

low (or one-level) folds [29], but run into the same problems as the visitor

implementations since the recursion scheme is fixed.

Generalized folds [55, 65] and other forms of generic programming [12,

38, 9, 34, 54] offer alternatives that eliminate the tedium of writing folds

for data structures, but again offer fixed traversals. Abstracting the recur-

sion scheme of folds has lead to several variants of strategic and combinator

approaches [45, 47, 44]

One Constructor, One Function Each constructor is handled by exactly

one argument to fold-bexp. For large structures the number and order

of these parameters contributes to the program’s boilerplate. Sheard [65]

places functions into nested tuples, and Lämmel [46] collects related func-

tions into a record. These are, however, only partial solutions, since the

structure holding the functions must then be constructed and deconstructed.

Having one function per constructor also limits programmers’ opportuni-

20 CHAPTER 1. INTRODUCTION

ties to abstract multiple, similar cases into a single function, or to override a

more general function with a more specific case.

In the next chapter we discuss our use of function-classes over traversals,

which support function extension, case abstraction, and specialization.

Return Types The signature of our fold function, fold-bexp, suggests that

the types of the arguments (e.g., the return type of the functions), be consis-

tent, e.g., A. The functions passed as arguments must accept and return val-

ues of this type. In a statically typed language like ML [58] or Haskell [39]

this forces programmers to write several separate functions. In many cases

a single return type for all parts of a structure is not flexible enough. For

instance, the function map over lists typically transforms the elements of the

list into values of a different type, though the list structure remains intact.

Implementations usually treat functions like map (so-called homomor-

phisms [55]) as a special case, or provide implementations for a small num-

ber of situations [48, 45]. In this dissertation, chapter 3 in particular, we

show that it is possible to relax this constraint without compromising safety.

CHAPTER 2

DemeterF

The DemeterF system consists of a number of tools and libraries. In this

chapter we discuss our class generator, traversal library, and generic pro-

gramming tools. We begin with an overview of the structural and behavioral

aspects of DemeterF-based programs, followed by an example-driven intro-

duction to writing traversal-based functions. We conclude with a discussion

of the generic and generative programming features of DemeterF.

2.1 Structures and Classes

Writing traversal-based functions begins with a description of the data struc-

tures involved and the relations between different datatypes, i.e., fields or

has-a relationships, and subtyping or is-a relationships. DemeterF allows

programmers to separate descriptions of the structural elements of a hier-

archy from their methods and behavior by merging definitions into gener-

ated Java classes. The separate structures make it convenient to describe

traversals and functions, and can substantially reduce the boilerplate code

mentioned in the previous chapter (c.f., section 1.3.2).

As input, the DemeterF class generator accepts a class dictionary (CD)

file [52] and a behavior (BEH) file. A CD describes the structures of a

class hierarchy and the BEH file provides extra, class-specific definitions and

methods to be placed in the body of generated source files. The format of

21

22 CHAPTER 2. DEMETERF

DemeterF CDs includes a number of improvements over Lieberherr’s origi-

nal design. Notably, we support generic definitions with bounded parametric

polymorphism, and the inclusion of other CDs.

2.1.1 Class Dictionaries

figure 2.1 describes a simplified version of DemeterF CD syntax using BNF.

For the purposes of this dissertation we have left out syntactic features re-

lated to datatype generic programming, though relevant points will be dis-

cussed in section 2.7. In our BNF notation, concrete syntax is enclosed in

double-quotes, e.g., “include”. Optional syntax is placed in square brackets,

[], and zero or more repetitions is denoted by a postfix Kleene star. The

non-terminal IDENT represents valid Java identifiers and CHAR stands for a

(possibly escaped) character literal. A CDFILE begins with a possibly empty

CDFILE ::= INCLUDE* TYPEDEF*
INCLUDE ::= “include” STRING “;”
STRING ::= “"” CHAR* “"”

TYPEDEF ::= [“extern”] (CLASS | INTFC)
SYNTAX ::= STRING | ANNOT

ANNOT ::= “*s” | “*l”

CLASS ::= DECL “=” [USE (“|” USE)*] (FIELD | SYNTAX)* “.”
INTFC ::= “interface” DECL “=” [USE (“|” USE)*] “.”

FIELD ::= “<” IDENT “>” USE

DECL ::= IDENT [“(” IDENT (“,” IDENT)* “)”]
USE ::= IDENT [“(” USE (“,” USE)* “)”]

Figure 2.1: Simplified Class Dictionary (CD) syntax

sequence of INCLUDE statements. The semantics of CD file inclusion is sim-

ply concatenation of the TYPEDEF sequences from each file. The body of a

CDFILE is sequence of class and/or interface definitions. A CLASS is defined

by declaring the class’ name and type parameters. The right-hand side of

a CLASS definition contains a possibly empty list of subclasses followed by

a possibly empty list of FIELD and/or SYNTAX definitions, terminated by a

2.1. STRUCTURES AND CLASSES 23

period, “.”. An INTFC is prefixed with “interface” and is defined as a pos-

sibly empty list of implementing classes. Each TYPEDEF can optionally be

declared with the prefix “extern”, meaning that the class has already been

defined externally, e.g., in another library, and should not be generated.

A class with a non-empty list of subclasses is termed abstract, and, as in

Java, cannot be directly instantiated. A class definition that only contains

fields and/or syntax (i.e., no subtypes) is termed concrete and can be used

to create structures at runtime. Fields can be interspersed with SYNTAX

(quoted strings or printing annotations) that guide generated parsers and

printers. Strings define the concrete syntax of both the input and output

language for a group of class definitions. The literals *s and *l add spaces

and newlines, respectively, to generated print methods that are added to

the generated Java files if requested.

Listing 2.1 shows a CD representing integer binary search tree (BST)

structures. The hierarchy consists of an abstract class, IntBST, with two

IntBST = IntNode | IntLeaf.
IntNode = "(" <data > int *s <left > IntBST

*s <right > IntBST ")".
IntLeaf = "*".

Listing 2.1: CD file describing functional integer BSTs

concrete subclasses, IntNode and IntLeaf. IntNode represents BST interior

tree nodes with an integer field data and left and right subtrees. IntLeaf

represents a terminal/empty tree.

From this structural description DemeterF creates three main Java files,

one for each class definition. If requested, the system will also generate

a printer and parser, using the syntax inferred from the CD.1 All gener-

ated fields are by default declared final and class constructors follow a

functional initialization pattern, similar to that enforced by Featherweight

1Other so-called datatype-generic programming functions can also be defined. The
specifics will be discussed in section 2.7.

24 CHAPTER 2. DEMETERF

Java [37]: each class’ constructor accepts a value for each field as arguments

and initializes all fields immediately.

Listing 2.2 shows the definition of three instances of IntBST. The first is

IntBST t1 = new IntLeaf(),
t2 = new IntNode(2, new IntNode(1, t1 , t1),

new IntNode(3, t1 , t1)),
t3 = IntBST.parse("(2 (1 * *) (3 * *))");

Listing 2.2: IntBST uses: constructors and parsing

an empty IntLeaf tree, which is used to construct a tree with a root node

of 2, and left and right children of 1 and 3 respectively. The second and

third IntBSTs, t2 and t3, represent the same BST: t2 is created using con-

structor calls, and t3 using a generated (static) parse method in IntBST.

In addition to parse and print methods, DemeterF is also able to generate

field getters (e.g., int getData (), functional field updaters (e.g., IntNode

updateData (int d)), and a number of other useful methods if requested.

2.1.2 Behavior Files

Behavior (BEH) definitions allow methods and other Java syntax (e.g., com-

ments or static fields) to be placed in generated classes while remaining

separate from their structural definitions (i.e., the CD). figure 2.2 shows our

simple behavior syntax in BNF. Similar to CD files, we allow other BEH files

BEHFILE ::= INCLUDE* BEH*
BEH ::= IDENT “{{” TEXT “}}”

Figure 2.2: BEH File Syntax

to be included. The terminal TEXT represents any string that does not in-

clude double braces, “}}”. The TEXT within the double braces is bound to

the preceding IDENT. Once different TEXTs with the same bindings has been

merged, the code is injected into the body of the CLASS or INTFC definition

when files are generated. An example behavior file for our IntBST classes

2.1. STRUCTURES AND CLASSES 25

is given in listing 2.3. Each of the BEH definitions defines a method. To-

IntBST {{
abstract IntBST insert(int d);

}}
IntNode {{

IntBST insert(int d){
if(d <= data)

return new IntNode(data , left.insert(d), right);
return new IntNode(data , left , right.insert(d));

}
}}
IntLeaf {{

IntBST insert(int d){ return new IntNode(d, this , this); }
}}

Listing 2.3: BEH definitions for integer BST insertion

gether the methods implement the insertion of an int into an IntBST. The

abstract class IntBST declares an abstract method, insert, that its sub-

classes must implement. For IntNode we use data to decide between recur-

sive insertion into the left or right subtree, and return a new IntNode with

corresponding subtree updated. For IntLeaf we construct a new IntNode

with d as its data, and this IntLeaf as its left and right subtrees.2

When Java files are generated for our BST classes, DemeterF combines

the CD and BEH definitions into Java files. Listing 2.4 shows the resulting

class definition for IntNode. The generated class extends IntBST, which

is the result of it appearing on the right-hand side of the IntBST definition.

IntNode also has protected final fields that match its CD definition. The

generated constructor accepts and initializes the instance’s three fields, and

a parse method is added to parse an instance from a String using the lan-

guage defined by the CD. Our insert method from the BEH definitions is

placed verbatim after the generated constructor and methods.

2Note that this version of insert is functional, i.e., mutation free. Side-effecting ver-
sions are possible with DemeterF, but the author hopes to discourage the practice of mutable
data structures, hence the final fields by default.

26 CHAPTER 2. DEMETERF

// IntNode.java
public class IntNode extends IntBST{

protected final int data;
protected final IntBST left;
protected final IntBST left;

/** Construct a(n) IntNode Instance */
public IntNode(int data , IntBST left , IntBST right){

this.data = data; this.left = left; this.right = right;
}

/** Parse an instance of IntNode from the given String */
public static IntNode parse(String inpt){ /*...*/ }

/*... Other generated methods ...*/

IntBST insert(int d){
if(d <= data)

return new IntNode(data , left.insert(d), right);
return new IntNode(data , left , right.insert(d));

}
}

Listing 2.4: Combined CD and BEH in IntNode.java

2.1.3 Parametric Polymorphism

Type parametrization is now common place, even in object-oriented com-

munities. While ML and Haskell allow implicit parametric polymorphism,

Java and C# support explicit parametric polymorphism in both classes

and methods using so-called generic declarations.3 DemeterF allows pro-

grammers to define parametrized classes and interfaces that correspond to

definitions of generic classes in Java and C#.

CD definitions can be parametrized by placing type parameters in paren-

theses, separated by commas (DEF and USE in figure 2.1). Explicit bounds

on type parameters are supported by generating class definitions that make

use of Java’s extends syntax and C#’s where clauses. Our CD notation uses

colons to separate a type variable from its bound.

For example, listing 2.5 shows a CD that defines classes for a generic BST

implementation. We provide an extern definition for Java’s parametrized

Comparable interface, which is used as a bound for our type parameter, D,

3Java and C# do support a limited form of inference that can recover type variable
annotations.

2.1. STRUCTURES AND CLASSES 27

extern interface Comparable(X) = .

BST(D:Comparable(D)) = Node(D) | Leaf(D).
Node(D:Comparable(D)) = "(" <data > D *s <left > BST(D)

*s <right > BST(D) ")".
Leaf(D:Comparable(D)) = "*".

Listing 2.5: CD definitions for parametrized BSTs.

representing the data to be stored in the tree. The type of data stored, D,

must implement Comparable(D), so that nodes in the tree can be ordered to

maintain a typical BST invariant.

Listing 2.6 shows behavior definitions that implement an insert method

for our generic BSTs. The insert methods are similar to what we imple-

BST{{
abstract BST <D> insert(D d);

}}
Node{{

BST <D> insert(D d){
if(d.compareTo(data) <= 0)

return new Node <D>(data , left.insert(d), right);
return new Node <D>(data , left , right.insert(d));

}
}}
Leaf{{

BST <D> insert(D d){
return new Node <D>(d, this , this);

}
}}

Listing 2.6: BEH definitions for generic BST insertion

mented for IntBSTs, though each now works on data of the type parameter

D and returns a result of type BST<D>. Our generic BST class can be instanti-

ated in another (or the same) CD to support parsing and printing, as shown

in listing 2.7(a), with Java code using the generated classes shown in list-

ing 2.7(b). We create two wrapper classes: one that instantiates BST to store

Double values, and the other which stores Characters.4 Our parametriza-

tion is valid, since Double and Character both implement Comparable for

their respective types, matching our type parameter bounds. Once the wrap-

4Java allows only reference types to be used as type parameters, so we use the boxed
equivalents. In C# this is not necessary, since the language allows value types as parameters.

28 CHAPTER 2. DEMETERF

DoubleBST = <bst > BST(Double).
CharBST = <bst > BST(Character).

(a) CD use of generic BST

// BST of Doubles ...
BST <Double > dbst = DoubleBST.parse("(1.2 (1.1 * *) (1.3 * *))")

.bst.insert (1.4);
// BST of Characters ...
BST <Character > cbst = CharBST.parse("(’B’ (’A’ * *) (’C’ * *))")

.bst.insert(’D’);

(b) Use within Java code

Listing 2.7: Generic BST instantiation and uses

per/instantiation has been parse d we can access its field and insert a new

element. In both cases the new element is placed to the right of the root’s

right subtree. Note that the wrapper classes are only necessary to support

parsing and printing, since they alert DemeterF that a particular instantia-

tion of the classes is required. Generated parametrized classes are otherwise

the same as their Java equivalents.

2.1.4 Running Example

For the rest of this chapter, we return to the example data structures defined

in chapter 1 (listing 1.1). Listing 2.8 shows a CD that defines the same

classes using a DemeterF CD.

BExp = Lit | Neg | And | Or.

Lit = True | False.
True = "True".
False = "False".

Neg = "!" <inner > BExp.
And = "(&&" *s <left > BExp *s <right > BExp ")".
Or = "(||" *s <left > BExp *s <right > BExp ")".

Listing 2.8: CD definitions for Boolean expressions

The first line corresponds to our abstract class BExp, with four sub-

classes: Lit, Neg, And, and Or. Lit is also abstract, with concrete sub-

2.2. FUNCTIONS AND TRAVERSALS 29

classes of True and False. True and False are defined only as syntax.

Other definitions are concrete classes with recursive fields. Neg has a

single inner expression, while And and Or are binary expressions, each with

two recursive fields. For completeness we give And and Or prefix operators

as concrete syntax, since infix operators would make the resulting grammar

non-LL(k).5

For the rest of this chapter we use these definitions to demonstrate the

various features of writing traversal-based functions using DemeterF. When

necessary we will extend our structures to illuminate different aspects of our

system.

2.2 Functions and Traversals

CDs are useful for describing the structure and syntax of data, but what

we eventually want to do is write functions over instances of our structures

that return meaningful results. In order to write traversal-based functions,

DemeterF provides classes that represent function-classes and traversals, that

together are used to implement functions over a data structure.

2.2.1 Function-Classes

A DemeterF function-class represents a set of functions using Java methods

with the special name combine . DemeterF provides a base function-class,

FC, that represents the empty set of functions. To create a new function-

class, programmers can extend FC by adding specific combine methods for a

given data structure. The combine methods of a function-class instance (or

function-object) are interpreted as fold functions over an adaptive, generic

traversal.

As a first example, listing 2.9 defines a simple function-class with the

5DemeterF currently uses JavaCC [3] to generate parsers, but does not generate any
complex look-ahead decisions.

30 CHAPTER 2. DEMETERF

intent of converting a BExp into a String with the help of a traversal. Our

// Convert a BExp to a String ...
class ToString extends FC{

String combine(True t){ return "True"; }
String combine(False f){ return "False"; }
String combine(Neg n, String i){ return "!"+i; }

String combine(And a, String l, String r)
{ return "(&& "+l+" "+r+")"; }
String combine(Or o, String l, String r)
{ return "(|| "+l+" "+r+")"; }

}

Listing 2.9: ToString function-class

class, appropriately named ToString, extends the base function-class FC. It

adds a combine method for each concrete case of our BExp data structures.

In this case the combine methods can be identified by the type of their first

argument. In each of the methods we return a String that corresponds to

the concrete syntax from our original CD (listing 2.8).

2.2.2 DemeterF Traversals

In order to turn an instance of a function-class (i.e., a function-object) into

a function, we apply its combine methods over the traversal of a data struc-

ture. To do this, DemeterF provides a class, Traversal, that takes an in-

stance of a function-class. A typical Traversal usage is shown in listing 2.10.

The method toString is added to the ToString class. The method ac-

// Added to ToString
String toString(BExp e){

return new Traversal(this). traverse(e);
}

Listing 2.10: Traversal invocation for ToString

cepts a BExp instance and traverses it in order to convert it into a String.

A new Traversal is constructed by passing this function-object, and the

BExp is traversed. The use of this references the current instance of

2.2. FUNCTIONS AND TRAVERSALS 31

ToString (i.e., the function-object), whose combine methods are called by

the Traversal to fold together the BExp instance.

When called, the traverse method proceeds with a depth-first walk of

the given object, in this case a BExp. After recursively traversing the fields of

the current node, the Traversal selects a combine method from the given

function-object that best matches: (1) the type of the current node, and (2)

the result types of recursively traversing each of the node’s fields. This is

termed multiple dispatch, since all argument types determine the selected

method. Once selected, the combine is then applied to the original node (as

its first argument) and the traversal results of its fields.

Getting back to ToString, instances of True or False have no fields,

so selecting a combine method is simple. The traversal selects the first or

second method in ToString based on the type of the object itself. When

applied to a Neg instance, traverse first recursively processes the object’s

inner field. If the result of the traversal is a String, then the third method

is selected and applied. Similarly for And and Or, with both fields (left and

right) being traversed before a matching method is selected. Any case for

which the function-object does not have a matching combine method, e.g.,

a current object of type Neg with a recursive result of type int, results in a

runtime/dispatch exception.

As with our visitor solutions (section 1.3.2.1), our function-class and

traversal can be used by creating a new function-object and calling our

toString with a BExp:

new ToString (). toString(a_bexp)

If the function was needed more than once, we could name a reference to

the ToString instance for use with multiple calls. This style of definition

could be considered object-oriented, since the toString method is only asso-

ciated with an instance of ToString. A more global/functional implementa-

tion is also possible by making toString a static method that constructs a

Traversal with a new ToString instance.

32 CHAPTER 2. DEMETERF

2.2.3 Case Abstraction and Specialization

As a second example of a traversal-based function we implement strict BExp

evaluation, similar to our fold-based Scheme example (listing 1.11 in sec-

tion 1.3.2.3). Listing 2.11 shows a complete function-class that implements

a slightly inefficient version of BExp evaluation. Our function-class, Strict-

// Evaluate a BExp
class StrictEval extends FC{

Lit combine(Lit l){ return l; }
Lit combine(Neg n, True t){ return new False (); }
Lit combine(Neg n, False f){ return new True (); }

Lit combine(And a, True l, True r){ return l; }
Lit combine(Or a, False l, False r){ return l; }
Lit combine(And a, Lit l, Lit r){ return new False (); }
Lit combine(Or a, Lit l, Lit r){ return new True (); }

Lit eval(BExp e)
{ return new Traversal(this). traverse(e); }

}

Listing 2.11: DemeterF-based strict Boolean expression evaluation

Eval, has a number of interesting combine methods, each of which matches

a specific case of evaluation.

The first method matches both True and False instances with their su-

pertype, Lit, returning the literal unchanged. For Neg we match possible

cases with separate combine methods, returning the negation of the recur-

sive inner traversal result. The first two combine methods for And and Or

match the important situations where the recursive results are both True or

both False, in which case the left result, l, can be returned. The final two

cases match default cases for And and Or, where we can return False and

True respectively. Again we implement a wrapper method, eval, that con-

structs a Traversal with this function-object and calls traverse on the

given BExp.

The StrictEval example demonstrates two novel features of using mul-

tiple dispatch over data structure traversal. The first is abstraction: our

combine selection allows us to abstract multiple common cases into a single

2.3. TRAVERSAL CONTROL 33

method. This occurs with the combine for Lit where we avoid mentioning

separate cases for True and False, and the second/default methods for And

and Or, which each handle 3 cases. The dual of abstraction is specialization:

we can write a method signature that overrides a more general case with

a specific result. This occurs in the first two combine methods for And and

Or, where the specialized signature, e.g., (And True True), overrides the

abstracted case. In either case the traversal’s multiple dispatch selects the

combine method with the most appropriate signature. These two features

help to support extensible function-classes, making the function-objects over

traversals more useful.

2.3 Traversal Control

The separation of functions into function-classes and Traversal allows us to

easily augment the traversal with additional features. Continuing with our

BExp evaluation example, we originally used visitors (listing 1.9), higher-

order functions (listing 1.11), and DemeterF traversal (listing 2.11) to im-

plement evaluation. Although these forms of traversal eliminate the boiler-

plate of traversal, they were not capable of short-cutting the traversal. In

order to implement the well-known notion of non-strict Boolean evaluation

we will use DemeterF traversal control with our function-class.

DemeterF supports a version of traversal control that is a simplification

of that found in Adaptive Programming strategies [52, 53]. The Traversal

class provides a second constructor that takes a two arguments, the first is

a function-object and the second is of type Control. The DemeterF class

Control has creator methods that allow a programmer to describe specific

fields to be bypassed (or skipped over) during traversal, effectively guiding

the Traversal through a data structure. To make the evaluation of And and

Or non-strict, we specify that their right field should be bypass ed.

Listing 2.12 shows a function-class that correctly implements short-cutting

34 CHAPTER 2. DEMETERF

BExp evaluation. Our function class, Eval, is quite similar to our previous

// Evaluate a BExp
class Eval extends FC{

Lit combine(Lit l){ return l; }
Lit combine(Neg n, True t){ return new False (); }
Lit combine(Neg n, False f){ return new True (); }

// The "right" field will not be traversed
Lit combine(And a, False l, BExp r){ return l; }
Lit combine(Or a, True l, BExp r){ return l; }
Lit combine(And a, True l, BExp r){ return eval(r); }
Lit combine(Or a, False l, BExp r){ return eval(r); }

Lit eval(BExp e){
return new Traversal(this ,

Control.bypass("And.right Or.right"))
.traverse(e);

}
}

Listing 2.12: DemeterF-based non-strict Boolean expression evaluation

example, StrictEval (listing 2.11). For Lit and Neg instances, the method

selection is the same as StrictEval.6

Before describing the rest of the function set, it is important to take a

closer look at the eval method. We construct our Traversal by passing

this function-object and a Control object created using bypass . The string

given to bypass represents the fields to be skipped, in this case And.right

and Or.right.7 During the execution of traverse, when the current node

is an instance of And or Or our Control tells the traversal to skip its right

field. After the traversal of the left field is complete, a method is selected

based on the type of the current node (i.e., And or Or), the result type of the

recursive traversal of the left field, and the type of the unchanged right

field.

Our plan to bypass the right field is reflected in the type of the third

argument of our last four combine methods. We use the type BExp (instead

of True or False), which matches the field’s original type. In the first two
6In fact, we could have just extended StrictEval, but we save the discussion of

function-class extension for section 2.5.
7If Java had macros we could better integrate Control/bypass into the language. Our

implementation using Scheme provides a much more user-friendly integration [18] without
exposing implementation details.

2.3. TRAVERSAL CONTROL 35

cases we can immediately return the result of the left traversal, True or

False respectively. In the final two cases we make a recursive call to evalu-

ate the right side of the expression. Since the right side of the expression

is only traversed when necessary, we achieve our short-cutting/non-strict

evaluation strategy.

2.3.1 Efficient Recursion

When a field is bypass ed during traversal, as with Eval in listing 2.12, it

is common to hand-code a recursive call after checking some condition. In

those cases it is inefficient to reconstruct an identical traversal, e.g., in our

eval method, for each recursive call. We can instead create and store the

Traversal instance in a local variable when the function object is initial-

ized. This initialization effectively “ties” the recursive “knot”, so the same

traversal can be referenced for multiple recursive calls. Listing 2.13 shows

this caching strategy implemented for our Eval function-class.

// Replacement "eval" for listing 2.12
Lit eval(BExp e){ return trav.traverse(e); }

// Cached Traversal/Control and constructor
Traversal trav;
Eval (){

trav = new Traversal(this ,
Control.bypass("And.right Or.right"));

}

Listing 2.13: Cached Traversal for efficient recursion

Depending on the size of the BExp instance that is traversed and the num-

ber of recursive calls required, this caching can save a significant amount of

space, time, and more importantly, object allocations.8

8Parallel execution seems to be more dependent on allocations due to Java’s shared
heap and garbage collection.

36 CHAPTER 2. DEMETERF

2.4 Traversal Contexts

There are times when writing purely compositional functions will not suffice.

In cases where information about the ancestors of a sub-structure is impor-

tant to a method’s result, programmers typically add an argument to the

method definition. This argument is then passed to recursive invocations

and updated when appropriate. DemeterF supports this style of traversal-

based function using a notion of traversal contexts.

2.4.1 Update Methods

In addition to combine methods, a function-class can define update meth-

ods. While combine methods are akin to fold functions (i.e., bottom-up),

update methods are responsible for updating the traversal context at inter-

esting points,9 top-down, similar to inherited attributes in Attribute Gram-

mars [42]. The context is available to each combine method as its last argu-

ment. Methods can, however, ignore the context (or other later arguments)

simply by declaring a shorter signature.

Methods that update the traversal context can accept up to three argu-

ments that represent (1) the current node of the structure, (2) the next field

to be traversed, and (3) the current node’s context. The field to be traversed

is encoded as an instance of a field-class. For each field of a CD defini-

tion, e.g., left from the class And, DemeterF generates a static inner class

whose instances represent the pending traversal of the field. Each field-type

is defined as a subtype of the DemeterF class Fields.any (another inner

class). Our representation has the added benefit of making field-classes in

update methods look like field accesses, e.g., And.left is the field-class of

the left field of And instances.

To demonstrate traversal contexts with another BExp example, we extend

9By “update” we mean functional update, where mutation is avoided by constructing a
new, updated instance.

2.4. TRAVERSAL CONTEXTS 37

our BExp structures with variable expressions and implement a traversal-

based function that transforms a BExp into negation normal form, where the

negation instances (Neg) are pushed down to the literals and variables of a

Boolean expression. The modified CD definitions are shown in listing 2.14

along with classes to represent the Sign of nested negations. For brevity

// Add Var to the BExp definition
BExp = Lit | Neg | And | Or | Var.
Var = <id > ident.

// Sign of nested negations
Sign = Even | Odd.
Even = .
Odd = .

Listing 2.14: Adding Var and Sign contexts

we elide our unchanged structures. The class Var is added as a subtype of

BExp. The new concrete class contains an ident, a DemeterF library class

that represents identifiers.

Our strategy for implementing negation normalization is to keep track

of the number of nested outer Neg expressions during the traversal as our

context. We represent the nesting depth by the abstract class Sign, which

is either positive, Even, or negative, Odd. Before traversal proceeds into the

inner field of a Neg instance we use an update method to flip the Sign of the

context for the inner subtraversal. When variables or literals are reached we

return an adjusted instance based on the Sign of the context. For And and Or

we follow the usual rules for And and Or under negation when the context is

Odd.

Listing 2.15 shows the complete implementation of negation normaliza-

tion as a function-class. The class is best explained case by case. The update

methods will be called when the current node is an instance of Neg, before

traversing into its inner field. This is encoded by the first argument, Neg,

and the second argument type of Neg.inner. For each of the context types

we return the opposite Sign: Even for Odd and vice versa. For other cases

38 CHAPTER 2. DEMETERF

class NegNormal extends FC{
// Flip the Sign when entering a Neg
Sign update(Neg n, Neg.inner f, Even s){ return new Odd (); }
Sign update(Neg n, Neg.inner f, Odd s){ return new Even (); }

// Literals and Vars
BExp combine(Lit l, Even s){ return l; }
BExp combine(True f, Odd s){ return new False (); }
BExp combine(False f, Odd s){ return new True (); }
BExp combine(Var v, ident id , Even s){ return v; }
BExp combine(Var v, ident id , Odd s){ return new Neg(v); }

BExp combine(Neg n, BExp e){ return e; }

// Follow De Morgan Laws ...
BExp combine(And a, BExp l, BExp r, Even s){ return new And(l,r); }
BExp combine(And a, BExp l, BExp r, Odd s){ return new Or(l,r); }
BExp combine(Or o, BExp l, BExp r, Even s){ return new Or(l,r); }
BExp combine(Or o, BExp l, BExp r, Odd s){ return new And(l,r); }

// Main Entry ...
BExp normalize(BExp e)
{ return new Traversal(this). traverse(e, new Even ()); }

}

Listing 2.15: BExp negation normalization

the traversal automatically propagates the context unchanged.

As for the combine methods, the first matches after traversing a Lit

instance within an Even context and returns the original literal. The next two

cases match True and False instances within an Odd context, returning their

negation. After normalization, only variables are negated, so the combine

for Neg accepts just two arguments, ignoring its context, and returns the

recursively normalized inner BExp.

The cases for Var return the original variable within an Even context,

and its negation within an Odd context.10 The final four combine methods

rebuild or convert And and Or instances under Even or Odd contexts respec-

tively. The cases follow De Morgan conversion rules for conjunction/disjunc-

tion, e.g., ¬(a∧ b) ≡ (¬a∨¬b), with the traversal having already propagated

negations and recursively normalized the left and right fields.

The normalize method completes our implementation by creating a new

Traversal and calling traverse . We pass two arguments to traverse: the

10Note that we reference the original Var rather than building a new one, though in most
cases the two will be indistinguishable.

2.5. EXTENSIBLE FUNCTIONS 39

given BExp and a root context. Since we begin with no outer Neg, our initial

context is Even.

2.5 Extensible Functions

The separation of function-classes and traversal allows us to independently

extend/override combine and update methods. DemeterF supports such

extension using Java inheritance. As with traditional inheritance, duplicate

signatures will be overridden, and other methods will be overloaded, with

preferences determined from the methods’ argument types by multiple dis-

patch.

A typical use of traversals where function-class extension is convenient

is when performing functional updates over a particular structure, similar to

map over lists.11 listing 2.16 shows a class named Copy, which is used as

a foundation for such a transformation over BExps. Each combine method

class Copy extends FC{
Lit combine(Lit l){ return l; }
Neg combine(Neg e, BExp in){ return new Neg(in); }
And combine(And e, BExp l, BExp r){ return new And(l,r); }
Or combine(Or e, BExp l, BExp r){ return new Or(l,r); }
Var combine(Var e, ident id){ return new Var(id); }

}

Listing 2.16: Copy: functional updates for BExps

rebuilds our BExp structures during traversal by calling the individual con-

structors on recursive results.

As an example, we can extend Copy with specialized combine methods

that will simplify constant (non-variable) expressions to True or False lit-

erals. Listing 2.17 shows our extended function-class, Simplify, that im-

plements such a transformation. Our functions override Copy with specific

cases where the current BExp can be simplified based on recursive results.

A Neg instance can be simplified when its recursive inner result is a Lit by

11It is not exactly the same, since list map is shallow and our traversals are deep.

40 CHAPTER 2. DEMETERF

class Simplify extends Copy{
Lit combine(Neg n, True t){ return new False (); }
Lit combine(Neg n, False f){ return new True (); }
BExp combine(Neg n, Neg e){ return e.inner; }

Lit combine(And a, False l){ return l; }
Lit combine(And a, BExp l, False r){ return r; }
BExp combine(And a, True l, BExp r){ return r; }
BExp combine(And a, BExp l, True r){ return l; }

Lit combine(Or o, True l){ return l; }
Lit combine(Or o, BExp l, True r){ return r; }
BExp combine(Or o, False l, BExp r){ return r; }
BExp combine(Or o, BExp l, False r){ return l; }

BExp simplify(BExp e)
{ return new Traversal(this). traverse(e); }

}

Listing 2.17: BExp simplification, using Copy

returning its negation, or when its recursive result is a Neg by returning the

inner simplified BExp. Instances of And and Or have a number of cases that

can be simplified when at least one of the recursive results is a Lit. The first

case for each uses a shorter signature, ignoring the recursive result from its

right field, since it is not needed. In other cases, the original And or Or can

be replaced by the simplified results from its left or right field.

In cases where the specific combine methods from Simplify do not

match, the methods from Copy are used to rebuild the structure. The Traver-

sal gives us the added benefit of implicit recursion, so our transforma-

tion applies to the entire data structure. This kind of transformation is

so common that DemeterF provides a function-class, named TP for type-

preserving [45, 48], that generically implements Copy for all structures. We

will discuss TP and other generic function-classes in section 2.7.

2.6 Mutual Recursion

Previously, our example data structures have only been self recursive, where

recursive occurrences within concrete subclasses of BExp are all of type BExp.

Mutually-recursive types can make processing instances more complicated,

2.6. MUTUAL RECURSION 41

particularly when visitors [61] or folds [65] are used to implement opera-

tions. DemeterF traversals, however, handle mutual recursion just like self

recursion. Since the Traversal selects the most specific matching combine

method from the given function-object, the grouping of methods or types to

which they apply is handled by our multiple dispatch.

As an example, we can extend our BExp structures to include a class that

represents variable binding. Listing 2.18 shows our new structures. We add

// Add Let to BExp definition
BExp = Lit | Neg | And | Or | Var | Let.

// Variable bindings
Let = "let" *s <bind > Bind *s

"in" *s <body > BExp.
Bind = <id > ident *s "=" *s <e> BExp.

Listing 2.18: Mutually-recursive structures

a new BExp subclass, Let, that contains a Bind and a body BExp. A binding

is represented with an ident and a BExp. The types BExp and Bind are

considered mutually recursive since a Let is a BExp and has a Bind, which

in turn has a BExp.

We can reuse our previous example, Simplify, to handle our new struc-

tures by adding Let and Bind cases to our Copy function-class, and extending

Simplify.12 Listing 2.19 shows the function-class extensions.

// Extend copy for Let and Bind
class Copy extends FC{

/* ... Others from listing 2.16... */

Let combine(Let l, Bind b, BExp e){ return new Let(b,e); }
Bind combine(Bind b, ident id , BExp e){ return new Bind(id,e); }

}

// Extend Simplify for Let
class SimplifyWLet extends Simplify{

BExp combine(Let l, Bind b, Lit e){ return e; }
}

Listing 2.19: Copy additions and Simplify extension for Let

12Multiple inheritance would be very useful in this case to extend both Copy and
Simplify simultaneously.

42 CHAPTER 2. DEMETERF

Our new function-class, SimplifyWLet, adds a combine method for the

new structure that simplifies a Let when its body can be simplified to a

Lit, since the binding is unnecessary given our pure interpretation of BExps.

Because each case is handled separately, the presence of mutual recursion

does not affect our traversal: combine methods are still applied as usual.

Our previous simplify method does not need to be redefined, it works as

expected when called on an instance of our new class:

new SimplifyWLet (). simplify(a_bexp_wlet)

And, of course, the function-class still operates on instances without our new

Let and Bind structures.

2.7 Generic Programming

We have shown several examples of traversal-based functions over data

structures. While we developed them for our particular BExp data struc-

tures, many of them are written with a degree of genericity. Because the

traversal adapts the combine methods to a data structure, the function-class

itself can, in many cases, avoid mentioning certain parts of the data struc-

tures. For instance, the ToString function-class from listing 2.9 relies on

three pieces of information: the names of the concrete classes mentioned,

the number of parameters/fields, and the return types of their respective

subtraversals. In this section we take a closer look at the generic aspects of

traversal-based programming with DemeterF.

2.7.1 Generic Function-Classes

The spectrum of generic functions can (usually) be divided into two different

kinds: type-unifying and type-preserving [45, 48].

2.7. GENERIC PROGRAMMING 43

2.7.1.1 Type-Unifying Functions

Type-unifying (TU) functions are those that sum a specific property over a

data-structure. This category includes counting or collecting instances of

a certain type within a larger data structure, or calculating the size of a

structure. DemeterF supports the writing of generic TU functions with a

parametrized function-class, TU<X>, that sums a property of type X over a

structure. The function declares two abstract methods that the client must

implement: a default combine method that takes no arguments, and a fold

method that folds together two results of type X.

For example, listing 2.20 shows a function-class, UsedVars that collects

the used variable names within a BExp instance. Our function-class extends

class UsedVars extends TU<Set <ident >>{
Set <ident > combine ()
{ return Set.<ident >create (); }
Set <ident > fold(Set <ident > a, Set <ident > b)
{ return a.union(b); }

Set <ident > combine(Var v){ return Set.create(v.id); }
}

Listing 2.20: Collect used variables in a BExp using TU

TU<Set<ident>>, in order to collect the Set of names, idents, of used vari-

ables within a BExp.13 We provide an implementation of a default combine

method that returns the empty Set, and a fold method that returns the

union of two Sets. The final combine method creates a singleton set from

the id within a Var instance, i.e., a used variable.

When an instance of UsedVars used over a traversal, the default combine

is called whenever a leaf of the structure is reached. When a compound ob-

ject is traversed, its recursive results are folded together (if necessary) into

a single result by the methods inherited from TU . In the actual implementa-

tion of DemeterF we extend TU in order to collect the type definitions from

13We use a functional implementation of Set from the DemeterF library, so all methods
return a new Set, rather than using mutation.

44 CHAPTER 2. DEMETERF

the tree of included CD files.

2.7.1.2 Type-Preserving Functions

Type-preserving functions include transformations or functional updates to

a particular part of a structure. This category includes functions like sub-

stitution or variable index calculations. DemeterF provides a class, TP, that

rebuilds the data structure it traverses. Each combine method simply calls

the corresponding constructor of its first argument. Clients implement spe-

cific combine methods for the part of the structure to be transformed and

the rest of the methods automatically reconstruct.

Listing 2.21 shows an example function-class, Invert, that inverts True

and False literals within a BExp instance. When a literal, True or False,

class Invert extends TP{
False combine(True l){ return new False (); }
True combine(False l){ return new True (); }

}

Listing 2.21: Invert True/False instances using TP

is reached, one of our combine methods will be called. Otherwise, the in-

herited methods of TP rebuild compound BExps (or Binds if we have them)

using the results of recursive subtraversals to create a new instance. In the

implementation of DemeterF we extend TP to implement type parameter

substitution and to push global CD properties into local type definitions.

2.7.2 Generating Function-Classes

Many of our earlier functions are specific to our BExp datatypes (e.g., To-

String), but more general function-classes use implementations of TU and

TP to generically adapt to a data structure. DemeterF allows programmers

to write functions over the structure of CDs that generate function-classes

2.7. GENERIC PROGRAMMING 45

to be used with a traversal.14 Though our implementation is complicated

by parametrized types, we essentially traverse the abstract syntax tree of a

CD to produce a function-class with specialized combine methods. In this

section we give abstract specifications of our generation (i.e., compilation) of

generic function-classes from CD definitions by way of simple rewrite rules.

2.7.2.1 Abstract CDs

At runtime our structures are only made up of concrete classes, so generated

function-classes depend only on the structure of concrete classes. Before

generating function-classes, DemeterF transforms more complex CDs into a

simpler representation by pushing common fields from abstract classes down

into concrete subtypes. For the purpose of generating function-classes it is

usually enough to view a CD as a list of concrete class definitions of the

form:

C = 〈f1〉 T1 · · · 〈fn〉 Tn

Where each type, Ti, can be either abstract or concrete. The field names, fi,

are actually not important, but we use them to keep the names of method

parameters consistent. Since fields of abstract definitions are taken into

account by concrete subclasses, we view abstract classes simply as a list of

bar separated subtypes:

A = T1 | · · · | Tn

In this section we use these simplified definitions to describe rewrite rules

for generating function-classes from the definitions of a particular CD.

2.7.2.2 Printing: Show

Printing in various forms has typically been a generated function in Adap-

tive Programming tools, e.g., DemeterJ [67]. In DemeterF we define the
14It is possible to write external function-classes to be loaded at runtime, but the author

of this dissertation has provided a number of useful classes that are easy to use. So client
extensions are rarely necessary.

46 CHAPTER 2. DEMETERF

generation of a CD-based function-class as a function from concrete defini-

tions to combine methods. As an example of a print related function-class,

we demonstrate the generation of Show, a common derivable type class in

Haskell [35]. We will use templates to describe the format of our resulting

function-classes.

The template for Show is given in listing 2.22. The template simply pro-

class Show extends FC{
// Convert primitives
string combine(int p){ return ""+p; }
/*... Other primitive types ... */

// Generate the rest with GenShow
∀C ∈ CD . GenShow(C)

}

Listing 2.22: Show generation template

vides a class definition and combine methods for primitives that convert

each into a String. The rest of the body of Show is generated by GENSHOW,

using a simple rewrite rule mapped to each concrete definition from the CD:

GENSHOW(C = 〈f1〉 T1 · · · 〈fn〉 Tn)

String combine (C h, String f1, · · · , String fn)

{ return "C("+f1+","+ · · · +","+fn+")"; }

For each concrete definition with n fields we create a combine method with

n + 1 arguments. The first is of type C, the defined type, and the rest are

of type String. During the traversal of an object using an instance of Show,

the field traversals will recursively convert the fields into strings before call-

ing the matching combine . Within each method, the return String is con-

structed by concatenating the separating the recursive field results wit com-

mas, wrapping them in parentheses, and prefixing the String with the class

name, C.

Listing 2.23 gives a portion of the generated Show function-class for our

BExp CD.

2.7. GENERIC PROGRAMMING 47

class Show extends FC{
/* ... */
String combine(Neg _h , String inner)
{ return "Neg("+inner+")"; }
String combine(And _h , String l, String r)
{ return "And("+l+","+r+")"; }
/* ... */

}

Listing 2.23: Show generated for BExps

2.7.2.3 Type Unifying Functions

While the generic (reflective) TU class works for all structure, we can use the
concrete class definitions in a CD to generate the equivalent function-class
that does not require the use of reflection. We provide a template that is
parametrized by the eventual return type, X, shown in listing 2.24. We de-

class TU<X> : FC{
// Methods to override
abstract X fold(X a, X b);
abstract X combine ();

// Primitives call default
X combine(int p){ return combine (); }
/*... Other primitive types ...*/

// Generate the body with GenTU
∀C ∈ CD . GenTU(C)

}

Listing 2.24: TU generation template

clare the abstract methods for producing the default result (combine()) and
folding together two recursive results, respectively. Primitive combine meth-
ods can be overridden, but initially return the default result. Our generation
rule for concrete definitions is a generalization of that for Show:

GENTU(C = 〈f1〉 T1 · · · 〈fn〉 Tn)

X combine (C h, X f1, · · · , X fn)

{ return fold(f1, fold(f2, · · ·)); }

Each generated combine method accepts n + 1 parameters: again the first

of type C, but the rest are of our type parameter X. If necessary, the return

result is computed by nested calls to fold. Listing 2.25 shows the resulting

TU class, specialized for our Exp CD. The generated version of TU is a direct

replacement for the generic/reflective version used in listing 2.20. The gen-

48 CHAPTER 2. DEMETERF

class TU<X> extends FC{
/* ... */
X combine(Neg _h, X inner){ return inner; }
X combine(And _h, X l, X r){ return fold(l,r); }
/* ... */

}

Listing 2.25: TU generated for BExps

erated function-class gives us much better performance, especially when we

can inline traversals [19].

2.7.2.4 Type Preserving Functions

Our last function-class generation example is probably the most useful. We

use it often to do recursive functional updates and transformations over dif-

ferent types. Since combine methods are optional for primitive types we

leave them out of our template, shown in listing 2.24. Our generation rule

class TP extends FC{
// Generate the body with GenTP
∀C ∈ CD . GenTP(C)

}

Listing 2.26: TP generation template

creates a combine method that simply reconstructs a new C instance from

the recursive traversals results.

GENTP(C = 〈f1〉 T1 · · · 〈fn〉 Tn)

C combine (C h, T1 f1, · · · , Tn fn)

{ return new C(f1, · · · , fn); }

Because the transformation is type preserving, each field result type is the

same as its defined type, Ti. The resulting generated TP class for our Exp CD

is shown in figure 2.27.

2.8. ERRORS AND ASSUMPTIONS 49

class TP extends FC{
/* ... */
Neg combine(Neg _h , BExp inner)
{ return new Neg(inner); }
And combine(Add _h , BExp l, BExp r)
{ return new And(l, r); }
/* ... */

}

Listing 2.27: TP generated for BExps

2.8 Errors and Assumptions

Having seen several examples of our DemeterF library and implemented op-

erations, it is worth going over the assumptions that DemeterF makes and

the different errors that can occur when using and writing traversal-based

functions. As with any Java-based library, programmers can raise a tra-

ditional RuntimeException during the execution of a traversal and within

combine methods. DemeterF does not attempt to interact with Java’s ex-

ception mechanism, so programmer raised errors behave as expected.

DemeterF assumes a bit more about the structures that will be traversed.

While class definitions generated from a CD do not (by default) support

mutation, Java will still allow local mutation and mutation of handwritten

classes, which allows programmers to construct cyclic instances. DemeterF

assumes that traversed structures are acyclic, but traversal-based functions

can be written for cyclic structures by using Control to avoid infinite recur-

sion.15

All the function-classes presented thus far have been type-correct and

complete with respect to the structures being traversed. In each case the

combine method signatures have handled all possible cases, including recur-

sive results. However, when this is not the case DemeterF raises a Runtime-

Exception during method selection, when a suitably typed combine method

cannot be found.

15The traversal of shared structures behaves as expected, though a shared instance may
be traversed multiple times.

50 CHAPTER 2. DEMETERF

A simple example of an incomplete function-class is shown in listing 2.28.

Within TypeError we have a combine method that handles the Lit case, but

class TypeError extends FC{
String combine(Lit l){ return "Lit"; }

String error (){
BExp e = new And(new True(), new False ());
return new Traversal(this). traverse(e);

}
}

Listing 2.28: Function-class that causes a dispatch error

not one that handles And. Calling the error method of a TypeError:

new TypeError (). error()

results in a DemeterF runtime error:

DemeterF: Did not find a match for:

TypeError.combine(And , String , String)

Stating that a matching combine method for the signature (And, String,

String) could not be found in the given function-object. In this case the

problem is easy to fix by adding a new case for And, but what we want is to

be certain that a Traversal will never raise such an error for a combination

of data structure and function-class. Modeling DemeterF traversals in order

to statically eliminate such dispatch errors (i.e., ensuring safety) is the main

topic of the next chapter.

CHAPTER 3

A Model of DemeterF

Now that we have discussed the features of our DemeterF implementation,

in this chapter we formally describe the syntax and semantics of a simplified

model, which we refer to as AP-F. AP-F captures the key aspects of Deme-

terF’s CD definitions, adaptive generic traversal, and type-based multiple

dispatch. We use the model to give our traversals and dispatch a precise

semantics. With the given semantics we then define a type system, which

guarantees that well-typed traversals are free from dispatch errors. We pro-

vide a proof of type soundness, then complete the chapter with a discussion

of extensions to the model that would bring it in line with the implementa-

tion of DemeterF.

3.1 Syntax

We begin by giving a description of our minimal syntax, which embodies the

key aspects of DemeterF CDs, traversals, and function-classes. Our model

syntax is shown in figure 3.1. Aside from general Java features like classes

and local definitions, our most notable omissions are base types and field

names. Our syntactic categories are partitioned into variable names x con-

crete type names C and abstract type names A. An AP-F program P is a

sequence of data structure definitions (abstract and concrete types) fol-

lowed by an expression. Abstract and concrete types correspond to abstract

51

52 CHAPTER 3. A MODEL OF DEMETERF

x ::= variable names
C ::= concrete type names
A ::= abstract type names
T ::= C | A
P ::= D1 . . . Dn e

D ::= concrete C = T1 ∗ . . . ∗ Tn

| abstract A = T0 | . . . | Tn

e ::= x | new C (e1, . . . , en) | traverse(e0, F)

F ::= funcset{ f1 . . . fn }
f ::= (T0 x0, . . . , Tn xn) { return e; }

Figure 3.1: AP-F Model Language Syntax

(i.e., no fields) and concrete classes in a DemeterF CD. Concrete type defini-

tions mention only the types of their “fields”, since functions will be used to

rename structural elements during traversal.

Expressions e are either variable references, constructor calls (new), or

traversals. We model the simplest form of DemeterF traversal, representing

the traversal of a structure instance using a given functions-class. Function

sets F and functions f represent DemeterF function-classes and combine

methods respectively. A function set, funcset, is a sequence of functions,

each of which is a sequence of type/argument pairs followed by a return

and body expression in Java-like syntax. Function return types are left out,

since they can be inferred from the argument types and body expression.

3.1.1 Subtyping

Based on the definitions in a program, we define a subtype relation ≤ as

the reflexive, transitive closure of the immediate subtype relationship from

abstract definitions. Our definition is given by three rules, shown in fig-

ure 3.2.

The subtype relation will be used primarily to define our multiple-dispatch,

but we will also use it in our type system to relate the type of a data structure

3.2. WELL-FORMEDNESS RULES 53

[S-REFL]

T ≤ T

[S-DEF]
abstract A = T0 | . . . | Tn ∈ P

Ti ≤ A
[S-TRANS]

T ≤ T ′′ T ′′ ≤ T ′

T ≤ T ′

Figure 3.2: Subtyping Rules

to the types of possible return values, when an instance is traversed with a

funcset.

3.1.2 Example

Our model does not include base types, but our basic Boolean expression

structures (from chapters 1 and 2) can still be defined. The BExp CD-like

definitions are shown in listing 3.1. To complete the program definition we

// ASTs for boolean expressions
abstract BExp = Lit | Neg | And | Or.
abstract Lit = True | False.
concrete True = .
concrete False = .
concrete Neg = BExp.
concrete And = BExp * BExp.
concrete Or = BExp * BExp.

// Simple program body
new And(new True(),

new Neg(new False ()))

Listing 3.1: Model Example: Boolean expression structures

construct a simple BExp in the body of the program representing (true ∧

¬false).

3.2 Well-Formedness Rules

In order to avoid purely syntactic problems in our semantics, we restrict

syntactically valid programs with a few well-formedness rules. They check

54 CHAPTER 3. A MODEL OF DEMETERF

the sanity of a program’s definitions and allow us to focus on the key issues

of our semantics.

TYPESONCE(P): Each type must only be defined once.

COMPLETETYPES(P): Each type used in the right-hand side of a defi-

nition must itself be defined.

NOSELFSUPER(P): Each abstract type must not occur in the right-

hand side of its own definition.

SINGLESUPER(P): Each type should occur in the right-hand side of at

most one abstract definition.

The first two rules check for the existence and completeness of a program’s

definitions: TYPESONCE ensures that each type is defined only once, and

COMPLETETYPES makes sure each type use corresponds to a defined type.

The rules do not restrict recursion in the data structures or the shapes that

can be defined, since they only require that a definition exists and is unique.

Our SINGLESUPER rule enforces a simplifying assumption on our type hi-

erarchies, which restricts types to a form of single inheritance. Together with

NOSELFSUPER, the rules ensure a linear supertype relation: each type may

only have one supertype. Linearizing supertypes gives us a total ordering

on function signatures: each abstract type can have multiple subtypes, but

only one supertype. We requiring a total order on function signatures in or-

der to simplify our dispatch semantics and avoid the usual diamond problem

when multiple inheritance and multiple dispatch interact [57, 21].

3.3 Semantics

We use a (small-step) reduction semantics to model DemeterF traversals. We

begin with a description of values v runtime expressions e and evaluation

contexts E described in figure 3.3. Values are constructor calls in which all

3.3. SEMANTICS 55

v ::= new C (v1, . . . , vn)

e ::= · · ·
| dispatch(F, v0, e1, . . . , en)
| apply(f, v0, v1, . . . , vn)

E ::= []
| new C (v . . . ,E, e . . .)
| traverse(E, F)
| dispatch(F, v0, v . . . ,E, e . . .)

Figure 3.3: Values, runtime expressions, and evaluation contexts

sub-expressions are also values. Runtime expressions (dispatch and apply)

are not part of our surface syntax, but are used to model structural recursion

and function application respectively. The use of apply is mainly cosmetic

in order to avoid complicating eventual rules involving dispatch. Evalua-

tion contexts encode our reduction strategy. Reduction can occur under the

empty context, [] constructor application, the left argument of a traversal ex-

pression, or under a dispatch expression. Overall our evaluation contexts

ensure that our reduction strategy is deterministic and left-most/inner-most.

Figure 3.4 contains definitions of our reflective meta-functions and sub-

stitution. The function types is used to return the concrete types of a list

of sequence of values. Other functions, argtypes and functions, are simply

convenient accessors for converting between abstract syntax and meta rep-

resentations. We denote the substitution of a value v for a variable x within

an expression e by e[v/x]. Substitution is defined over all terms, including

functions and function sets. Within function definitions, substitution only

occurs when the variable x is free in the function body. Since only values

can be substituted, and functions are not first-class, α-conversion or renam-

ing is not necessary to avoid capture.

Figure 3.5 completes our meta-functions with signature comparison and

type-based function selection implemented by choose. The helper function

chooseOne selects the most specific applicable function in a funcset, given

56 CHAPTER 3. A MODEL OF DEMETERF

types(new C0(· · ·), . . . , new Cn(· · ·)) = (C0 . . . Cn)
argtypes((T0 x0, . . . , Tn xn) { return e; }) = (T0 . . . Tn)
functions(funcset{ f1 . . . fn }) = (f1 . . . fn)

x[v/x] = v
x′[v/x] = x′ if x′ 6= x
new C (e1, . . . , en)[v/x] = new C (e1[v/x] , . . . , en[v/x])
traverse(e0, F)[v/x] = traverse(e0[v/x], F [v/x])
dispatch(F, v0, e1, . . . , en)[v/x] = dispatch(F [v/x], v0, e1[v/x], . . . , en[v/x])
apply(f, v0, v1, . . . , vn)[v/x] = apply(f [v/x], v0, v1, . . . , vn)
funcset{ f1 . . . fn }[v/x] = funcset{ f1[v/x] . . . fn[v/x] }
(T0 x0, . . .) { return e; }[v/x] = (T0 x0, . . .) { return e; } if x ∈ xi

(T0 x0, . . .) { return e; }[v/x] = (T0 x0, . . .) { return e[v/x]; } if x 6∈ xi

Figure 3.4: Reflection and Substitution Definitions

choose(F, (C0 . . . Cn)) = chooseOne(possibleFs(F, (C0 . . . Cn)), (C0 . . . Cn))

chooseOne((), (T0 . . . Tm)) = error

chooseOne((f0 f1 . . . fn), (T0 . . . Tm)) = best(f0, (f1 . . . fn), (T0 . . . Tm))

best(f, (), (T0 . . . Tm)) = f
best(f, (f0 f1 . . . fn), (T0 . . . Tm)) = if better(argtypes(f0), argtypes(f))

then best(f0, (f1 . . . fn), (T0 . . . Tm))
else best(f, (f1 . . . fn), (T0 . . . Tm))

better((), ()) = false

better((T0 T1 . . . Tn), (T ′0 T ′1 . . . T
′
n)) = ((T0 6≡ T ′0 ∧ T0 ≤ T ′0) ∨

(T0 ≡ T ′0 ∧ better((T1 . . . Tn), (T ′1 . . . T
′
n))))

possibleFs(F, (T0 . . . Tn)) = filter(λ f. possible(argtypes(f), (T0 . . . Tn)), functions(F))

possible((), ()) = true

possible((), (T ′0 . . . T
′
m)) = false

possible((T0 . . . Tn), ()) = false

possible((T0 T1 . . . Tn), (T ′0 T
′
1 . . . T

′
m)) = (T ′0 ≤ T0 ∨ T0 ≤ T ′0) ∧

possible((T1 . . . Tn), (T ′1 . . . T
′
m))

Figure 3.5: Function Selection Meta-functions

the actual argument types. The function possibleFs filters the function set,

returning only the functions that are possible to apply to the given types. The

function possible returns true if all arguments are element-wise related, since

a function may be applied to subtypes of its argument types or when actual

arguments are refined from supertypes. At runtime however, the actual ar-

gument types will always be concrete and without subtypes, so the second

3.3. SEMANTICS 57

check T0 ≤ T ′0 is irrelevant. This check only becomes important when we

use possibleFs with approximate types, as is necessary during type checking.

The function chooseOne uses best to select the most specific function in the

filtered set, using better to compare function signatures. For simplicity we

compare only functions with the same number of arguments, though dis-

patch in our DemeterF implementation is more flexible, allowing functions

to ignore later arguments.

Finally, figure 3.6 gives a relation, → , which completes our small-step

semantics with a notion of reduction, i.e., with axioms or contraction rules.

The left-hand side of each rule represents a potential reducible expression,

[R-TRAV]
traverse(v0, F)
→ dispatch(F, v0, traverse(v1, F), . . . , traverse(vn, F))

where v0 = new C(v1, . . . , vn)

[R-DISPATCH]
dispatch(F, v0, v1, . . . , vn) → apply(f, v0, v1, . . . , vn) if f 6= error

where f = choose(F, types(v0 v1 . . . vn))

[R-APPLY]

apply((T0 x0, . . . , Tn xn) { return e; } , v0, v1, . . . , vn) → e[vi/xi]

Figure 3.6: Reduction Rules

or potential redex. If a potential redex can be contracted then it is considered

an actual redex, i.e., no longer potential.

A traverse expression with a constructed value as its first argument can

be contracted (R-TRAV) producing a dispatch expression. We include the

function set F the original value v0 and wrap each field of the value in a

traverse expression that uses the same function set. A dispatch expression

containing only values can be contracted (R-DISPATCH) to an apply expres-

sion, when the result of choose is not error. A dispatch expression that

violates the side condition is considered stuck, i.e., a potential but not actual

redex. Any expression that contains a nested stuck expression is itself con-

58 CHAPTER 3. A MODEL OF DEMETERF

sidered stuck, since contraction cannot occur. A stuck expression represents

a runtime dispatch error from a DemeterF traversal. Our last rule (R-APPLY)

is an extension of R-DISPATCH, substituting the given values for the formal

parameters of the selected function. We use overbar notation, e[vi/xi], to

represent repeated substitutions: (e[v0/x0] [v1/x1] · · ·).

3.3.1 From Reduction to Evaluation

Following Danvy’s lecture notes at AFP’08 [23], a one-step reduction func-

tion can be defined that decomposes a non-value expression into an eval-

uation context E and a potential redex. If the potential redex can be con-

tracted, then the resulting contractum can be recomposed with (plugged

into) the evaluation context resulting in a reduced program. Figure 3.7

gives sketches of the functions reduce, decmp, and recmp that implement the

one-step reduction function of our semantics.

reduce(v) = v
reduce(e) = let 〈e′, E〉 = decmp(e, [])

in recmp(e′′, E)
if e′ → e′′

decmp(new C (v . . . , e0, e . . .), E) = decmp(e0, new C (v . . . ,E, e . . .))
decmp(traverse(e0, F), E) = decmp(e0, traverse(E, F))

decmp(dispatch(F, v . . . , e0, e . . .), E) = decmp(e0, dispatch(F, v . . . ,E, e . . .))
decmp(e, E) = 〈e, E〉

recmp(e, []) = e
recmp(e0, new C (v . . . ,E, e . . .)) = recmp(new C (v . . . , e0, e . . .), E)

recmp(e0, traverse(E, F)) = recmp(traverse(e0, F), E)
recmp(e0, dispatch(F, v . . . ,E, e . . .)) = recmp(dispatch(F, v . . . , e0, e . . .), E)

Figure 3.7: Functions for one-step reduction

We define reduce as decomposition followed by contraction and recompo-

sition, when one of our reduction rules applies. The function decmp traverses

an expression while accumulating an evaluation context. Expression cases

that match evaluation contexts are handled explicitly by recurring on the

inner, left-most non-value expression. Other expressions, e.g., apply, match

3.3. SEMANTICS 59

the final case returning a pair of the potential redex and inverted context.

The function recmp does the reverse, building an expression and composing

evaluation contexts until the empty context [] is reached.

Our one-step reduction function can be used to iteratively define an eval-

uation function, as shown in figure 3.8. The function evaluate implements

evaluate(v) = v
evaluate(e) = evaluate(reduce(e))

if e is not stuck

Figure 3.8: Reduction-based Evaluation Function

the iteration of the one-step reduction function from figure 3.7. This defini-

tion can be “refocused” into an abstract machine, and further transformed

resulting in a more typical big-step evaluation function [23, 24], but the ver-

sion of figure 3.8 is sufficient for our purposes. For reasons of efficiency our

actual DemeterF implementation is, of course, based on big-step evaluation.

3.3.2 Example

With our example definitions of listing 3.1, we can add a simple traversal and

function set that implements (strict) BExp evaluation, shown in listing 3.2.

Again, without base types, we construct an expression representing (true ∧

// ... Definitions from listing 3.1 ...

traverse(new And(new True(),
new Neg(new False ())),

funcset{
(Lit l){ return l; }
(Neg n, True t){ return new False (); }
(Neg n, False f){ return new True (); }
(And a, True l, True r){ return r; }
(And a, Lit l, Lit r){ return new False (); }
(Or o, False l, False r){ return r; }
(Or o, Lit l, Lit r){ return new True (); }

})

Listing 3.2: Model Example: Boolean expression evaluation

¬false) and traverse it using a funcset. Our function set is similar to the

60 CHAPTER 3. A MODEL OF DEMETERF

Eval function-class from listing 2.12 in section 2.3. The traversal of the

expression produces a Lit, representing a result of True or False. Similar to

the DemeterF example, multiple dispatch is used to match interesting cases

during traversal. For Neg this means matching True or False and returning

its negation; for And or Or this means capturing the all-true and all-false

cases respectively. The other two cases for And and Or are handled by more

general signatures using Lit.

3.4 Type System

Like regular Java programs, those written using our DemeterF system can

raise many different kinds of errors, unrelated to traversal. Our model has

been specifically designed to eliminate all but those relating to function sets,

and dispatch. In order to rule out runtime errors and predict the class of val-

ues a program may return, we impose a type system on our model. Though

our type system rules out standard errors like unbound variable uses, we

are mostly interested in eliminating errors resulting from function selection

(choose and chooseOne in figure 3.5).

For any type-correct program we obtain a typing derivation that con-

strains the return values of traversals and function sets based on the shape

of the datatypes. Our type system is given by three mutually-recursive judg-

ments: `e, `F , and `T ; one for each of expressions, functions, and traversals.

We standard variable type environments Γ for typing expressions and func-

tions. For traversals we use an additional environment X to track the return

types of recursive datatype traversals. We represent environments as a list

of pairs, with syntax shown in figure 3.9.

Γ ::= ∅ | Γ, x :T

X ::= ∅ | X , T :T ′

Figure 3.9: Variable and Traversal Environments

3.4. TYPE SYSTEM 61

In certain typing rules we will denote the set of the left-hand sides of pairs

from Γ (also X) by dom Γ. New pairs will be appended to environments,

and lookup, denoted Γ(x), will occur from right to left, selecting the latest

binding if duplicate names exist.

3.4.1 Functions

We begin with the simplest of our typing rules. Since functions are not first-

class values, type-checking a function depends only on the type of its body

expression when parameters are bound to the types given in its signature.

Our rule for `F is shown in figure 3.10.

[T-FUNC]
(Γ, x0 :T0, . . . , xn :Tn) `e e0 : T

Γ `F (T0 x0, . . . , Tn xn) { return e0; } : T

Figure 3.10: Function Typing Rule

3.4.2 Expressions

Figure 3.11 shows our typing rules for expressions (`e). Variables must be

bound to a type in the environment (T-VAR) and value construction requires

subtypes (T-NEW) for each expression (i.e., field) of a concrete structure.

Traversal expressions (T-TRAV) delegate to a more specialized judgment, `T
(presented in section 3.4.3), passing the variable environment and an empty

traversal environment, X = ∅. For dispatch expressions (T-DISPATCH) we

use possibleFs to be sure all possible functions unify to a common supertype.

Function application (T-APPLY) requires subtypes of a function’s formal pa-

rameter types.

One subtle (but key) aspect of the T-DISPATCH rule is the use of the meta-

function, covers. Its properties will be discussed in section 3.4.4, but the

main idea of covers is to verify that a function set F contains a possible

function for each possible argument sequence of concrete types that are

62 CHAPTER 3. A MODEL OF DEMETERF

[T-VAR]
x ∈ dom Γ

Γ `e x : Γ(x)

[T-NEW]
concrete C = T1 ∗ . . . ∗ Tn ∈ P
for i ∈ 1..n Γ `e ei : T ′i T ′i ≤ Ti

Γ `e new C (e1, . . . , en) : C

[T-TRAV]
Γ `e e0 : T0 Γ; ∅ `T 〈T0, F 〉 : T

Γ `e traverse(e0, F) : T

[T-DISPATCH]
∅ `e v0 : C

for i ∈ 1..n Γ `e ei : T ′i
for f ∈ possibleFs(F, (C T ′1 . . . T

′
n)) Γ `F f : Tf Tf ≤ T

covers(F, (C T ′1 . . . T
′
n))

Γ `e dispatch(F, v0, e1, . . . , en) : T

[T-APPLY]
f = (T0 x0, . . . , Tn xn) { return e; } Γ `F f : T

for i ∈ 0..n ∅ `e vi : T ′i T ′i ≤ Ti

Γ `e apply(f, v0, v1, . . . , vn) : T

Figure 3.11: Expression Typing Rules

subtypes of the given sequence. In T-DISPATCH, this means that F has at

least one function that can be applied to possible values of the given types.

The use of covers in this rule corresponds to our typing rules for concrete

traversals, which is discussed in the next section.

3.4.3 Traversals

Traversal expressions are typed using a specific judgment `T that takes into

account the types of functions in the set and the program’s data structure

definitions. The two rules, one for each of abstract and concrete types,

are shown in figure 3.12.

We read Γ;X `T 〈T, F 〉 : T ′ as follows :

In type environment Γ with traversal types X the traversal of a

value of type T with function set F returns a value of type T ′.

Γ is the standard variable type environment. X is an environment of traver-

3.4. TYPE SYSTEM 63

[T-ATRAV]
abstract A = T0 | . . . | Tn ∈ P

for i ∈ 1..n Ti ∈ dom X ⇒ T ′i = X (Ti)
for i ∈ 1..n Ti 6∈ dom X ⇒ Γ;X , A :T `T 〈Ti, F 〉 : T ′i

for i ∈ 1..n T ′i ≤ T
Γ;X `T 〈A,F 〉 : T

[T-CTRAV]
concrete C = T1 ∗ . . . ∗ Tn ∈ P

for i ∈ 1..n Ti ∈ dom X ⇒ T ′i = X (Ti)
for i ∈ 1..n Ti 6∈ dom X ⇒ Γ;X , C :T `T 〈Ti, F 〉 : T ′i

for f ∈ possibleFs(F, (C T ′1 . . . T
′
n)) Γ `F f : Tf Tf ≤ T

covers(F, (C T ′1 . . . T
′
n))

Γ;X `T 〈C,F 〉 : T

Figure 3.12: Traversal Typing Rules

sal return types for (possibly recursive) types that may depend on the traver-

sal return of T . The function set F is constant for a given expression, and is

passed throughout a derivation.

The typing of the traversal of an abstract type proceeds by typing each

of its elements Ti separately. If a binding for Ti exists in X (i.e., Ti ∈ dom X)

then the result T ′i must be the same as the bound result type, which we

denote X (Ti). Otherwise, we calculate the result type by adding A :T to X

using the same function set, F . The final line of the premise constrains the

result type for the abstract type to be a common supertype of the traversal

the individual elements.

The rule for concrete types is more involved, due to function selection.

Similar to abstract types, for field types bound in X , must be the same as

the bound result type, i.e., T ′i = X (Ti). For unbound field types we calculate

the result type of a traversal with C :T added to X using the same function

set F . Using the return types T ′i of field traversals we can approximate the

possible functions from F that can be called after traversing an instance of C.

The final return type T is the common supertype of the possibleFs given the

field return types. On the last line of our premise, the meta-function covers

64 CHAPTER 3. A MODEL OF DEMETERF

is used to determine whether or not the function set is complete with respect

to all possible value sequences corresponding to subtypes of the given types.

The attributes of covers are quite important to the type soundness of our

model and deserve a special discussion that follows.

3.4.4 Function Set Coverage

Type checking DemeterF programs infers the return types of traversal ex-

pressions, but being sure that function selection always succeeds requires

an analysis of function set signatures. In particular, our asymmetric multi-

ple dispatch implemented by choose means that after traversing a concrete

value, any of the possible functions may be called based on the types of sub-

traversal return values. In general, we cannot know (until runtime) which

concrete subtypes will be returned, so we require that all cases be handled

by the function set.

In order to guarantee successful dispatch, covers must check all concrete

subtypes of the possible argument types and ensure that a possible func-

tion exists. Because our type hierarchies and function signatures can be

arranged into trees (or at least directed acyclic graphs), we call the problem

leaf-covering. The solution involves the Cartesian product of the sequence

of type hierarchies, which will be discussed thoroughly in chapter 5 (sec-

tion 5.3).

The actual implementation of covers is not important to our soundness,

we only require the specification that each concrete sequence of subtypes

has a possible function:

covers(F, (T0 T1 . . . Tn)) ⇔

∀C0, C1, . . . , Cn with Ci ≤ Ti . possibleFs(F, (C0 C1 . . . Cn)) 6= ()

As a consequence, covers is preserved by subtyping. If ∀i ∈ 1..n . T ′i ≤ Ti,

then:

covers(F, (T0 T1 . . . Tn)) ⇒ covers(F, (T ′0 T
′
1 . . . T

′
n))

3.4. TYPE SYSTEM 65

Because runtime values are made only of concrete types, e.g., (Neg (True)),

then function selection cannot fail as long as sub-traversals (at runtime)

return subtypes of their expected types. Different implementations of covers

will be examined in chapter 5, and the abstract problem of leaf-covering

is coNP-complete. However, in practice the number of function arguments

(i.e., structure fields) tends to be small, and individual type hierarchies are

usually tractable. In our DemeterF implementation the largest number of

arguments is 13. With approximately 90 classes in all, the deepest subtype

chain is 4 classes, i.e., C ≤ A1 ≤ A2 ≤ A3.

3.4.5 Typing Example

Returning to our model example from listing 3.2, we can assign a type to the

body of our program using the T-TRAV rule. The first argument to traverse

is given the type Or by successive applications of T-NEW. Since True and

False have no fields, their constructions become axioms for the derivation.

The second part of T-TRAV requires the use of our traversal judgment:

∅; ∅ `T 〈 Or, F 〉 : T

From the definitions in listing 3.1, Or is a concrete type, so a derivation

requires the use of T-CTRAV:

concrete Or = BExp * BExp . ∈ P ∅; (∅, Or :Tor) `T 〈 BExp, F 〉 : Tbexp

for f ∈ possibleFs(F, (Or Tbexp Tbexp)) ∅ `F f : Tf Tf ≤ Tor

covers(F, (Or Tbexp Tbexp))

∅; ∅ `T 〈Or, F 〉 : Tor

The traversal type derivation recursively continues to the abstract types BExp

and Lit, eventually coming to the applications of T-CTRAV for True and

False that do not require recursion. For these types there is only one possible

function, which simplifies the rule further. An instance for the type True is

shown below.

66 CHAPTER 3. A MODEL OF DEMETERF

concrete True = . ∈ P

∅ `F (Lit l){ return l; } : Lit Lit ≤ Ttrue

covers(F, (True))

∅;X `T 〈True, F 〉 : Ttrue

Assigning a type to the single function and checking function set coverage is

then trivial. The constraints build up as we come back through the abstract

definitions of Lit and BExp. Ignoring other variants of BExp for simplicity,

we have the constraints:

Lit ≤ Ttrue Lit ≤ Tfalse Ttrue ≤ Tlit Tfalse ≤ Tlit Tlit ≤ Tbexp

We can make these true by setting each of the return types to Lit. Other

BExp variants (Neg, And, and Or) are recursive, which causes equality con-

straints to be generated instead.

3.5 Type Soundness

Our type system is sound in the sense that the reduction of a well-typed AP-F

program will not get stuck, and will result in a value of the expected type.

An expression e is considered stuck if there does not exist an expression e′

such that e → e′. In particular, an expression is stuck if it is of the form:

E[dispatch(F, v0, v1, . . . , vn)]

and choose (figure 3.5) results in an error:

choose(F, types(v0 v1 . . . vn)) = error

We note that choose returns error precisely when:

possibleFs(F, types(v0 v1 . . . vn)) = ()

Meaning that F does not contain a function applicable to the given argu-

ments.

3.5. TYPE SOUNDNESS 67

We prove our soundness result via a Wright-Felleisen style proof [73]

that begins with a few AP-F specific lemmas (function and traversal special-

ization) then moves on to more standard soundness lemmas such as substi-

tution and well-typed contexts. In order to prove that reduction preserves

the type of a program, it is necessary to start at the dispatch level and work

up to expressions. We begin by proving that possibleFs applied to a sequence

of subtypes returns a subset of the functions returned by possibleFs applied

to supertypes.

Lemma 3.5.1 (Function Specialization). As a sequence of argument types is

specialized through subtyping, the set of possible functions does not increase.

If ∀i ∈ 1..n T ′i ≤ Ti then

possibleFs(F, (T ′1 . . . T
′
n)) ⊆ possibleFs(F, (T1 . . . Tn))

Proof: We argue using induction on the type sequences by case analysis of

the definition of possible form figure 3.5, used to filter the functions of F .

Consider a single function f ∈ F with formal argument types, (T f
0 . . . T f

m).

Our lemma depends on a single implication that must hold of possible, given

our subtype sequence assumption:

possible((T f
0 . . . T f

m), (T ′0 . . . T
′
n)) ⇒ possible((T f

0 . . . T f
m), (T0 . . . Tn))

The three base cases of possible (figure 3.5) are simple, so we consider them

together. If the first case applies, and then our implication follows immedi-

ately, while the two false cases are not relevant, since they only stand to

decrease the set of selected functions. Proof of the lemma then hinges on

showing that our implication holds for the final, inductive case of the defi-

nition. In particular, the first component of the conjunction is important. In

our case this reduces to:

(T f
0 ≤ T ′0) ∨ (T ′0 ≤ T f

0) ⇒ (T f
0 ≤ T0) ∨ (T0 ≤ T f

0)

68 CHAPTER 3. A MODEL OF DEMETERF

Which follows from reflexivity and transitivity of a program’s subtype rela-

tion, ≤. Both disjunction components of the implication are immediate:

(T f
0 ≤ T ′0) ⇒ (T f

0 ≤ T0) and (T ′0 ≤ T f
0) ⇒ (T0 ≤ T f

0)

In order to complete the dispatch portion of preservation, we must also

show that the application of a function set within a well-typed traversal

expression preserves the result type, which is the subject of lemma 3.5.2.

Lemma 3.5.2 (Traversal Specialization, or Subtype Traversals Return

Subtypes). As the type of an expression that is the argument of a traversal is

refined, the return type of the traversal expression itself remains a subtype of

its original type.

For any well-typed traversal of a type T0 with Γ; ∅ `T 〈T0, F 〉 : T .

The traversal of a type T ′0 ≤ T0 satisfies Γ; ∅ `T 〈T ′0, F 〉 : T ′ for

some T ′ ≤ T

Proof: By induction on the traversal type derivation of Γ; ∅ `T 〈T0, F 〉 : T ,

we proceed by cases on the last rule of the derivation, which must be one of

T-CTRAV or T-ATRAV, from figure 3.12.

If T-ATRAV applies (abstract A = T0 | . . . | Tn ∈ P) then the rule

requires that a traversal of an immediate subtype of T0 return a subtype of

the final result type, which applies inductively to all transitive subtypes of

T0, including T ′0.

If T-CTRAV applies (concrete C = T1 ∗ . . . ∗ Tn ∈ P) then T0 can only

have itself as a subtype (T0 ≡ T ′0). Regardless of which function in F is

actually applied at runtime, we know by the T-CTRAV derivation that each

function returns a subtype, from the premises of the rule.

3.5. TYPE SOUNDNESS 69

The final lemmas for preservation are value substitution and well-typed

contexts. Substitution proves that function application preserves the type of

a traversal expression:

Lemma 3.5.3 (Substitution Preserves Type). Substituting a value of a

subtype for a free variable in any expression results in a subtype of the original

expression’s type.

Suppose Γ ≡ (Γ′, x :Tx). If Γ `e e : T , ∅ `e v : T ′x , with T ′x ≤ Tx

then Γ′ `e e[v/x] : T ′ and T ′ ≤ T .

Proof: By induction on the derivation of (Γ, x : Tx) `e e : T . Traversal ex-

pressions require lemma 3.5.2, and dispatch expressions require lemma 3.5.1.

We proceed by cases on the last rule used:

Case T-VAR e = x′ . If x′ 6= x then x′ :T ∈ Γ′ and Γ′ `e x
′ : T . If x′ = x

then e[v/x] = v and T ′x ≤ Tx by our assumptions.

Case T-NEW e = new C (e1, . . . , en) with T = C . By the induction hy-

pothesis, for all i ∈ 1..n Γ `e ei[v/x] : T ′′i for some T ′′i ≤ T ′i with T ′′i ≤ Ti

by transitivity of ≤. So Γ `e new C (e1[v/x], . . . , en[v/x]) : C.

Case T-TRAV e = traverse(e0, F) . By the induction hypothesis, Γ′ `e

e0[v/x] : T ′0 for some T ′0 ≤ T0. By lemma 3.5.2 the traversal result is

Γ; ∅ `T 〈T ′0, F 〉 : T ′ for some T ′ ≤ T , so Γ′ `e traverse(e0[v/x] , F [v/x]) :

T ′ and T ′ ≤ T .

Case T-APPLY e = apply(f, v0, v1, . . . , vn) .

with f = (T0 x0, . . . , Tn xn) { return e0; }. If x ∈ xi then substitu-

tion has no effect and the result is T . If x 6∈ xi then by the induction

hypothesis, (Γ′, x0 :T0, . . . , xn :Tn) `e e0[v/x] : T ′ for some T ′ ≤ T .

Case T-DISPATCH e = dispatch(F, v0, e1, . . . , en) . By the induction

hypothesis, for all i ∈ 1..n Γ `e ei[v/x] : T ′′i and T ′′i ≤ T ′i . By

70 CHAPTER 3. A MODEL OF DEMETERF

lemma 3.5.1 we know that:

possibleFs(F, (C T ′′1 . . . T ′′n)) ⊆ possibleFs(F, (C T ′1 . . . T
′
n))

So there exists a type T ′ ≤ T such that:

∀f ∈ possibleFs(F, (C T ′′1 . . . T ′′n)) Γ `F f : Tf

with Tf ≤ T ′. The result is:

Γ `e dispatch(F [v/x], v0, e1[v/x], . . . , en[v/x]) : T ′

By the implication property of covers:

covers(F, (C T ′1 . . . T
′
n)) ⇒ covers(F, (C T ′′1 . . . T ′′n))

So our covers premise still holds.

Cases of substitution within functions/sets follow directly from our induction

hypothesis.

Well-typed contexts shows that recomposition of an expression and a

context also preserves the type of the outer context. The lemma and proof

are similar to substitution.

Lemma 3.5.4 (Well-Typed Contexts). Substituting a closed, well-typed

expression, which is a subtype of the original, into the hole of a context

preserves the outer context’s type.

For any closed expressions e, e′, and context E, if ∅ `e e : T ,

∅ `e e
′ : T ′ with T ′ ≤ T , and Γ `e E[e] : T0, then Γ `e E[e′] : T ′0

for some T ′0 ≤ T0.

Proof: By induction on the structure of the outermost context E and the

typing derivation of E[e].

Case E = [] . Follows from our assumptions, since ∅ `e e : T , ∅ `e e
′ : T ′

and T ′ ≤ T .

3.5. TYPE SOUNDNESS 71

Case E = new C (v . . . ,E ′, ei . . .) . By the induction hypothesis, re-

placing e with e′ in E ′ maintains the premises of T-NEW. The result

type remains C.

Case E = traverse(E ′ , F) . In T-TRAV, by the induction hypothesis

and lemma 3.5.2, the traversal of E ′[e′] with the same function set, F ,

must return a subtype of the traversal result type of E ′[e].

Case E = dispatch(F, v0, v . . . ,E
′, ei . . .) . In T-DISPATCH, by the

induction hypothesis and lemma 3.5.1, the possible functions withE ′[e′]

instead of E ′[e] remains a subset, and must unify to a common super-

type, which is a subtype of that obtained with E ′[e]. The premise of

covers also holds, with proof similar to substitution.

We can now state the first half of our soundness theorem: preservation.

Theorem 1 (Preservation). Reduction (i.e., contraction) preserves an

expression’s type.

If Γ `e E[e] : T and E[e] → E[e′] then Γ `e E[e′] : T ′ with

T ′ ≤ T .

Proof: Using lemma 3.5.4, our proof reduces to showing that our individual

reductions preserve type. That is, we must show that ∅ `e e : Te and e → e′

implies ∅ `e e′ : T ′e and T ′e ≤ Te. If we prove this implication, then by

lemma 3.5.4 it is true that Γ `e E[e′] : T ′ for some T ′ ≤ T .

We proceed by showing the implication holds for each of our reduction

rules.

Case If R-APPLY applies . Follows from substitution, lemma 3.5.3.

Case If R-DISPATCH applies . Since the function selected, f , is one of the

possible functions (choose(F, (T0 . . . Tn)) ∈ possibleFs(F, (T0 . . . Tn))),

72 CHAPTER 3. A MODEL OF DEMETERF

f is used in the premise of our typing rule (T-DISPATCH). Proof follows

immediately, as the rule requires that the return types of all possible

functions be a subtype of the assigned type.

Case If R-TRAV applies . The typing derivation of the traversal expres-

sion includes both a sub-derivation for the value to be traversed, e0 =

new C (v1, . . . , vn), and a traversal judgment based on the definition

of C. By the first sub-derivation, we know that ∅ `e vi : Ci for some

Ci ≤ Ti where Ti is from the definition of C. The traversal typing

for each field type Ti contains as a sub-derivation a typing rule for Ci,

which can be used to construct a traversal derivation for the expanded

traverse term.

By lemma 3.5.1 the possible functions to be used in the typing

derivation of the dispatch expression are a subset of those used in the

traversal rule for C, and likewise unify to a common supertype (T ′e),

which is a subtype of the original, Te. The use of covers in the traversal

rule (T-CTRAV) for C remains the same for dispatch.

While preservation itself is interesting, as important is the preservation of

function set completeness: if a traversal expression is well typed, then covers

holds after traversal reduction, R-TRAV.

Corollary 1 (Preservation of covers). The reduction of a well-typed traverse

expression to a dispatch expression maintains the predicate “covers”.

If an expression e = traverse(v0 , F) such that ∅ `e e : T

reduces to e′ = dispatch(F, v0, e1, . . . , en), then covers holds

for the reduced expression.

The result of the corollary is that throughout (recursive) traversal reduc-

tions covers is preserved, so it necessarily holds when function selection is

made, and a dispatch expression is contracted to apply.

3.5. TYPE SOUNDNESS 73

Soundness rests on progress, which in turn relies on function selection

succeeding. While preservation says that our possible functions return the

right types, progress requires that there exists a possible function for well-

typed traversals.

Theorem 2 (Progress). A closed, well-typed expression is either a value, or

can be reduced, i.e., is never stuck.

For any expression e such that ∅ `e e : T , then either e is a value,

or e = E[e′] and E[e′] → E[e′′].

Proof: By induction on the structure e.

Case e = x . This case is impossible since e is closed.

Case e = new C (e1, . . . , en) . If all ei are values, then e is also a value.

Otherwise, by the induction hypothesis, we can decompose e intoE[e′]

with E = new C (v . . . ,E ′, ei . . .), for for the first non-value and

some E ′, and e′ can be reduced.

Case e = traverse(e0, F) . If e0 is a value, then R-TRAV applies. Oth-

erwise, by the induction hypothesis we can decompose e into E[e′]

with E = traverse(E ′, F), for some E ′, and e′ can be reduced.

Case e = dispatch(F, v0, e1, . . . , en) . If not all ei are values, then by

the induction hypothesis we can decompose e into E[e′] with E =

dispatch(F, v0, v . . . ,E ′, ei . . .), for some E ′, and e′ can be re-

duced.

If all ei are values, then R-DISPATCH applies. Because e is well-typed,

it must be the case that ∅ `e v0 : C0 and for all i ∈ 1..n ∅ `e ei : Ci.

Our premises require that covers(F, (C0 C1 . . . Cn)), which matches

our necessary property of covers: possibleFs(F, (C0 C1 . . . Cn)) 6= ().

74 CHAPTER 3. A MODEL OF DEMETERF

Case e = apply(f, v0, v1, . . . , vn) .

With f = (T0 x0, . . . , Tn xn) { return e0; }. R-APPLY is immediately

applicable.

With preservation and progress we can now state and prove our sound-

ness theorem.

Theorem 3 (Type Soundness). A closed, well-typed expression e is either a

value, or can be reduced to another well-typed expression.

For any expression e such that ∅ `e e : T , then e is either a value

of type T , or e → e′ and ∅ `e e
′ : T ′, with T ′ ≤ T .

Proof: By PROGRESS, e is either a value or can be reduced. By PRESERVA-

TION, if e reduces to e′, then ∅ `e e
′ : T ′ and T ′ ≤ T .

Wright and Felleisen [73] refer to this theorem as strong soundness, since

reduction is never stuck and the type of the result is correctly predicted. The

standard form of type soundness is what they call weak soundness:

For any well-typed expression, e, if e → e′, then e′ is not stuck.

The proof of weak soundness for AP-F is immediate from Theorem 3, since

a stuck dispatch expression is not a value.

CHAPTER 4

DemeterF Implementation

Having seen a number of programming examples using DemeterF and a

precise model of traversal-based programming with function-objects, in this

chapter we discuss the implementation of DemeterF. We first describe the

overall system organization, then detail the more important and interesting

pieces, and their relation to other parts of the dissertation.

We use the name DemeterF to refer collectively to the implementation of

three main Java components: a generic traversal library, a class generator,

and a combined type checker and inlined traversal generator.

4.1 Traversal Library

The traversal library contains classes and functions for writing dynamic

traversals using function-objects. It includes base function-classes (e.g., FC

and TU), different implementations of Traversal, and a dynamic implemen-

tation of asymmetric multiple dispatch (i.e., choose from figure 3.5). Both

traversal and dispatch are implemented using Java reflection, which limits

performance, but also shortens the development cycle of function-classes.

The traversal library corresponds to an implementation of the semantic and

evaluation functions from our DemeterF model (sections 3.3 and 3.3.1). De-

tails of our dispatch/selection algorithm are described in the next chapter.

75

76 CHAPTER 4. DEMETERF IMPLEMENTATION

Our reflective Traversal and dispatch implementations make extensive

use of a functional data structure library that was designed specifically to

support programming with DemeterF. The data structures include parametr-

ized implementations of List, Set, Map, and an ML-like Option type. Though

this forces programmers to learn a new set of structures and operations, it

also yields more concise programs, and data structures are described by CD,

so they can be automatically parsed, printed, and traversed without han-

dling them as special cases in our other tools.

The traversal and data structure libraries are stand-alone, but we have

used them to build the other tools of the DemeterF system including the

class generator, type checker and traversal inliner. The library portion of

DemeterF also has been implemented in C#, though porting other parts of

DemeterF to C# is an item of future work.

4.2 Class Generator

A major part of the DemeterF system is its class generator, as partially de-

scribed in section 2.1. The job of the class generator is to merge together

structural descriptions (in the form of a CD file) and behavioral descriptions

(in the form of a BEH file) into Java source files and class definitions. The

tool began as an improved version of DemeterJ [67] in order to make use

of parametrized types and generic class/interface definitions. The original

implementation was built using the DemeterF traversal and data structure

libraries to produce the resulting Java files, while using DemeterJ to create

abstract syntax trees for CD and BEH structures. The system grew quickly

and was soon able to completely support its own development by generating

the necessary classes, parsers and printers.

Figure 4.1 shows a high-level view of the class generator’s architecture.

The generator has four main components. The first performs sanity checks

on the CD definitions. The checks include making sure that every used class

4.2. CLASS GENERATOR 77

BEH
File(s)

CD
File(s)

Parser Java
Files

Func
Classes

Checks
DGP
Gen.

Parse
Gen.

Class
Gen.

Figure 4.1: High-level view of the DemeterF class generator

is defined, and that all generic uses have the correct number of type param-

eters. The second generates generic functions (e.g., Show and TP) for the

selected structures. Generic functions (so-called data-generic programming,

or DGP, functions) to be created are given via the command line. The gen-

eration process is similar to the templates described in section 2.7.2, though

they are implemented using traversals.1 The third component generates a

parser for the structures by producing a “.jj” file, which is later turned into

Java code by JavaCC. The final component generates Java files/classes cor-

responding to the CD definitions. The class representations include the BEH

definitions, stub methods inserted by the DGP and parser components, and

several other useful methods (e.g., equals).

4.2.1 Traversal Usage

From the beginning the DemeterF class generator has used traversals for

many different tasks. Apart from class and parser generation, DemeterF now

uses traversals for everything from filtering out the syntax of CD definitions

and verifying parametrized class instantiations to collecting inheritance in-

formation. The entire tool comprises approximately 25 traversals of varying

complexity. Traversal control used mostly for performance, and contexts are

used to keep track of local CD related information (e.g., current package and

1User implementations can also be loaded as long as they are in the class path.

78 CHAPTER 4. DEMETERF IMPLEMENTATION

generic type environment).

Each major function/operation in the class generator is placed in a sep-

arate function-class with combine (and update) methods for the particular

parts of the data structure it is concerned with. Most function-classes have

a helper method (similar to those discussed in section 2.2.2) that creates a

Traversal and calls traverse , though we use traversal factories to allow the

exact traversal implementation to be changed easily.2 While the DemeterF

class generator does not correspond directly to any portion of the model, it

does provide us with a reasonably sized application and has proven to be

a useful test and benchmark for DemeterF features and performance (see

chapter 6).

4.3 Type Checking

The type system presented in the previous chapter is the basis for an im-

plementation of a type checker and traversal inliner for DemeterF. The type

checker calculates the return types for the traversal of a data structure with

a given function-class, which are in turn used to generate efficient traversal

and dispatch code for the specific function. While the type checker is quite

similar to our type system, it also supports checking traversals with features

discussed in chapter 2, namely function extension, traversal contexts, and

control.

For function-class extension the type checker simply traces the function’s

inheritance hierarchy to collect any non-overridden combine and update

methods. For traversal contexts the type checker places the context type

(e.g., Sign from section 2.4) as the last argument type when selecting combine

methods (i.e., possibleFs in T-CTRAV from figure 3.12). Similarly, for control,

bypass ed fields cause the original field type to be used in combine selec-

tion, whereas the traversals of fields that are not bypassed are type checked

2Mainly for testing and measuring performance.

4.3. TYPE CHECKING 79

as normal.

4.3.1 Relation to Soundness

Though our model and type system is less complex than its implementa-

tion in DemeterF, it captures the essence of our deep traversal and multiple

dispatch. Because the dispatch in both cases is the same, modulo extra ar-

guments, the meaning of type soundness in relation to our type checker and

traversal implementation does not change. It is still that case that a traversal

(and function-class) that satisfies the type checker will not raise any runtime

dispatch errors (c.f., section 2.8).

In particular, this means that when an instance of the function-class is

used to traverse an instance of the data structure, the traversal will always

be able to select an applicable combine method. In order to ensure method

coverage, for each dispatch point we use the type of the current class and

calculated recursive traversal types as arguments to an implementation of

covers (from section 3.4.4). If the function-class does not cover the traversal

results then the missing combine methods are reported to the programmer.

The properties of our coverage algorithm, called Leaf Covering, are discussed

more thoroughly in chapter 5, specifically section 5.3.

4.3.2 Traversal Inlining

The DemeterF type checker calculates the return types of a traversal with

a given function-class. While showing that a specific traversal is safe is im-

portant, we can also use the traversal return types to convert our dynamic,

adaptive traversals into static, more efficient code. In DemeterF, after type

checking we use the traversal return types to generate a replacement class

that is equivalent to Traversal specialized to the particular function-class

and data structure. With the return types we calculate the possible combine

methods for each dispatch point (i.e., after the traversal of an instance of a

80 CHAPTER 4. DEMETERF IMPLEMENTATION

concrete class), and the method parameter types are used to statically build

a dispatch decision that implements choose. In the next chapter we precisely

describe the algorithms involved, and the resulting performance is discussed

in chapter 6.

CHAPTER 5

Algorithms

The safety and performance of DemeterF-based programs rely on the imple-

mentation of a number of algorithms including method dispatch, method

coverage, and inlining. In this chapter we discuss DemeterF related algo-

rithmic problems, their implementations, and running times.

5.1 Concepts and Notation

We begin with some useful background concepts and notation. In program-

ming languages with inheritance and subtyping one often deals with models

and meta-information representing type hierarchies. In DemeterF we are

primarily concerned with single inheritance (i.e., C# and Java), resulting

in a tree (a restricted graph) of types where the parent/child relationships

represent both inheritance and subtyping. Two typical examples of type hier-

archies are lisp-style cons lists and simple numerical expressions. Java class

definitions and their visual tree representations are shown in Figures 5.1

and 5.2.

We use this more abstract, tree representation for class hierarchies in

order to discuss algorithms related to multi-methods, which is particularly

useful when discussing features of method selection, coverage, and static

dispatch. In the rest of this section we introduce a more formal notion of

81

82 CHAPTER 5. ALGORITHMS

abstract class { ... }
class Cons extends List{ ... }
class Empty extends List{ ... }

!!!!
aaaa

List

Cons Empty

Figure 5.1: List classes and hierarchy tree

abstract class Exp{ ... }
class Int extends Exp{ ... }
class Bin extends Exp{ ... }
class Add extends Bin{ ... }
class Sub extends Bin{ ... }

!!!!
aaaa

���
QQQ

Exp

Int Bin

Add Sub

Figure 5.2: Arithmetic expression classes and hierarchy tree

trees, argument signatures, and graph Cartesian products that will be used

in describing our algorithms.

5.1.1 Trees

A tree, T = (Σ, ≺), is defined over an alphabet of symbols, Σ. Edges of

the tree are defined by an immediate successor relation, ≺ ⊆ (Σ × Σ). For

two symbols a, b ∈ Σ, an edge exists from a to b when b ≺ a. For simplicity

we restrict the successor relation to be injective, modeling single inheritance.

This kind of tree can also be viewed as a directed acyclic graph (DAG) where

each non-root node has a unique immediate predecessor.

We use less-than, <, to denote the transitive closure of the immediate

successor relation:

∀a, b ∈ Σ . b < a ≡ b ≺ a ∨ ∃c ∈ Σ . b < c ∧ c < a

The reflexive, transitive closure of ≺ is denoted by less-than-or-equal, ≤.

5.1. CONCEPTS AND NOTATION 83

Given a tree T = (Σ, ≺), we define the function leaves, to return the

nodes in a tree without successors:

leaves(T) ≡ { a ∈ Σ | ¬∃b ∈ Σ . b ≺ a }

And the function succs that returns the immediate successors of a given

node in a tree:

succs(T, b) ≡ { a ∈ Σ | b ≺ a }

The leaves of a tree represent the concrete classes in a hierarchy, and the

result of succs represents a type’s immediate subclasses.

When writing examples we will use a type/symbol, e.g., Bin, to refer to

either the symbol Bin or the tree with Bin as its root, though the meaning

will be clear from context. For example, using the tree Exp from figure 5.2

we get the following results:

leaves(Exp) = { Int, Add, Sub }

succs(Exp, Exp) = { Int, Bin }

succs(Exp, Bin) = { Add, Sub }

5.1.2 Signatures

To represent a method’s formal and actual argument types we define a sig-

nature as a sequence of symbols. For simplicity we will use both vector

(over-arrow) and sequence notations to denote signatures, depending on

context, e.g., ~s = (s1, . . . , sn). Given a sequence of trees, (T1, . . . , Tn), with

each Ti = (Σi, ≺), a signature is defined as an element of (Σ1× · · · ×Σn). For

example, using the trees from Figures 5.1 and 5.2, the signature (Add, Cons)

could represent the formal parameter types of the method:

int combine(Add a, Cons c)

Or the types of actual arguments in the method call:

f.combine (new Add(...), new Cons(...))

84 CHAPTER 5. ALGORITHMS

For specific algorithms we will need to update/replace a specific element

within a signature:

update(~s, i, a) ≡ (s1, . . . , si−1, a, si+1, . . . , sn)

Given a sequence ~s, an integer i, and a symbol a, the function update returns

a new sequence with the ith component of ~s replaced by a. The symbol a is

assumed to be from the same tree as si: si, a ∈ Σi.

Sets of signatures will be used to model the argument types of methods

in DemeterF function-classes. Given a sequence of trees, ()Ti, . . . , Tn), we

extend the immediate successor relation, ≺i, from symbols to signatures

to define two different comparisons: symmetric (≤) and asymmetric (@).

The first models method and argument applicability and the second models

method selection and preference/ordering.

Symmetric Comparison Applying a method to arguments requires that

the types of the arguments be subtypes of the method’s formal parameter

types. In comparing two signatures, each parameter is given equal, or sym-

metric, treatment. We call this relation applicable, and write it as ≤. Similar

to symbol/tree relations, we begin by defining an immediate successor rela-

tion, ≺, on signatures using the successor relations, ≺i, from our n trees:

~c ≺ ~a ≡ ∃i . ci ≺i ai ∧ ∀j ∈ [1..n] . j 6= i =⇒ cj = aj

Two signatures are related by ≺ when they differ only by their ith element,

and the corresponding elements are related in the ith tree by ≺i. We will use

< for the transitive closure of ≺ over signatures, with symmetric compar-

ison defined as the reflexive, transitive closure of the immediate successor

relation:

~c ≤ ~a ≡ ~c = ~a ∨ ~c < ~a

5.1. CONCEPTS AND NOTATION 85

We say that a signature ~a is applicable to a signature ~c if ~c ≤ ~a, where ~a and

~c represent a method’s formal and actual argument types respectively. This

gives us a notion of methods that can be applied to a sequence of arguments,

but it does not provide a total ordering. Ambiguities arise when two signa-

tures are both applicable to the same signature, but neither is applicable to

the other. For example, consider the signatures, (Int, Int), (Exp, Int), and

(Exp, Int). Given our tree in figure 5.2 the following, are true:

(Int, Int) < (Int, Exp)

(Int, Int) < (Exp, Int)

With actual argument types of (Int, Int), the signatures (Exp, Int) and

(Int, Exp) are both applicable, but neither is applicable to the other.1

Asymmetric Comparison To avoid these ambiguities when a signature

representing runtime argument types has multiple applicable method sig-

natures, we define a total ordering that provides a notion of more specific,

which we write as @:

~a @ ~s ≡ ∃i ∈ [1..n] . (ai < si) ∧ ∀k < i . ak = sk

The resulting relation is similar to lexicographic ordering on strings: the first

element that differs defines the ordering.

Returning to our previous example, when deciding between the two ap-

plicable signatures (Exp, Int) and (Int, Exp), our asymmetric relation or-

ders them as follows:

(Int, Exp) @ (Exp, Int)

A method signature (Int, Exp) will be chosen over (Exp, Int) when both are

applicable, i.e., when the actual argument types are (Int, Int).

1In most statically typed multiple-dispatch systems, e.g., MultiJava [22] and
Fortress [8], this results in a compile-time error.

86 CHAPTER 5. ALGORITHMS

We use this relation to model the multiple-dispatch selection that Deme-

terF uses to eliminate ambiguities and corresponding errors in traversals and

function-objects.

5.1.3 Graph Cartesian Products

To help visualize relations over signatures and trees we will use a graph

Cartesian product (GCP). A GCP, G = (V, E), is defined over a sequence of

trees, (T1, . . . , Tn), with each Ti = (Σi, ≺i). The vertices, V , of the graph are

signatures and the edges, E, are defined by the immediate successor relation

on signatures:

V = Σ1 × · · · × Σn

E = { (~a,~c) ∈ V × V | ~c ≺ ~a }

For example, the GCP of the two earlier trees of expressions and cons-lists is

shown in figure 5.3. The root of the GCP is the signature (Exp, List).

(Exp, List)

(Int, List) (Bin, List)(Exp, Cons) (Exp, Empty)

(Int, Cons) (Int, Empty)(Add, List) (Sub, List)(Bin, Cons) (Bin, Empty)

(Add, Cons) (Add, Empty)(Sub, Cons) (Sub, Empty)

Figure 5.3: Graph Cartesian product rooted at (Exp, List).

Given our definition of a GCP, it can always be characterized as a directed

acyclic graph (DAG). Reachability in a GCP is defined by the applicable re-

lation on signatures, ≤, and the leaves of a GCP correspond to signatures

made entirely of leaves of the corresponding trees:

leaves(G) ≡ leaves(T1)× · · · × leaves(Tn)

5.1. CONCEPTS AND NOTATION 87

The leaves of the trees correspond to concrete classes, and the leaves of the

GCP correspond to concrete signatures that represent the possible runtime

types of arguments passed to methods.

5.1.4 Algorithm Notation

We will present algorithms in a notation similar to the functional program-

ming language Haskell [39], with a C/Java-style calling syntax where the

opening parenthesis are placed to the right of the function name and ar-

guments are separated with commas. Our algorithms do not rely on any

particular properties of an implementation (e.g., lazy versus strict), just an

intuition of its semantics and simple pattern matching forms.

Function Definitions Function definitions will consist of a type signature,

followed by a list of equations. As an example, figure 5.4 shows a function

that recursively calculates the ith Fibonacci number. The function, fib, is

fib :: Int → Int
fib(0) = 0
fib(1) = 1
fib(i) = fib(i - 1) + fib(i - 2)

Figure 5.4: Notation Example: Fibonacci.

declared with the type (Int → Int): it takes a single integer and returns

an integer. The function is defined by three equations that match argument

cases. 0 and 1 used in the argument position of the equations are patterns

that match corresponding integer literals. The pattern i matches any other

integer and binds it to i in the right-hand side of the equation, which pro-

ceeds by adding the results of two recursive calls. Variable bindings and uses

will be typeset in italics so they are easily distinguishable.

Data Structures We assume datatypes for representing symbols (sym),

trees (tree), and signatures (sig). Overloaded versions of previously de-

88 CHAPTER 5. ALGORITHMS

fined relations and functions, e.g., ≺, @, succs, etc., will be used in the

right-hand side of equations when needed.

We use Haskell’s list notation for type signatures, e.g., [Int] is the type

of integer lists, and within function definitions: the empty list is both a

pattern and a value, denoted by empty square brackets, [], and a non-

empty list with a head of f and a tail of R will be denoted in both patterns

and expressions by (f:R).

When necessary we will define custom data structures using an intu-

itive notation for algebraic datatypes similar to Haskell and ML. Figure 5.5

shows an example data structure representing integer binary search trees,

IntBSTs, and functions for inserting an integer into a IntBST, and collecting

a list of a IntBST’s elements. For simplicity we will refrain from polymorphic

user-defined data structures. The type IntBST is defined by a data defini-

data IntBST = IntNode(Int, IntBST, IntBST)
| IntLeaf()

insert :: IntBST → Int → IntBST
insert(IntLeaf(), i) = IntNode(i, IntLeaf(), IntLeaf())
insert(IntNode(d, left, right), i) =

if i ≤ d then IntNode(d, insert(left, i), right)
else IntNode(d, left, insert(right, i))

elements :: IntBST → [Int]
elements(IntLeaf(), i) = []
elements(IntNode(d, left, right), i) =

append(elements(left), (d : elements(right)))

Figure 5.5: Notation Example: IntBST insertion and elements as a list.

tion with two value constructors, IntNode and IntLeaf, separated by a bar

(|). In general any number of constructors can be defined. The constructor

IntNode accepts three arguments, an Int and two BSTs, while IntLeaf ac-

cepts no arguments. Defined constructors are used as patterns in argument

positions and as expressions. The variables within patterns, e.g., i and left,

are bound in the right-hand side of the equation to matching components of

the structure. In the definition of insert we make use of an if-expression

5.2. METHOD SELECTION AND DISPATCH 89

that decides between the recursive insertion into the left or right subtrees,

constructing a new IntNode in both cases. The definition of elements uses

a helper function, append, and Haskell’s infix cons-list syntax, (d:· · ·). If

necessary we will provide definitions for more complicated helper functions

along with the algorithm(s).

With notation and background in place, we now discuss particular algo-

rithmic problems used in the implementation of DemeterF. Each section in

the remainder of this chapter will give a brief background of a problem, a

concise description, an algorithmic solution, and one or more implementa-

tions including a discussion of running times.

5.2 Method Selection and Dispatch

In DemeterF, the selection of function-object methods during traversal chooses

the most specific signature based on the runtime types of its arguments.

When there is only a single applicable method, this decision can certainly

be made statically. If two or more are applicable to similar traversal results

then at least some of the method selection decision must be deferred to

runtime. This section discusses our selection algorithms for reflective and

statically computed method dispatch.

5.2.1 Reflective Selection

Before applying a combine method during traversal, the types of actual

method arguments are known. The method signatures of the function-object

used can be inspected to determine the most specific method that is applica-

ble to the actual argument types.

5.2.1.1 The Problem

We describe the DemeterF runtime method selection problem as follows:

90 CHAPTER 5. ALGORITHMS

Given a non-empty signature, ~c = (c0, c1, . . . , cn), an implicit

sequence of trees (T0, T1, . . . , Tn) such that ci ∈ leaves(Ti), and

a set of signatures, S = {~s1, . . . , ~sm }, compute the most specific

signature, ~si, that is applicable to ~c :

select(~c, S) ≡ ~a ∈ S . ~c ≤ ~a ∧ ∀~s ∈ S . ~a = ~s ∨ ~a @ ~s

The set of signatures, S, represents the formal argument types of a function-

object’s combine methods. The signature ~c represents the types of runtime

arguments, with c0 being the type of the object that was traversed and

c1, . . . , cn being the result types of the recursive traversal of the original

object’s fields.

5.2.1.2 Solution

The definition of the problem admits a direct algorithm shown in figure 5.6.

We use this implementation as the definition of function-object dispatch: se-

lecting the most specific applicable signature given runtime argument types.

Our implementation is split into two functions. The function select accepts

select :: sig → [sig] → sig
select(~c, []) = error

select(~c, (~s :S)) = if (~c ≤ ~s)
then best(~s, ~c, S)
else select(~c, S)

best :: sig → sig → [sig] → sig
best(~a, ~c, []) = ~a
best(~a, ~c, (~s :S)) = if (~c ≤ ~s ∧ ~s @ ~a)

then best(~s, ~c, S)
else best(~a, ~c, S)

Figure 5.6: Reflective Selection Algorithm.

a signature, ~c, and a list of signatures, S, and searches for a signature that is

applicable to ~c. The first applicable signature is passed to best, which finds

the most specific signature applicable to ~c starting with the initial guess, ~a.

5.2. METHOD SELECTION AND DISPATCH 91

5.2.1.3 Running Time

The comparison of signatures using ≤ runs in time O(t · n), where t is a

bound on the size of the trees and n = |~c| is the number of arguments. The

running time of select is as follows:

select(~c, S) ∈ O(t · n · |S|)

The implementation of select depends on the number of method signatures

in the function-object. Each time a dispatch is required the list must be

searched, which can dominate the running time of a data structure traversal.

Rather than doing a full search we can reorganize signatures based on their

argument types and reduce the number of comparisons that must be made

at runtime.

5.2.2 Static Selection and Residue

Inefficiencies in select stem from two related issues: (1) the function per-

forms a linear search through the signatures, and (2) it works independently

without knowing anything about the context in which a method will be se-

lected. When more information is available about the types of recursive

traversals, the number of possibly applicable signatures can be statically re-

duced and a specialized decision structure can be generated.

5.2.2.1 Related Signatures

Static decisions about signature selection must deal with less information.

Given a signature ~c representing the static types of traversal results, it is

possible at runtime to select a signature that is applicable to ~c, i.e., ~c ≤ ~s,

but selecting a more specific signature, i.e., ~s @ ~c, is also possible.

Since both situations may occur, we use a broader relation, ./, to describe

signatures that might be selected at runtime. We define ./ as follows:

92 CHAPTER 5. ALGORITHMS

~s ./ ~c ≡ ~s ≤ ~c ∨ ~c ≤ ~s

The signature ~c represents a static approximation of traversal result types

and ~s represents a method signature. We call this relation related, since it

relates two signatures that have components related in the corresponding

tree. Signatures ~s and ~c are related if one is applicable to the other, in either

order.

5.2.2.2 Residual Dispatch

With more information about the types of values to which signatures will

be applied, the set S can be reduced by filtering out unrelated signatures.

Because the remaining signatures are related, we can use argument subtype

relationships to construct a decision tree that selects the most specific signa-

ture using a minimal number of runtime type tests. In many cases a dynamic

decision is not required, when there is only one related signature. When the

number of related signatures is greater than 1 we refer to the remaining

dispatch decision as residue.

In the case of DemeterF, type checking a function-class over a data struc-

ture statically provides the approximate types of values returned from sub-

traversals. This can be used to determine the methods that might be applied

at each point in the traversal, i.e., related signatures. We use this information

to generate data structure specific traversals with inlined dispatch residue to

be executed at runtime. The residue takes the form of a decision tree of

argument type tests, which is interpreted at runtime using ≤, or instanceof

in Java.

5.2.2.3 The Problem

We describe the residual dispatch problem as follows:

5.2. METHOD SELECTION AND DISPATCH 93

Given a non-empty signature, ~c = (c0, c1, . . . , cn), an implicit

sequence of trees (T0, T1, . . . , Tn) such that ci ∈ Σi, and a set of

signatures, S = {~s1, . . . , ~sm }, compute a residual dispatch tree,

D, that determines the most specific signature, ~ai, to be applied

to a runtime signature, ~a ≤ ~c.2

The result is decision tree, D, built from two relations, left and

right. Interior nodes of the decision tree are labeled with a pair,

(i, t), representing a type test of the ith parameter against the

given symbol, t. A node’s left and right children represent sub-

decisions for a test result of true or false, respectively. The

leaves of the decision tree are labeled with signatures from S.

The signatures, S, represent the argument signatures of function-class meth-

ods, and ~c represents the static types of expected traversals results for method

dispatch. Our dispatch tree, D, represents a decision procedure that per-

forms type/instance tests on the return values of subtraversals, and leaves

of the tree describe the selected method’s signature.

5.2.2.4 Solution

Our solution to the dispatch residue problem is shown in figure 5.7. A dis-

patch decision tree, Dec, is created by one of two value constructors. IF

encodes the test of a particular argument position at particular type, and

branches to another Dec when the test succeeds or fails. CALL represents

a selected signature, once the necessary number arguments have been in-

spected.

The function residue constructs a Dec beginning with the first argument

position, 1, given the static signature ~c and a list of signatures S. If all ar-

gument types have been tested (i > |~c |), then the helper function decision

constructs a CALL node using select to determine most specific signature

2There may be multiple equivalent dispatch trees corresponding to the given signatures.

94 CHAPTER 5. ALGORITHMS

data Dec = IF(Int, sym, Dec, Dec)
| CALL(sig)

residue :: sig → [sig] → Dec
residue(~c, S) = decision(1, ~c, S)

decision :: Int → sig → [sig] → Dec
decision(i, ~c, []) = error

decision(i, ~c, S) =
if (i > |~c |) then CALL(select(~c, S))
else let A = sort({ si | ~s ∈ S ∧ ~s ./ ~c }, <i)

P = [(ak, [a1, . . . , ak−1]) | k ∈ [1..|A|]]
G = [(a, [~s ∈ S | si ./ a ∧ si 6∈ ignr]) | (a, ignr)∈ A]

in buildDec(i, ~c, G)

buildDec :: Int → sig → [(sym, [sig])] → Dec
buildDec(i, ~c, []) = error

buildDec(i, ~c, ((a,S):G)) =
let d = decision(i+ 1, update(~c, i, a), S)
in if null(G) then d

else IF(i, a, d, buildDec(i, ~c, G))

Figure 5.7: Residual Selection Algorithm.

that is still applicable. Otherwise, we construct the set of symbols A from

the ith argument types of related signatures from S, sorted according to <i.

From A we construct a list of pairs, P , whose left component is the corre-

sponding element of A (ai), and right component is a list of the previous

elements from A. P represents the type to be tested for a given set of meth-

ods, and the type tests that will have failed, and so can safely be ignored,

reducing useless repetitive tests for unreachable signatures.

Signatures from S are then placed into groups, G, by their ith argument

type. Each group consists of a symbol a from a pair in P (in order) and a list

of signatures with an ith argument type that is related to a (i.e., ~s ∈ S | si ./

a . . .), when a is also not in our list of ignored types, ignr. The result is a

list of pairs with a symbol as their first component and a list of signatures as

their second component representing a type test, and the signatures that are

still possible if the test should succeed.

In buildDec the groupings are used to recursively construct a chain of

decisions for the next argument position. If only one grouping exists, i.e.,

5.2. METHOD SELECTION AND DISPATCH 95

null(G), then the decision d is returned. If there are more groupings, an

IF test for argument i of type a is constructed with d as the true branch, and

the rest of the groups decision as a false branch.

5.2.2.5 Running Time

Symbol comparisons, < and ./, take time proportional to t, where t is a

bound on the size of the trees. Signature comparisons, ≤ and ./, run in

time O(t · n), where n is the length of the signature, i.e., |~c |. The worst-case

running time of residue is as follows:

residue(~c, S) ∈ O (bn · (t · n · |S|+ t · log(t)))

The exponential term, tn, comes from the recursive call to decision from

within buildDec, since the bound on the tree size, t, is also a bound on the

length of G. The average running time of the algorithm depends on the

average branching factor of the trees. If we call this factor b, then running

time can be more accurately described as:

residue(~c, S) ∈ O (bn · (n · |S|+ (|S| · log(|S|))))

In most cases this term dominates the running time, since the number of

signatures, |S|, is small and the size of A is typically much smaller than |S|.

The running time is interesting, but more important is the size of the result-

ing decision tree. Since the tree will eventually be used to make dynamic

selection it should be in some sense minimal. The depth of the Dec produced

by residue is at worst:

O(t · n)

Since we make at most t type tests for each of the n arguments, though this

also requires an exponential number of methods. This is a great improve-

ment on the runtime performance of select, which depends on the number

of signatures.

96 CHAPTER 5. ALGORITHMS

5.3 Method Coverage

Multi-method languages and systems like CLOS[66], MultiJava [22], JPred

[56], and DemeterF rely on selecting the most specific function for run-

time argument types. DemeterF (like CLOS) uses an asymmetric multiple

dispatch strategy where the leftmost arguments are given precedence. Mul-

tiJava and JPred employ a symmetric strategy where all arguments are given

equal weight, and method ambiguity is not allowed at runtime. In both dis-

patch styles it is beneficial for the system to statically ensure that certain

dispatch errors are not possible, e.g., message not understood errors.

For DemeterF this means checking that a function-class contains an ap-

plicable signature for all possible sequences of concrete argument types, cor-

responding to the leaves of the GCP. For example, if a method group has the

signature (Exp, List), then it suffices to check that an applicable method

exists for each of the concrete combinations:

(Int, Cons) (Add, Cons) (Sub, Cons)

(Int, Empty) (Add, Empty) (Sub, Empty)

We call the task of checking signature coverage the leaf-covering problem.

5.3.1 Definition : LEAF-COVERING

Given a sequence of trees, (T1, . . . , Tn), we say that a set of sig-

natures, S, covers the trees if S contains an applicable signature

for each signature made of leaves from each Ti:

covers(S, (T1, . . . , Tn)) ≡

∀~̀ ∈ (leaves(T1)× · · · × leaves(Tn)) .∃~s ∈ S . ~̀≤ ~s

Leaf-covering can also be defined in terms of a GCP: the root signature of

our trees, e.g., (List, Exp), becomes the root of our GCP. Leaves in the GCP

are defined as the vertices of V with out-degree of 0:

5.3. METHOD COVERAGE 97

leaves(G) ≡ {~v ∈ V | ∀ ~u ∈ V . (~v, ~u) 6∈ E }

The leaves of the GCP are the same as the signatures made up of the leaves

from each of the trees, Ti. Given a GCP, the task of covers is to check that

each leaf signature of the GCP has an ancestor in S.

5.3.2 LEAF-COVERING is coNP-Complete

Before describing solutions to leaf-covering, we first show that the problem

is actually coNP-Complete. The problem is in coNP: to show that a set of

signatures, S, does not cover all leaves we simply provide a leaf that is

not covered by S. The witness can easily be chosen non-deterministically

and checked in time O(t · n · |S|). Leaf-covering can then be shown to be

coNP-Complete by reduction from DNF validity, i.e., tautology checking, to

leaf-covering.3

Reducing DNF to LEAF-COVERING Consider a formula, F , in disjunctive

normal form, where each clause consists of literals, li,j, which are either the

positive or negative assertion of a variable, e.g., a or ¬a:

F ≡ (l1, 1 ∧ · · · ∧ l1, n1) ∨ · · · ∨ (lm, 1 ∧ · · · ∧ lm, nm)

With an ordering on the variables used in F , e.g., alphabetic, we create a

sequence of trees with variable names as roots and the special symbols true

and false as leaves. We then encode the clauses of the formula as signatures

of S containing a symbol from each of the trees in order. For each clause

we encode a positive literal as true, a negative literal as false, and an unused

variable as the root of its corresponding tree.

The cross product of the leaves of the trees (or the set of leaves of the

GCP) contains all assignments of true and false to the variables of F . If the

elements of S cover all the leaves, then all concrete assignments are covered
3Thanks to Yannis Smaragdakis for suggesting and detailing this reduction.

98 CHAPTER 5. ALGORITHMS

by the clauses of the formula, meaning F is a tautology. If not, then one

of the uncovered leaves represents an assignment that does not satisfy the

formula.

As a complete example, consider the following formula:

F = (a ∧ ¬b) ∨ (¬a ∧ c) ∨ (¬b ∧ c) ∨ (¬a ∧ ¬c)

To convert the validity of this formula into a leaf-covering problem, we order

the variables as (a, b, c) and construct three corresponding trees:

A
!!!
aaa

true false

B
!!!
aaa

true false

C
!!!
aaa

true false

The root of our GCP is the triple (A, B, C), and our set S encodes the clauses

of F as triples:

S = { (true, false, C), (false, B, true),

(A, false, true), (false, B, false) }

The leaf signatures (i.e., leaves of the GCP) include all triple permutations

of true and false. In this case the signatures, S, constructed from the for-

mula answer in this case is no; the leaf signatures that are not covered,

(true, true, true) and (true, true, false). The corresponding assignments to

a, b, and c respectively do not satisfy F : i.e., F is not valid.

5.3.3 Solutions

In this section we discuss two different solutions to leaf-covering. The first

is a simple brute-force approach that directly implements the specification

of the problem. The second is a more involved solution that uses tree inter-

sections and counting.

5.3. METHOD COVERAGE 99

5.3.3.1 Solution 1: Brute-Force

The definition of covers admits a straightforward solution: compute all the

possible leaf signatures and check that each leaf, ~̀, has an applicable signa-

ture: ∃~s ∈ S . ~̀≤ ~s. The simple brute-force algorithm is show in figure 5.8.

We first create the Cartesian-product of the leaves of each of the trees, then

covers :: [sig] → [tree] → Bool
covers(S, Ts) =

let lfs = cross(map(leaves, Ts))
in all(lfs, S)

all :: [sig] → [sig] → Bool
all([], S) = true

all((~̀: lfs), S) = one(S, ~l) ∧ all(lfs, S)

one :: [sig] → sig → Bool

one([], ~̀) = false

one((~s :S), ~̀) = ~̀≤ ~s ∨ one(S, ~̀)

Figure 5.8: Brute-Force Leaf-Covering Algorithm.

iterate to check that all leaf signatures, ~̀, are covered by at least one signa-

ture in S.

Running Time For a set of signatures, S, and a sequence of trees,

(T1, . . . , Tn), the algorithm has the following running time:

covers(S, (T1, . . . , Tn)) ∈ O

(
|S| ·

n∏
i=1

| leaves(Ti) |

)
= O(|S| · tn)

Where t is a bound on the size of the trees. If a leaf signature is without a

corresponding applicable signature in S then it can be used as a witness of

incomplete coverage.

This solution runs in time exponential in n, i.e., the number of trees, but

for a fixed n the running time becomes polynomial. Problems of this type

are termed fixed-parameter tractable, as they are only exponential in part of

their input. In fact, this solution for the decision problem is polynomial (in

|S|) for fixed number of trees.

100 CHAPTER 5. ALGORITHMS

5.3.3.2 Solution 2: Inclusion-Exclusion

A second solution to leaf-covering involves tree intersection and the inclusion-

exclusion principle. Taking a close look at the GCP example in figure 5.3

shows that multiple interior vertices have edges that reach a the same leaf

signature. This overlap of signatures can be used to calculate the size of

the union of the leaves covered by S, without having to generate the leaf

signatures themselves. This is done by calculating the number of overlap-

ping leaves of two or more signatures and using the set inclusion-exclusion

principle to calculate the size of their union.

We begin by defining another version of leaves for a tree given a starting

symbol:

leaves(T, a) ≡ { b ∈ leaves(T) | b ≤ a }

Which returns the leaves of T that are also successors of a. This function can

be used to compute the number of overlapping leaves of a set of signatures,

S = {~s 1, . . . , ~s |S|}, by calculating the product of the sizes of the individual

(point-wise) intersections:

overlap(S, (T1, . . . , Tn)) ≡
n∏

i=1

∣∣∣∣∣∣
|S|⋂
k=1

leaves(Ti, s
k
i)

∣∣∣∣∣∣
The intersection of leaves is calculated independently using the ith tree and

the corresponding elements of each signature, sk
i .

The total number of leaf signatures in a sequence of trees is the product

of the number of leaves in the individual trees:

total(T1, . . . , Tn) ≡
n∏

i=1

| leaves(Ti) |

For two signatures, ~s and ~a, determining the number of unique leaf signa-

tures covered can be calculated by adding the total leaves covered by each

and subtracting the number of overlapping leaves:

5.3. METHOD COVERAGE 101

∏n
i=1 | leaves(Ti, si) | +

∏n
i=1 | leaves(Ti, si) | −

overlap({~s, ~a }, (T1, . . . , Tn))

If this result is the same as the total number of leaves then the trees are

are fully covered by the two vertices, ~s and ~a. If not, then an uncovered leaf

signature must exist.

This provides a way to calculate the size of the union of the covered

leaves directly from the number of leaves at the intersection of the signa-

tures. For an arbitrary set of signatures, S, the set inclusion-exclusion prin-

ciple is used to calculate the size of the union of all covered leaves using

overlap:

inclu exclu(S, (T1, . . . , Tn))

≡
∑

S⊇M 6=∅
[
(−1)|M |−1 overlap(M, (T1, . . . , Tn))

]
The complete implementation of coversinex compares the total number of

leaves to the number of covered leaf signatures calculated by inclu exclu:

coversinex(S, (T1, . . . , Tn))

≡ total(T1, . . . , Tn) = inclu exclu(S, (T1, . . . , Tn))

The benefit of this second implementation is that the number of leaves cov-

ered by S is calculated over the individual trees, eliminating the need to

inspect or construct the leaf signatures.

Running Time The running time of inclu exclu relies heavily on overlap,

which has the following running time:

overlap(S, (T1, . . . , Tn)) ∈ O(t · n · |S|)

The calculation of the number of overlapping leaves for a set of signatures

is efficient, since individual symbols are compared over a single tree.

102 CHAPTER 5. ALGORITHMS

The inclusion-exclusion procedure itself runs in time that is exponential

in the size of S, rather than the number of trees:

inclu exclu(S, (T1, . . . , Tn)) ∈ O

t · n · |S|∑
k=1

(
|S|
k

) = O(t · n · 2|S|)

Where t is again a bound on the size of each tree. The exponential factor, 2|S|,

is in contrast to the brute-force solution, where running time depends on the

exponential factor tn. Determining the best solution depends on the number

of signatures versus the number trees (or the length of the signatures), which

correspond to the number of methods and the number of method arguments

respectively.

5.3.4 Fixed-Parameter Tractability

The running times of the two solutions to leaf-covering we have presented,

i.e., covers and coversinex, are not exponential in all of their inputs. Both

algorithms become polynomial when part of their input is of a fixed size. If

the trees, (T1, . . . , Tn), are fixed then tn is bounded by a constant, Kn. The

brute-force algorithm’s running time becomes:

covers(S, (T1, . . . , Tn)) ∈ O(|S| ·Kn)

If instead the signatures, S, are fixed, then 2|S| is bounded by a constant,

KS and the running time of inclu exclu becomes:

inclu exclu(S, (T1, . . . , Tn)) ∈ O(t · n ·KS)

In the case of DemeterF, the inclusion-exclusion solution is more attrac-

tive since the set of signatures S is fixed while checking a traversal. In

particular, we use the same set of signatures (i.e., combine method signa-

tures) to solve an instance of the leaf-covering problem for the traversal of

5.3. METHOD COVERAGE 103

each concrete class. Since the number of trees involved, n, (i.e., the maxi-

mum number of combine arguments) can be different for all leaf-covering

instances while type checking, fixing S is more important than fixing n.

5.3.5 Decision Versus Search

The brute-force solution to leaf-covering answers both the decision problem

and the search (or function) problem. While we check each leaf signature, if

the leaf is uncovered then we immediately have a witness.

While the inclusion-exclusion solution provides an answer to the deci-

sion problem, it does not immediately produce an uncovered leaf signature.

There is a standard, well-known sequence of reductions for NP-complete

problems that converts a decision solution into a search solution to decision

for [64]. We are also aware of the work of Bellare and Goldwasser [11],

which provides a proof and a general algorithm showing that for all NP-

complete problems, search reduces to decision ([10], Theorem 4.5). How-

ever, in this section we discuss a more efficient alternative to the standard

reduction that uses the inclu exclu implementation to determine an uncov-

ered leaf signature.

In order to find an uncovered leaf signature, we consider edges of the

GCP, represented by our successor relation, ≺. Clearly the signature, ~r,

made only of the roots of the trees must cover all leaves:

~r = (r1, . . . , rn) where ri ∈ Σi ∧ ¬∃a ∈ Σi . ri ≺i a

To find an uncovered leaf, ~̀, if it exists, we exploit the fact that S covers

fewer leaves than if S included the signature ~̀. In fact, if ~̀ is uncovered,

then any predecessor of ~̀ can be combined with S to cover more leaves than

just S:

104 CHAPTER 5. ALGORITHMS

¬covers(S, (T1, . . . , Tn)) =⇒ ∀~s . ~̀≤ ~s

=⇒ inclu exclu(S, (T1, . . . , Tn))

< inclu exclu((S ∪ {~s}), (T1, . . . , Tn))

This presents us with an algorithm that uses the immediate successor rela-

tionship to explore signatures that will increase the coverage of S until we

reach a leaf. Figure 5.9 shows our algorithm that searches for an uncovered

leaf using inclu exclu. We begin by calculating the number of leaves that

uncoveredSig :: [tree] → [sig] → sig
uncoveredSig(Ts, S) =

let sCov = inclu exclu(S, Ts)
in down(sCov, roots(Ts), S, Ts)

down :: Int → sig → [sig] → [tree] → sig

down(mCov, ~̀, S, Ts) =
let ss = succs(~̀, Ts)
in if null(ss) then ~̀

else across(sCov, ss, S, Ts)

across :: Int → [sig] → [sig] → [tree] → sig
across(mCov, [], S, Ts) = error ”No Uncovered Leaf”
across(mCov, (~̀: ss), S, Ts) =

let cov = inclu exclu((~̀:S), Ts)
in if cov > sCov then down(sCov, ~̀, S, Ts)

else across(sCov, ss, S, Ts)

Figure 5.9: Search for an uncovered leaf using inclu exclu

S covers. We then start with the signature made up of the roots of our trees,

and move down and across, in analogy to the GCP. The function down steps

down the GCP to select an uncovered signature from the successors, ss, of

~̀. If the signature has no successors, null(ss), then it is an uncovered leaf.

Otherwise, across iterates through the successors to find the first one that,

when included with S, covers more leaves. If found, then we can step down

the GCP and continue searching. If none of the successors is the ancestor of

an uncovered leaf, then S actually covers all leaves, which we signal with an

error.

5.3. METHOD COVERAGE 105

Additionally, we can explore until we find a signature that does not over-

lap with S:

inclu exclu((S ∪ {~s}), (T1, . . . , Tn)) = inclu exclu(S, (T1, . . . , Tn), S)

+ inclu exclu({~s}, (T1, . . . , Tn))

Which provides us with the first signature that covers only uncovered leaves,

i.e., the ancestor of a subset of uncovered leaves, which may prove more

helpful to programmers.

5.3.5.1 Running Time

The running time of our search remains polynomial in the running time of

inclu exclu, since the maximum number of successors of a given signature

is O(t ·n): one for each of the immediate successors in each tree. Since t is a

bound on the sizes of our trees, it also bounds their depths, so the maximum

number of iterations of our search is O(t2 · n2). The overall running time of

uncoveredSig using inclu exclu becomes:

uncoveredSig(S, (T1, . . . , Tn)) ∈ O(t3 · n3 · 2|S|)

Similar to the inclu exclu-based decision solution, uncoveredSig is also

fixed-parameter tractable. When the set of signatures, S, is fixed we have a

running time that is cubic in t and n.

CHAPTER 6

Performance

The last component of this thesis is that function-objects over data structure

traversal perform well. In this chapter we discuss the performance aspects

of DemeterF, what features might inhibit performance, and how we solve

these issues. We give experimental results that compare our traversal-based

approach to other implementation methods.

6.1 Performance Factors

Function-classes in DemeterF-based programs modularize interesting com-

putation. For many traversal-like functions, much of the code in a handwrit-

ten implementation is the same as for the corresponding function written us-

ing DemeterF, though it is spread throughout different classes and tangled

with boilerplate code. Providing an efficient DemeterF-based implementa-

tion then reduces to efficiently producing an equivalent replacement for the

boilerplate code that one would write by hand. In the case of DemeterF,

the handwritten boilerplate corresponds to two particular mechanisms: the

recursive traversal of a data structure, and dispatching to an appropriate

combine method. To increase the performance of DemeterF-based functions

we focus on these important aspects.

107

108 CHAPTER 6. PERFORMANCE

6.1.1 Traversal

The implementation of adaptive traversal in DemeterF uses Java reflection to

dynamically walk a data structure. This involves inspecting the object when

it is traversed and discovering its Class. From the class we get the declared

fields (transitively) and recursively traversal each of the field values. Other

traversal features, i.e., control and contexts, can also add to the inefficiencies

since they also require reflection, but there are ways to speed up reflection,

like caching the the results according to the Class of the object.

Our main approach to speeding up traversals is to generate inlined code

that performs the traversal for a specific function-class, control, and context

type. For abstract instances we use instanceof checks to select between

subclasses. Once the traversal of a concrete instance’s fields is complete, the

return results of subtraversals are used to select the appropriate combine

method. With the traversal inlined for a particular function-class, it is then

safe to use more specific implementations of dispatch.

6.1.2 Dispatch

As discussed in chapter 5, DemeterF implements two different kinds of dis-

patch. With our reflective traversal we use a reflective dispatch. When a

Traversal is created we also reflectively collect the signatures of combine

methods in the given function-object. When a combine method needs to

be called, the method signatures are compared to the recursive result types

using an algorithm similar to select, in section 5.2.1.

When a particular function-class and data structure are fixed, we can

minimize our method selection by limiting our choices to only the related

method signatures and computing a decision tree to select the correct method,

similar to our algorithm residue, in section 5.2.2.

6.2. GENERATING TRAVERSALS 109

6.2 Generating Traversals

One of the major benefits of our separation of function-classes and traver-

sals is that we can provide different (but equivalent) implementations. Our

generic traversal can adapt a function-object’s combine methods to different

structures, but we can also replace reflection with static information from a

specific CD.

6.2.1 Traversal Inlining

Similar to our generative descriptions in section 2.7, we describe our traver-
sal generation using a template, which is shown in listing 6.1. As expected,

class Traversal{
FC fobj;
Traversal(FC f){ fobj = f; }

// Generate traversal methods
∀A ∈ CD . GenTrav(A)
∀C ∈ CD . GenTrav(C)

}

Listing 6.1: Traversal generation template

the generated Traversal class accepts a function-object. Though only con-
crete classes exist at runtime, the body of the Traversal requires the CD’s
abstract definitions in order to decide between subclasses. Our traversal
generation rule, GENTRAV, is shown below. First for abstract, then concrete
definitions.

GENTRAV(A = T1 | · · · | Tn)

R traverse <R>(A h){
if (h instanceof T1) return this.<R>traverse ((T1) h);

· · ·
if (h instanceof Tn) return this.<R>traverse ((Tn) h);

throw new Exception("Unknown A Subtype");

}

For abstract classes we create a simple chain of if statements that selects

the appropriate recursive traverse method for the given instance.1 In or-

der for the Traversal to work with different function-classes/objects, we
1Java will statically resolve the overloaded traverse calls because of casting.

110 CHAPTER 6. PERFORMANCE

parametrize each traversal method with the return type, R. For abstract

types the parameter is carries through to recursive calls.
The generation rule for concrete definitions is bit more complex:

GENTRAV(C = 〈f1〉 T1 · · · 〈fn〉 Tn)

R traverse (C h, T1 f1, · · · , Tn fn){
Object f1 = this.<Object>traverse (h.f1);

· · ·
Object fn = this.<Object>traverse (h.fn);

return this.<R>apply (fobj, new Object[]{ h, f1, ..., fn});
}

For each of a class’ fields we recursively call traverse and store the result

in a local variable. Since our traversal can be used with any function-object,

we assume nothing about the return types by using object. Once all the

instance’s fields have been traversed we apply our function object, fobj,

to an array of the results including the original object as its first element.

The elided apply determines the types of the arguments and dynamically

dispatches to fobj’s most specific combine method. In our dynamic imple-

mentation we use Java reflection to implement both the selection and appli-

cation of combine methods.2 For function-classes that have several combine

methods, this leaves much room for improvement.

6.2.2 Dispatch Inlining

When we specialize a traversal for a particular function-class, we can replace

Object in our generated traversals, and apply with a calculated decision

tree. For our BExp structures and Simplify function-class from section 2.5,

listing 6.2 shows the generated traversal method with inlined dispatch for

the Neg class. The method first recursively calls the general BExp traversal

method on the instance’s inner field, then proceeds to select the appropriate

method based on the type of the recursive result.
2We use the method Class.isAssignableFrom(...) to compare the types of the for-

mal and actual combine arguments, and Method.invoke(...) to call the chosen method.

6.2. GENERATING TRAVERSALS 111

BExp traverse(Neg _h){
BExp inner = traverse(_h.inner);
if(inner instanceof Neg)

return fobj.combine(_h , (Neg)inner);
else

if(inner instanceof False)
return fobj.combine(_h, (False)inner);

else

if(inner instanceof True)
return fobj.combine(_h , (True)inner);

else

return fobj.combine(_h , inner);
}

Listing 6.2: Simplify traversal method for Neg

Note that only the four combine methods (from listing 2.17) that could

possibly apply to a Neg instance could be called. If all the tests fail, then

the method with the most general signature, (Neg, BExp) is called. We also

note that the declared type of the local variable, inner, matches the least

upper bound of the return of the possible methods.

When mutual recursion is involved, the situation is similar, though the

return types of recursive results will likely be different. Listing 6.3 shows

the merged traversal method and dispatch for Let. In this case, the recur-

BExp traverse(Let _h){
Bind _bind = traverse(_h.bind);
BExp _body = traverse(_h.body);
if(_body instanceof Lit)

return func.combine(_h , _bind , (Lit)_body);
else

return func.combine(_h , _bind , _body);
}

Listing 6.3: Simplify traversal method for Let

sive traversals return different types of results, since Bind and BExp are not

related by subtyping. The dispatch only requires a single test, since the

third argument, body, is the only difference between the two possible code

methods from Simplify.

112 CHAPTER 6. PERFORMANCE

6.2.3 Parallel Traversal

The main benefit of separating traversals and function-objects is that we

can replace our traversal without changing the results. The benefit of purely

functional (e.g., side-effect free) traversal-based functions is that the order in

which subcomponents are traversed is irrelevant to the final result. When it

may improve the performance of a particular traversal, we can also perform

subtraversals in separate threads. We do this by generating a subclass of

thread to perform a particular traversal in a separate thread, providing a

service similar to MultiLisp’s future annotation [32].

Listing 6.4 shows an interface Result that represents a subtraversal

result of the type R. We use this interface to implement a possibly parallel

interface Result <R>{
R result ();

}

Listing 6.4: Traversal result interface

traversal with classes that perform a pending subtraversal either immedi-

ately, or in a separate thread.

Listing 6.5 shows ParTrav, a thread subclass that is used to implement

a separate (parallel) subtraversal. ParTrav is also parametrized by the sub-

abstract class ParTrav <R> extends Thread implements Result <R>{
R res = null;
ParTrav(Traversal t){ this.start (); }

abstract R traverse ();

public void run(){ setRes(traverse ()); }
synchronized void setRes(R r){ res = r; this.notify (); }
synchronized R result (){

if(res == null)this.wait ();
return res;

}
}

Listing 6.5: Synchronized parallel traversal

traversal return type, and has an abstract method, traverse, that is re-

6.2. GENERATING TRAVERSALS 113

sponsible for executing the subtraversal. When a ParTrav instance is cre-

ated, it immediately starts itself. The Java runtime will eventually begin

executing the run method, which will execute the traversal and store the

result in the local variable res.

For single-threaded traversals we use a simple Result implementation

that wraps the subtraversal value. Listing 6.6 shows a simple class, Trav

that is used to unify Results for sequential traversals. When a sequential

class Trav <R> implements Result <R>{
R res;
Trav(R r){ res = r; }
R result (){ return res; }

}

Listing 6.6: Sequential traversal wrapper

traversal is performed we execute the traversal immediately and store it in

a Trav instance.

In order to execute only specific subtraversals in parallel, we introduce

an integer weight parameter to every traverse method. When a threshold

is reached we create new ParTrav threads for subtraversals with a traverse

that performs the field’s subtraversal. If the threshold is not reached, then a

sequential Trav is created to hold the result after it is immediately traversed.

The result methods are used during instance checks for dispatch.

Listing 6.7 shows the generated traversal method for And that traverses

an instance’s left and right fields in different threads. We first create a

final local variable, trav, which can be referenced from within our new

anonymous classes. For each field we either create a Trav storing the se-

quential traversal result, or an anonymous subclass of ParTrav that imple-

ments the traverse method by calling the recursive traversal, trav, when

the thread is eventually run. After the wrappers have been created, we be-

gin dispatch by calling the result methods of the Results, which will either

immediately return a result, or wait for the subtraversal to complete. In

our inlined implementations we replace the local Traversal with the spe-

114 CHAPTER 6. PERFORMANCE

BExp traverse(And _h, int weight){
final Traversal trav = this;

Result <BExp > left = ((weight != THRESHOLD)?
new Trav <BExp >(traverse(_h.left , weight +1)):
new ParTrav <BExp >(){

BExp traverse ()
{ return trav.traverse(_h.left , weight +1); }

});

Result <BExp > right = ((weight != THRESHOLD)?
new Trav <BExp >(traverse(_h.right , weight +1)):
new ParTrav <BExp >(){

BExp traverse ()
{ return trav.traverse(_h.right , weight +1); }

});

if(left.result () instanceof False)
/*... The rest of dispatch ...*/

}

Listing 6.7: Parallel traversal method for And

cific traversal we are implementing. In this way we can limit the number of

threads created, but at the expense of a bit of extra allocation.

6.3 Experiments and Results

The rest of this chapter presents and discusses a performance comparison

and results. We compare DemeterF-based implementations of our BExp func-

tions to visitor and handwritten versions. Since DemeterF is implemented in

DemeterF, we also compare different traversal implementations of our class

generator for relative performance results.

All experiments were conducted on a Dell Optiplex GX 970 running

Ubuntu Linux with two Intel Core 2 Duo 3 Ghz CPUs and 4 Gb of memory.

We used Java OpenJDK Runtime (IcedTea6 1.6.1), gave each Java process

35 Mb of heap space (i.e., “-Xms35M”), and disabled class garbage collection

(i.e., “-Xnoclassgc”).

6.3. EXPERIMENTS AND RESULTS 115

6.3.1 Boolean Expressions

In order to demonstrate the performance of traversal-based implementations

using function-objects, we implemented functions from chapter 2 by hand

and using visitors. The handwritten functions are in object-oriented style

(i.e., similar to listing 1.2). The visitors are functional, similar to those il-

lustrated in section 1.3.2.1, but with traversal implemented in the visitor

methods instead of the structures. DemeterF-based implementations use the

same function-classes implemented in chapter 2 using a number of different

traversals.

table 6.1 shows performance results for the first four of our seven BExp

functions. Each sub-table contains the average timing results of 10 different

ToString

Hand 472 msec 1.00

Visitor 482 msec 1.02

Inline 449 msec .95

Static Trv 1224 msec 2.60

StrictEval

Hand 832 msec 1.00

Visitor 812 msec .97

Inline 865 msec 1.04

Static Trv 29367 msec 35.34

Eval

Hand 14209 µsec 1.00

Visitor 19866 µsec 1.39

Inline 42230 µsec 2.97

Static Trv 598767 µsec 42.14

NegNormalize

Hand 170 msec 1.00

Visitor 192 msec 1.13

Inline 222 msec 1.30

Static Trv 23162 msec 136.25

Table 6.1: Performance results for BExp functions (1)

runs. We called the given function 15 times on a large BExp instance, call-

ing Java’s garbage-collection (System.gc()) between each execution. The

columns give (1) the implementation used, (2) the time in milliseconds (mi-

croseconds for Eval), and (3) the slowdown compared to handwritten meth-

ods, i.e., (time / handwritten-time). Note that a slowdown of less than 1 is

actually a speedup.

116 CHAPTER 6. PERFORMANCE

‘Hand’ stands for handwritten, ‘Visitor’ is a functional visitor solution

with traversal implemented within the visit methods, ‘Inline’ is DemeterF

inlined traversal and dispatch (i.e., residue from figure 5.7), and ‘Static

Trv’ is DemeterF inlined traversal with a dynamic dispatch (i.e., select from

figure 5.6).

Results for ToString are relatively even for all implementations, presum-

ably because the concatenation of strings accounts for most of the running

time. This is a good example for when the task to be performed by the func-

tion is more time consuming than the data structure traversal. DemeterF

inlining does slightly better on average in this situation, since we can in-

line some combine selections rather than calling another traverse method

(e.g., selection for Lit can be moved one level up, since neither True nor

False require subtraversals). In the handwritten and visitor solutions the

leaf methods must be called separately, e.g., t.accept(this), in order to

differentiate instances.

StrictEval is a good test of both traversal and dispatch. Since the func-

tionality done at each node is relatively simple, it is mainly the data structure

traversal and case differentiation that are stressed, which is evident in the

StaticTrv result. The visitor solution performs a bit better, presumably due to

locality, and DemeterF inline. It is worth noting that the BExp instance used

for StrictEval and Eval is extremely large3, so this represents a reasonable

worst case for all implementations.

Eval, on the other hand, represents a best case for handwritten and

visitor-based traversals, since the short-cutting recursive case can be caught

inline. The DemeterF implementations must dispatch to a method in order

to decide whether or not to continue. This increases the stack, in many

cases doubling it, and can interfere with garbage collection, which accounts

for the near 3 times slowdown. Inline generates a traversal with inlined con-

trol (i.e., no tests), but StaticTrv has the additional burden of dynamically

3The BExp in the file is over 15Mb of text, and takes a few seconds to parse.

6.3. EXPERIMENTS AND RESULTS 117

checking for bypassing fields.

NegNormalize exercises method arguments, traversal, and dispatch. The

DemeterF implementations dispatch to both combine and update methods,

which is evident in the StaticTrv case’s poor performance. Visitor and Deme-

terF Inline implementations are a bit slower than handwritten, but within

30%. The combine and update selections perform reasonably well, though

not as well as single and double dispatch in the handwritten methods and

visitors.

table 6.2 shows performance results for the rest of our BExp functions in

the same format. Simplify is similar in functionality to NegNormalize, with-

Simplify

Hand 250 msec 1.00

Visitor 213 msec .85

Inline 198 msec .79

Static Trv 9195 msec 36.78

UsedVars

Hand 2372 msec 1.00

Visitor 2427 msec 1.02

Inline 2536 msec 1.06

Static Trv 13069 msec 5.51

Invert

Hand 202 msec 1.00

Visitor 160 msec .79

Inline 194 msec .96

Static Trv 9807 msec 48.55

Table 6.2: Performance results for BExp functions (2)

out the need to pass and update traversal arguments (i.e., context). The Vis-

itor and DemeterF Inline implementations consistently perform better than

handwritten functions on this task, though not overly so. The Visitor im-

provement is, again, likely due to locality. The performance of the DemeterF

inlined version is due to the simpler combine method selection for Neg and

Let, which require minimal instance checks rather than multiple method

calls.

118 CHAPTER 6. PERFORMANCE

The results of UsedVars is similar to ToString, with most of the work

being done in the methods, rather than exercising the data structure traver-

sal. In each of the implementations for binary cases (e.g., And and Or) we

must compute the union of two Sets. The DemeterF inlined version suf-

fers a bit from the extra generality of its fold method. The calls to fold in

the TU combine methods for And, Or, Bind, and Let account for the slight

slowdown. The StaticTrv implementation is slower due to the number of

combine methods in the function-class, which are eventually passed to an

implementation of select (figure 5.6).

Summary The results above show that the performance of Inlined DemeterF-

based functions is competitive with handwritten functions in Java. If we dis-

regard the results for Eval due to its short running time, then we see that

DemeterF inlined versions have a maximum slowdown of 30% (NegNormal-

ize), and a maximum speedup of 21% (Simplify). As could be guessed,

traversal-based implementations seem to perform best when the function-

ality itself requires some work, which helps reduce the ratio of traversal to

computation and seems to reduce the effect of code locality on execution.

6.3.1.1 Parallel Traversals

To gauge the feasibility of parallel traversals using function-objects we ran

separate tests comparing our implementations using generated multi-thread-

ed traversals. table 6.3 shows a comparison of handwritten implementations

(as before) with multi-threaded traversals for each of our BExp functions.

The first column of the table is the function name, e.g., ToString, and the

second is the time for the handwritten Java implementation in milliseconds,

the same as the first columns of tables 6.1 and 6.2. The third and fourth

columns, 1-Thd and SD-Hand, are the execution times for our multi-threaded

traversal using a single thread, and its slowdown with respect to the hand-

written version respectively. The last three columns are execution times for

6.3. EXPERIMENTS AND RESULTS 119

Function Hand 1-Thd SD-Hand 3-Thd SD-Hand SD-1-Thd

ToString 472 486 1.03 405 .86 .83

StrictEval 832 1697 2.04 1272 1.53 .75

Eval 14.2 32.7 2.30 149.4 10.51 4.57

NegNormalize 170 294 1.73 278 1.63 .95

Simplify 250 272 1.09 195 .78 .72

UsedVars 2372 2680 1.13 1731 .73 .65

Invert 202 268 1.33 254 1.26 .95

Table 6.3: Parallel performance results for BExp functions

multi-threaded traversal with 3 threads (1 master, 2 slaves) and its slow-

down as compared to handwritten implementations and the single thread

versions respectively.

Our single-threaded version is relatively competitive with the handwrit-

ten implementations. The slowdown in the first SD-Hand column is the

result of keeping track of our threshold/weight parameter and wrapping the

sequential traversal results in a Trav instance, as in listing 6.7. Constant fac-

tor slowdowns of up to 2.3 is reasonable, considering the extra allocations

to wrap almost all recursive subtraversals.

In the final three columns we see the different functions that are most

amenable to multi-threading in this manner. Most of the 3-Thd implemen-

tations improve on the 1-Thd case. In particular, multi-threaded ToString,

Simplify, and UsedVars versions improve on both the handwritten and 1-

Trd implementations. The functions improve handwritten implementations

by 14%, 22%, and 27% while speeding up the single-thread case by 17%,

27%, and 35% respectively.

These examples show that the functions that perform the most work

within their combine methods are the easiest to improve, though Java al-

location can become a multi-threading bottleneck. Eval is an extreme case

where the function is inherently sequential, and as such does not perform

120 CHAPTER 6. PERFORMANCE

well with multiple threads. The Eval function itself takes such little time to

complete that it’s difficult for other implementations to compete, especially

when extra allocations are involved.

6.3.2 DemeterF

As a final case study, in this section we discuss the performance of different

components of the DemeterF class generator using different traversal imple-

mentations. As the application is too large to rewrite by hand, we compare

the execution of three traversal implementations using identical function-

objects for each of the class generator’s components shown in figure 4.1.

6.3.2.1 DemFGen CD Structures

Because DemeterF is implemented using the DemeterF class generator, it

serves as a reasonably-sized test case for the class generator. The imple-

mentation consists of about 100 generated classes in different packages and

is still one of the larger applications built using the traversal library. Ta-

ble 6.4 shows results comparing running the DemeterF class generator on

Checks DGPs ParseGen ClassGen Total

Static Trv 194.5 ms 216.5 ms 78.4 ms 151.1 ms 755.8 ms

Inline 4.31 1.39 1.62 1.45 1.64

Parallel 4.36 1.38 1.44 1.39 1.60

Par/Inln 1.01 0.99 0.89 0.96 0.97

Table 6.4: DemeterF performance (speedup) generating DemeterF struc-
tures

the DemeterF CD/BEH files using different traversal implementations. The

numbers represent an average of 15 runs of the generator, again on a Dell

Optiplex GX 970 running Ubuntu Linux with two Intel Core 2 Duo 3 Ghz

CPUs and 4 Gb of memory using Java OpenJDK Runtime (IcedTea6 1.6.1).

6.3. EXPERIMENTS AND RESULTS 121

The columns represent the different components of the class generator

(c.f., figure 4.1) followed by the Total, and the first three rows represent

different traversal implementations. The first row, ‘Static Trv’, gives timings

for each of the generator components and the total time (in milliseconds)

using a static traversal with reflective dispatch. The next two rows, ‘Inline’

and ‘Parallel’, show speedup for inlined dispatch and parallel traversals (re-

spectively) relative to the static traversal. The last row, ‘Par/Inln’, shows the

speedup of the parallel traversal relative to the inlined version. Note that in

this table higher numbers are better.

The results show that inlining dispatch within the DemeterF implemen-

tation greatly improves the performance. The Checks traversal in particular

performs less work than the others, so the speedup is more pronounced

(more than 4 times faster). The others show similar improvements (38 to

64%) but the performance of our naive implementation does not improve on

the initial results of inlining. Determining the cause and improving parallel

results is a item of future work.

6.3.2.2 .NET CLI Abstract Syntax

As a larger test case, we translated structures representing the Microsoft

.NET Common Intermediate Language (CIL) specification into DemeterF

CD/BEH files, resulting in approximately 500 generated classes. Table 6.5

shows results of generating classes using DemeterF, again comparing static

Checks DGPs ParseGen ClassGen Total

Static Trv 484.1 ms 494.4 ms 313.4 ms 417.4 ms 1958.4 ms

Inline 3.95 0.82 1.28 1.09 1.28

Parallel 3.95 0.79 1.32 1.11 1.27

Par/Inln 1 0.96 1.03 1.02 0.99

Table 6.5: DemeterF performance (speedup) generating .NET CIL structures

122 CHAPTER 6. PERFORMANCE

traversal with dynamic dispatch, ‘Static Trv’, to inlined and parallel traver-

sals.

The checking phase again performs much better with the inlined and

parallel traversals (almost 4 times as fast), and the others do relatively well.

The slowdown in the DGP case is due to code locality and other factors that

we could not determine. Because the CD structures and function-classes are

large we get an overall effect of 28% speedup when inlining both traversals

and dispatch. As before the parallel performance is disappointing, but our

earlier numbers (from section 6.3.1) look more promising.

CHAPTER 7

Related Work

7.1 Demeter Tools and Generators

Adaptive (Object-Oriented) Programming (AP) [52] combines datatype de-

scriptions with a domain specific language that selects specific paths of an

object instance, over which an imperative visitor is executed. The two ma-

jor Java implementations of adaptive programming, DJ [62] and Deme-

terJ [67], are similar to DemeterF’s dynamic/reflective and static/generated

(inlined) traversals, respectively. DemeterJ uses a similar class dictionary

syntax to generate Java classes, a parser, and various default visitors. Ideas

from both DemeterJ and DJ have flown into the design of DemeterF, but

with a purely functional flavor.

DemeterF improves on those tools with safe traversals, extensive sup-

port for generics, improved parser generation, and customizable datatype-

generic function-class generation. The functional nature of DemeterF was

chosen to improve the clarity of function-classed and solutions, and to allow

different parallel traversal implementations to be freely substituted. One of

the major limitations of DemeterF, as compared to DemeterJ, is its simple

traversal control and lack of language and tool integration. Traversal con-

trol is constructed from simpler bypass declarations rather than DemeterJ’s

from/to notation, and function-classes are not part of our BEH syntax. On

the other hand, in some cases this also makes solutions more modular and

123

124 CHAPTER 7. RELATED WORK

improves generated traversals and development time, since our class and

traversal generators are less complicated and have fewer dependencies.

XML-based generational tools like JAXB [6], XMLBeans [4], and Eclipse

Modeling Framework (EMF) [5] can also be used to generate Java classes

and XML parsers from data structure schemas. The design of the gener-

ated classes attempts to enforce good programming practices by forcing the

use of factory classes and separating class implementations from interfaces.

However, the tools have very little support for other generic or generative

features and do not support any notion of parametrized structures. EMF has

other features that allow programmers to annotate Java source files, rather

than writing XML schemas and more generator-based options, but suffers

from the same limitations.

The DemeterF class generator is far superior in its support for parametriz-

ed structures and generic programming. It can be extended with DGP gen-

eration classes that provide syntax (input and output) in XML formats.1 Fac-

tory classes and other features are rather simple to add to DemeterF, but

since it has been designed with a smaller scale in mind than most XML-

based tools, this makes it somewhat difficult to coordinate class generation

across very large teams within more complex projects.

Parser generators like JavaCC [3] and ANTLR [2] have built in support

for generating code for tree-based traversals. JavaCC includes a tool JJTree

that provides support for writing automatic visitor methods, and ANTLR

provides similar functionality with tree parsers. Dispatching on the types of

nodes is limited in these systems and typically must be done by the client

code in an ad hoc manner. In contrast the design of DemeterF fully inte-

grates traversal-based programming with function-object dispatch, though

our support for parsing is (in general) limited to simple LL(k) grammars.

Our support for DGP and parametrized structures at a high level allows pro-

1XML-based printing functions are already included in the standard DemeterF distribu-
tion.

7.2. VISITORS AND MULTI-METHODS 125

grammers to focus on functionality, rather than the particulars of parsing

and printing. There are features of JavaCC and ANTLR that correspond

to some combination of data structures and parsing, but being specialized

tools they provide much more flexible support for implementing customized

parsers.

7.2 Visitors and Multi-methods

The visitor pattern [27] is most commonly used in object-oriented languages

to implement functions over datatypes without requiring instance checks or

casts. Typical implementations employ double dispatch as shown in chap-

ter 1, though reflection has also been used [63, 62]. The visitor pattern has

a sound type-theoretic background [15, 69], and has been at the center of

discussions of extensible functions [43] and the expression problem [68, 61,

60]. There is an opinion that multi-methods [22, 20] eliminate the need for

the visitor pattern, but visitors can still be used to abstract traversal code,

similar to the Walkabout [63] and Runabout [31] visitors. DemeterF em-

ploys multiple dispatch to support both case abstraction and specialization

within function-objects, which is not possible with traditional visitors. Our

use of multiple dispatch in many ways gives us the best of both worlds (i.e.,

mutiple-dispatch and visitors), while eliminating the boilerplate code asso-

ciated with traversals.

Though we are not particularly focused on extensibility in this disserta-

tion, DemeterF does provide support for function and data structure exten-

sibility (particularly using our dynamic/reflective traversal). However, our

type checking is not modular in the traditional sense of independent compi-

lation, though it is related to work on static checking of multi-methods [57],

where Millstien and Chambers are concerned with balancing modularity and

expressiveness. They also focus on eliminating problems associated with

multi-method overloading and subclassing across modules. The result places

126 CHAPTER 7. RELATED WORK

limitations on method and class hierarchy extensions that permit more mod-

ular type checking. The DemeterF type checker and inliner both checks and

generates code for a particular traversal. Some of the ideas from multi-

methods could be integrated into the build process, but the separate and

external nature of function-classes means that class extensions may break

previously safe traversals. This could be somewhat avoided by tightening

our coverage checking, but we have chosen to provide programmers with

more flexibility at the expense of a more global compilation scheme.

Agrawal et al. [7] focus on a simple model of dynamic dispatch and re-

duce the type checking problem to (1) checking the consistency of overlap-

ping signatures, and (2) confirming that call sites are correct. Chambers and

Leavens [21] eliminate overloading ambiguities by requiring that every com-

bination of argument types have a most specific method signature to dispatch

to. Their goal is to catch such errors at compile-time, rather than raising a

runtime method ambiguous exception. Our type system succinctly (and for-

mally) solves many of the same problems, though each of these projects

contains useful ideas that could be applied to DemeterF in order to improve

modularity and independence of type checking and traversal generation.

DemeterF dispatch is more like CLOS [66], in that we have an implicit

total ordering of applicable method signatures. Our dispatch strategy has

been chosen to avoid ambiguities, since we are more interested in the possi-

ble return types during traversal using an instance of a given function-class,

and making sure that every case has an applicable function.

7.3 Generic and Strategic Programming

Our view of generic programming is influenced by many different projects

ranging from generalized folds [65, 55], light-weight functional approaches

[45, 46, 48], and visitors [43, 61] to full-fledged generic programming [38,

34], attribute grammars [42], and multi-methods [21, 7].

7.3. GENERIC AND STRATEGIC PROGRAMMING 127

The notion of traversals that we use is closest to Sheard and Fegaras’

work on generalized folds [65], drawing inspiration from Meijer et al. [55].

Though these papers mostly provide a blueprint for modeling folds, our

traversal function is similar to Sheard’s implementation of fold, though we

group functions into a class/object, rather than passing them as argument

tuples. In each case our single traverse function takes the place of a num-

ber of very complex functions, one for each value constructor. The bene-

fits of a single traversal function become more apparent when dealing with

mutually-recursive types, where fold functions can become difficult to man-

age. Rather than fixing calls to a particular function argument, our type-

based dispatch allows function-classes to abstract multiple cases into one

combine method, or overload a case based on argument types.

More heavy-weight generic programming systems [54, 38] can be used

to write general traversal functions for data structures of different shapes,

but the level at which functions are written (e.g., over a universal datatype)

makes it difficult to integrate higher-level notions like traversal contexts and

control. While DemeterF cannot provide all the flexibility of functions over

a universal datatype, the library and code generation approaches of Deme-

terF provide significantly more flexibility in traversal implementations and

typing. This does, however, require us to formulate soundness separately.

This is partly because of our chosen implementation language, but also be-

cause we wish to provide other features, like function-class extension and

multiple dispatch. We regain some (but not all) of these features through

function-class generation.

Library and combinator approaches by Lämmel et al. [46, 45] and the

Scrap Your Boilerplate (SYB) series of papers [48, 49, 50] support solutions to

similar problems using traversal combinators and Haskell’s type classes [39].

These approaches focus on two typical traversal cases: type-preserving and

type-unifying functions. The base function-classes TU and TP in DemeterF

perform a very similar role, though being classes, they can be extended

128 CHAPTER 7. RELATED WORK

more easily. When the typical everywhere traversal is not sufficient, recur-

sion is controlled using a one-step traversal that stops at particular types.

Type safety is provided by definition within their implementation language,

typically Haskell. While DemeterF provides more complex features (includ-

ing traversal control), the flexibility of our multiple dispatch requires an

external type checker.

Strategic programming (SP) [47, 44] extends combinator approaches

by using a set of basic, composable strategies to build reusable traversal

schemes. Lämmel et al. [51] provides a good overview and comparison to

AP traversal “strategies”. While both SP and AP benefit from reusable strat-

egy components, SP provides different forms of control that enable short-

cutting and transformation ordering, while AP supports a more goal-based

(or milestone) approach. The strategic approach has also been extended

to composable visitors [70], where visitors take the place of basic strategy

combinators, and are used to do in-place transformations using side-effects.

In DemeterF we have adopted a simple form of AP strategies that is less

goal-based. We use a simple bypass ing form that allows the traversal to

be short-cutting, but eliminates the need for a traversal automaton to track

milestones. Our style of function-classes may fit nicely with using strategy

combinators to define a traversal scheme, since our multiple dispatch is rel-

atively independent of our traversal definition, though our current approach

is more an extension of folds than strategy combinators. In practice we use

very few complex instances of traversal control. For example, in the imple-

mentation of the DemeterF class generator control is mostly used to improve

performance.

7.4 Attribute Grammars

DemeterF traversals, function-classes, and contexts are similar to an imple-

mentation of attribute grammars [42]. In Knuth’s original description, each

7.5. LANGUAGE MODELS 129

attribute is defined by functions over the productions of a context free gram-

mar. In DemeterF CDs, abstract and concrete definitions are similar to

non-terminals of a context free grammar. In DemeterF, traversing a data

structure instance using a function-object corresponds to the evaluation of

an attribute’s functions over a derivation of the grammar.

The combine methods of a function-class correspond to a synthesized

attribute, with contexts corresponding to an inherited attribute. Knuth men-

tions that attribute grammars can be used to compute arbitrary functions

over a derivation of a grammar, and later papers discuss the complexity of

checking attribute dependencies and evaluating functions [25]. In DemeterF

functions can can be arbitrarily complex, but function-objects without hand-

coded recursion correspond to one-pass (or one-visit) attribute grammars,

that can be evaluated left-to-right in a single traversal [13]. Our traversal

control also allows the application of functions to be limited to a particu-

lar portion of the data structure (or grammar derivation), though it may be

possible, albeit very complex, to encode similar ideas within attribute func-

tions. DemeterF can be seen as a more useful high-level implementation of

single-pass attribute grammar ideas in Java, and DemeterF-based functions

could certainly be encoded as attribute grammars over CD-like productions.

7.5 Language Models

Our model, type system, and soundness builds on simpler ideas from an

earlier paper [17], with a much more detailed account in [18], and our

approach has been influenced by work on aspect-oriented semantics [72].

Our type system has drawn from ideas presented in Featherweight Java

(FJ) [37], though we delegate more responsibility to the implementation of

our type system, in order to provide more flexibility to the programmer. Our

model is relatively simple as compared to FJ and other models of Java [26]

in order to capture the essence of the interaction of traversals and multiple

130 CHAPTER 7. RELATED WORK

dispatch.

Though we maintain a functional approach, our original motivations

for separating traversal from other concerns stems from adaptive program-

ming [52] and other visitor-based approaches [43, 69, 70]. More recent

functional visitor approaches [61, 60] have focused on safety and modu-

larization, but can be mainly categorized as design patterns whereas our

aim is to provide a useful library and tools for writing flexible and generic

traversal-based functions.

CHAPTER 8

Conclusions

The development of complex software requires the implementation of com-

plex operations over recursively defined data structures. Complex data struc-

tures lead to an increase of boilerplate code dealing with structure access

and navigation, which makes programs tedious to develop, difficult to main-

tain, prone to errors, and entangles important functionality resulting in a

loss of clarity. This dissertation has proposed a new approach to developing

structure-based functions. It is my thesis that this approach is useful, safe,

and performs well.

8.1 Contributions

In support of this thesis I have developed DemeterF, a Java-based library and

set of tools for writing traversal-based functions. The system supports the

development of function-classes, facilities for generic programming, a type

checker, and generative tools for better traversal performance.

The flexibility of function-objects over traversals, asymmetric multiple

dispatch, removal of boilerplate code, and generic programming possibilities

make our approach extremely useful for writing functions over data struc-

tures, both large and small. DemeterF traversals adapt function-objects to a

data structure in order to implement deep, flexible folds. A single function-

131

132 CHAPTER 8. CONCLUSIONS

class/object can handle multiple and mutually-recursive structures, and can

return results with limited restrictions.

DemeterF’s type system and type checker allow functions and data struc-

tures to be proven free from dispatch errors, making programs safe. The type

checker calculates the return types of a traversal with a specific function-

class. It uses a notion of method signature coverage to prove that our multi-

ple dispatch algorithm will succeed for possible recursive return values.

The types of function-classes and traversals can be used to generate

traversals for a specific data structure and function-class. We use the struc-

tures to generate traversal methods that implement efficient structural re-

cursion. Where the traversal must call to the function-object, we a inline

residue decision that implements our multiple dispatch. Because our ap-

proach is side-effect free, generated subtraversals can be executed in par-

allel. Altogether, we can replace reflective traversals with implementations

that in many cases perform as well as handwritten Java functions.

8.2 Future Work

The DemeterF system is relatively complete and has been used in several

courses at Northeastern, but there are several extensions and improvements

for the future.

8.2.1 Improve Usability

While the DemeterF tools for generic programming and traversal generation

have been used to implement DemeterF, there are some parts that are not

quite ready for novice end users. In particular the generation of datatype-

generic programming (DGP) functions and traversals could be integrated

into the CD/BEH languages to allow clients to create traversals as part of

8.2. FUTURE WORK 133

the generated classes.1 We have begun adding syntax to describe the DGP

functions to be created for the classes defined in a CD, but the implementa-

tion requires a little more work to integrate them fully.

8.2.2 Language Implementation of AP-F

While implementing function-classes and traversals makes them portable,

some features (namely traversal control and contexts) reveal our implemen-

tation to the client programmer. Implementing a language for DemeterF

programs would allow us to integrate features directly and generate safe

code, without relying on knowledgeable clients. A complete implementation

could also improve performance and enforce side-effect free function-classes

and data structures.

8.2.3 Type System Enhancements

The only notable DemeterF features missing from out AP-F model are traver-

sal control and contexts. Finding a way to integrate them into a model would

give us a more complete type system and more realistic (though probably

messy) proof of type soundness. A statement of type soundness has been

absent from Adaptive Programming, and describing soundness in a func-

tional setting would certainly take us a step closer in that direction.

1DGP functions are currently given as a command line argument, and loaded on de-
mand. Traversals are described by a separate command and file format.

Bibliography

[1] Independently Extensible Solutions to the Expression Problem. ACM,

2005.

[2] ANother Tool for Language Recognition. Website, 2008. http://www.

antlr.org/.

[3] The Java Compiler Compiler™. Website, 2008. https://javacc.dev.

java.net/.

[4] XML Beans overview. Website, 2008. http://xmlbeans.apache.org/.

[5] Eclipse Modelling Framework. Website, 2010. http://www.eclipse.

org/modeling/emf/.

[6] JAXB reference implementation. Website, 2010. https://jaxb.dev.

java.net/.

[7] Rakesh Agrawal, Linda G. Demichiel, and Bruce G. Lindsay. Static type

checking of multi-methods. In OOPSLA ’91, pages 113–128, New York,

NY, USA, 1991. ACM.

[8] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem

Maessen, Sukyoung Ryu, Guy L. Steele Jr., and Sam Tobin-Hochstadt.

The Fortress Language Specification. Technical report, Sun Microsys-

tems, Inc., 2008.

135

http://www.antlr.org/
http://www.antlr.org/
https://javacc.dev.java.net/
https://javacc.dev.java.net/
http://xmlbeans.apache.org/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
https://jaxb.dev.java.net/
https://jaxb.dev.java.net/

136 BIBLIOGRAPHY

[9] R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic pro-

gramming — an introduction. In LNCS, volume 1608, pages 28–115.

Springer-Verlag, 1999. Revised version of lecture notes for AFP’98.

[10] Mihir Bellare. Decision versus search. 2004. http://cseweb.ucsd.

edu/~mihir/cse200/decision-search.pdf.

[11] Mihir Bellare and Shafi Goldwasser. The complexity of decision versus

search. SIAM J. Comput., 23(1):97–119, 1994.

[12] Richard S. Bird, Oege de Moor, and Paul F. Hoogendijk. Generic func-

tional programming with types and relations. Journal of Functional

Programming, 6(1):1–28, 1996.

[13] Gregor V. Bochmann. Semantic evaluation from left to right. Commun.

ACM, 19(2):55–62, 1976.

[14] Kim B. Bruce. Some challenging typing issues in object-oriented lan-

guages. Electr. Notes Theor. Comput. Sci., 82(7), 2003.

[15] Peter Buchlovsky and Hayo Thielecke. A type-theoretic reconstruction

of the visitor pattern. Electr. Notes Theor. Comput. Sci., 155:309–329,

2006.

[16] Bryan Chadwick. DemeterF: The functional adaptive programming

library. Website, 2010. http://www.ccs.neu.edu/home/chadwick/

demeterf/.

[17] Bryan Chadwick and Karl Lieberherr. A Type System for Functional

Traversal-Based Aspects. In AOSD ’09, FOAL Workshop, pages 1–6.

ACM, 2009.

[18] Bryan Chadwick and Karl Lieberherr. Functional Traversal-Based

Generic Programming. 2010. Accepted to Higher-Order and Sym-

bolic Computation, Festscrift for Mitch Wand http://www.ccs.neu.

edu/home/chadwick/files/mitchfest.pdf.

http://cseweb.ucsd.edu/~mihir/cse200/decision-search.pdf
http://cseweb.ucsd.edu/~mihir/cse200/decision-search.pdf
http://www.ccs.neu.edu/home/chadwick/demeterf/
http://www.ccs.neu.edu/home/chadwick/demeterf/
http://www.ccs.neu.edu/home/chadwick/files/mitchfest.pdf
http://www.ccs.neu.edu/home/chadwick/files/mitchfest.pdf

137

[19] Bryan Chadwick and Karl Lieberherr. Weaving Generic Programming

and Traversal Performance. In AOSD ’10, pages 61–72. ACM, 2010.

[20] Craig Chambers. Object-oriented multi-methods in cecil. In ECOOP

’92, pages 33–56. Springer-Verlag, 1992.

[21] Craig Chambers and Gary T. Leavens. Typechecking and modules for

multimethods. TOPLAS ’95, 17(6):805–843, November 1995.

[22] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd D. Millstein.

MultiJava: modular open classes and symmetric multiple dispatch for

Java. In OOPSLA ’00, pages 130–145, 2000.

[23] Olivier Danvy. From reduction-based to reduction-free normalization.

In Pieter Koopman, Rinus Plasmeijer, and Doaitse Swierstra, editors,

Advanced Functional Programming, Sixth International School, number

5382 in LNCS, pages 66–164, Nijmegen, The Netherlands, May 2008.

Springer.

[24] Olivier Danvy and Kevin Millikin. On the equivalence between

small-step and big-step abstract machines: a simple application of

lightweight fusion. Info. Proc. Let., 106(3):100 – 109, 2008.

[25] Joost Engelfriet and Gilberto Filé. Passes, sweeps, and visits in attribute

grammars. J. ACM, 36(4):841–869, 1989.

[26] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. A

programmer’s reduction semantics for classes and mixins. In Formal

Syntax and Semantics of Java, pages 241–269, London, UK, 1999.

Springer-Verlag.

[27] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-

sign Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley, 1995.

138 BIBLIOGRAPHY

[28] Jeremy Gibbons. Datatype-generic programming. In Roland Back-

house, Jeremy Gibbons, Ralf Hinze, and Johan Jeuring, editors, Spring

School on Datatype-Generic Programming, volume 4719 of Lecture Notes

in Computer Science. Springer-Verlag, 2007.

[29] Michael J. C. Gordon. On the power of list iteration. Comput. J.,

22(4):376–379, 1979.

[30] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java™Language

Specification, The (3rd Edition) (Java (Addison-Wesley)). Addison-

Wesley Professional, 2005.

[31] Christian Grothoff. The runabout. Softw. Pract. Exper., 38(14):1531–

1560, 2008.

[32] Robert H. Halstead, Jr. Multilisp: a language for concurrent symbolic

computation. ACM Trans. Program. Lang. Syst., 7(4):501–538, 1985.

[33] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. C# Language

Specification. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 2003.

[34] Ralf Hinze. A new approach to generic functional programming. In

POPL ’00, pages 119–132, New York, NY, USA, 2000. ACM.

[35] Ralf Hinze and Simon Peyton Jones. Derivable type classes. Electr.

Notes Theor. Comput. Sci., 41(1), 2000.

[36] Graham Hutton. A tutorial on the universality and expressiveness of

fold. J. Funct. Program., 9(4):355–372, 1999.

[37] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight

Java: A minimal core calculus for Java and GJ. In TOPLAS, pages

132–146, 1999.

139

[38] P. Jansson and J. Jeuring. PolyP - a polytypic programming language

extension. In POPL ’97, pages 470–482. ACM Press, 1997.

[39] Simon P. Jones. Haskell 98 Language and Libraries: The Revised Report.

Cambridge University Press, May 2003.

[40] Richard Kelsey, William Clinger, and Jonathan Rees (Editors). Revised5

report on the algorithmic language Scheme. ACM SIGPLAN Notices,

33(9):26–76, 1998.

[41] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented

programming. In ECOOP ’97, pages 220–242. Springer-Verlag, 1997.

[42] Donald E. Knuth. Semantics of context-free languages. Theory of Com-

puting Systems, 2(2):127–145, June 1968.

[43] Shriram Krishnamurthi, Matthias Felleisen, and Daniel P. Friedman.

Synthesizing object-oriented and functional design to promote re-use.

In ECOOP ’98, pages 91–113, London, UK, 1998. Springer Verlag.

[44] R. Lämmel, E. Visser, and J. Visser. The essence of strategic program-

ming, 2004.

[45] R. Lämmel and J. Visser. Typed Combinators for Generic Traversal.

In PADL ’02, volume 2257 of LNCS, pages 137–154. Springer-Verlag,

January 2002.

[46] R. Lämmel, J. Visser, and J. Kort. Dealing with Large Bananas. In

J. Jeuring, editor, Proceedings of WGP’2000, Technical Report, Univer-

siteit Utrecht, pages 46–59, July 2000.

[47] Ralf Lämmel. Typed Generic Traversal With Term Rewriting Strategies.

Journal of Logic and Algebraic Programming, 54, 2003. Also available

as arXiv technical report cs.PL/0205018.

140 BIBLIOGRAPHY

[48] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practi-

cal design pattern for generic programming. volume 38, pages 26–37.

ACM Press, March 2003. TLDI ’03.

[49] Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate: reflec-

tion, zips, and generalised casts. In ICFP ’04, pages 244–255. ACM

Press, 2004.

[50] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate with

class: extensible generic functions. In ICFP ’05, pages 204–215. ACM

Press, September 2005.

[51] Ralf Lämmel, Eelco Visser, and Joost Visser. Strategic programming

meets adaptive programming. In AOSD ’03, pages 168–177, New York,

NY, USA, 2003. ACM Press.

[52] Karl J. Lieberherr. Adaptive Object-Oriented Software: The Demeter

Method with Propagation Patterns. PWS Publishing Company, Boston,

1996. 616 pages, ISBN 0-534-94602-X.

[53] Karl J. Lieberherr, Boaz Patt-Shamir, and Doug Orleans. Traversals

of object structures: Specification and efficient implementation. ACM

Trans. Program. Lang. Syst., 26(2):370–412, 2004.

[54] Andres Loeh, Johan Jeuring (editors); Dave Clarke, Ralf Hinze, Alexey

Rodriguez, and Jan de Wit. Generic Haskell user’s guide. Technical

Report UU-CS-2005-004, Department of Information and Computing

Sciences, Utrecht University, 2005.

[55] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional pro-

gramming with bananas, lenses, envelopes and barbed wire. In

J. Hughes, editor, FPCA ’91, volume 523, pages 124–144. Springer

Verlag, Berlin, 1991.

141

[56] Todd Millstein, Christopher Frost, Jason Ryder, and Alessandro Warth.

Expressive and modular predicate dispatch for Java. ACM Trans. Pro-

gram. Lang. Syst., 31(2):1–54, 2009.

[57] Todd D. Millstein and Craig Chambers. Modular statically typed multi-

methods. In ECOOP ’99, pages 279–303, London, UK, 1999. Springer-

Verlag.

[58] Robin Milner, Mads Tofte, and David Macqueen. The Definition of Stan-

dard ML. MIT Press, Cambridge, MA, USA, 1997.

[59] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebas-

tian Maneth, Stphane Micheloud, Nikolay Mihaylov, Michel Schinz,

Erik Stenman, and Matthias Zenger. An overview of the Scala pro-

gramming language. Technical Report IC/2004/64, EPFL Lausanne,

Switzerland, 2004.

[60] Bruno C. Oliveira. Modular visitor components. In ECOOP ’09, pages

269–293. Springer-Verlag, 2009.

[61] Bruno C. D. S. Oliveira, Meng Wang, and Jeremy Gibbons. The visitor

pattern as a reusable, generic, type-safe component. In OOPSLA ’08,

pages 439–456, 2008.

[62] Doug Orleans and Karl J. Lieberherr. Dj: Dynamic adaptive program-

ming in Java. In Reflection 2001, Kyoto, Japan, September 2001.

Springer Verlag.

[63] Jens Palsberg and C. Barry Jay. The essence of the visitor pattern. In

COMPSAC ’98, Washington, DC, USA, 1998.

[64] Christos H. Papadimitriou. Computational Complexity, chapter 10, sec-

tion 10.3. Addison Wesley, December 1993.

[65] Tim Sheard and Leonidas Fegaras. A fold for all seasons. In FPCA ’93,

pages 233–242. ACM Press, New York, 1993.

142 BIBLIOGRAPHY

[66] Guy L. Steele, Jr. Common LISP: the language (2nd ed.). Digital Press,

Newton, MA, USA, 1990.

[67] The Demeter Group. The DemeterJ website.

http://www.ccs.neu.edu/research/demeter, 2007.

[68] Mads Torgersen. The expression problem revisited. In ECOOP ’04,

pages 123–143, 2004.

[69] Thomas VanDrunen and Jens Palsberg. Visitor-oriented programming.

FOOL ’04, January 2004.

[70] Joost Visser. Visitor combination and traversal control. In OOPSLA ’01,

pages 270–282. ACM, October 2001.

[71] Philip Wadler. The Expression Problem, 1998. Discussion on the Java-

Genericity mailing list.

[72] Mitchell Wand, Gregor Kiczales, and Chris Dutchyn. A semantics

for advice and dynamic join points in aspect-oriented programming.

TOPLAS, 26(5):890–910, 2004.

[73] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type

soundness. Information and Computation, 115:38–94, 1994.

[74] Matthias Zenger and Martin Odersky. Extensible algebraic datatypes

with defaults. In ICFP ’01, pages 241–252, New York, NY, USA, 2001.

ACM.

http://www.ccs.neu.edu/research/demeter

	Abstract
	Acknowledgments
	Contents
	List of Listings
	List of Figures
	List of Tables
	Introduction
	My Thesis
	Dissertation Outline
	Background
	Data Structures and Operations
	Implementing Operations

	DemeterF
	Structures and Classes
	Class Dictionaries
	Behavior Files
	Parametric Polymorphism
	Running Example

	Functions and Traversals
	Function-Classes
	DemeterF Traversals
	Case Abstraction and Specialization

	Traversal Control
	Efficient Recursion

	Traversal Contexts
	Update Methods

	Extensible Functions
	Mutual Recursion
	Generic Programming
	Generic Function-Classes
	Generating Function-Classes

	Errors and Assumptions

	A Model of DemeterF
	Syntax
	Subtyping
	Example

	Well-Formedness Rules
	Semantics
	From Reduction to Evaluation
	Example

	Type System
	Functions
	Expressions
	Traversals
	Function Set Coverage
	Typing Example

	Type Soundness

	DemeterF Implementation
	Traversal Library
	Class Generator
	Traversal Usage

	Type Checking
	Relation to Soundness
	Traversal Inlining

	Algorithms
	Concepts and Notation
	Trees
	Signatures
	Graph Cartesian Products
	Algorithm Notation

	Method Selection and Dispatch
	Reflective Selection
	Static Selection and Residue

	Method Coverage
	Definition : Leaf-Covering
	Leaf-Covering is coNP-Complete
	Solutions
	Fixed-Parameter Tractability
	Decision Versus Search

	Performance
	Performance Factors
	Traversal
	Dispatch

	Generating Traversals
	Traversal Inlining
	Dispatch Inlining
	Parallel Traversal

	Experiments and Results
	Boolean Expressions
	DemeterF

	Related Work
	Demeter Tools and Generators
	Visitors and Multi-methods
	Generic and Strategic Programming
	Attribute Grammars
	Language Models

	Conclusions
	Contributions
	Future Work
	Improve Usability
	Language Implementation of AP-F
	Type System Enhancements

	Bibliography

