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ABSTRACT

Competitions have been used to drive scientific research and innovation on

open problems. Currently, most mainstream competitions organized to drive scien-

tific research follow the contest pattern where the performance of research products

is measured against a specific set of static benchmarks with no direct communica-

tion between participants in the context of the competition.

We believe that Semantic Games (SGs) of interpreted logic sentences provide

a useful foundation to organize scientific research competitions. A Semantic Game

(SG) is a two-party debate of the truth of a particular interpreted logic sentence

where participants are required to solve computational problems to choose and de-

fend their positions in the debate. The debate is structured as a two-person game.

We believe SGs are useful because their participants also collaborate in the sense

that the winner of a semantic game must point out to a mistake made by their op-

ponent.

This dissertation describes our research regarding the development and evalu-

ation of the Scientific Community Game (SCG) as an alternative approach to orga-

nize scientific research competitions for solving computational problems. SCG is

a sports-like tournament of semantic games, guaranteeing that a perfect participant

must rank at the top.

The main challenge in developing SCG is that standard tournament formats,

such as elimination, round robin, and Swiss, cannot be used with SGs because SGs

can only be played between two participants voluntarily taking opposite sides. To

adopt SGs to fit in standard tournament formats, it is inevitable to force a side

on one of the participants in an SG when both participants choose the same side.

Forcing a side on a randomly chosen participant creates a game with imbalanced

winning chances. Consequently, there is no guarantee that a perfect participant will

rank on top.

i



The main challenge in evaluating SCG is that a formal characterization of the

best participant in a given set of participants is needed. This can be done in two

different ways, using a reference tournament or using a model of the performance

of a participant of a given strength in an SG. Unfortunately, there is no clear ob-

jective way to decide on a reference tournament. Furthermore, existing models for

participants’ performance based on their strength such as the Thurstone-Mosteller

model [42] and the Bradley-Terry model [13] where developed for sports games

and their underlying assumptions are not preserved by SGs.
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Chapter 1

Introduction

Competitions have been used to drive research and innovation on open problems.

Competitions motivate their egoistic participants to invest their effort to gain recog-

nition, and possibly a prize too, for winning the competition. The uncertainty, and

sometimes the prize, of a competition can draw the attention of spectators and help

building a community around the open problem.

More importantly, a competition reveals some meta-knowledge about its par-

ticipants’ knowledge of the domain of the open problem. For example, one may

assume that the winner of a competition has the best knowledge about the domain

of the open problem and is thus the closest to solve it, provided that the rules of the

competition are reasonably fair. Depending on the rules, some competitions may

help diffusing knowledge of the domain of the open problem.

There are several examples of competitions, historical and modern, as well as

platforms that facilitate the organization of competitions with ad-hoc rules. Exam-

ples of historical competitions include the contest held, in 1535, between Tartaglia

and Fior to discover who knows how to solve cubic equations more efficiently. The

rules were that each provides the other with 30 cubic equations to solve and the

faster wins. Examples of modern competitions include the SAT competition [6] or-



ganized to discover the best performing SAT solver on a specific set of benchmarks,

and the Netflix prize competition [3] organized to discover the best performing pre-

diction algorithm on a specific dataset. Examples of platforms that facilitate com-

petitions include TopCoder [43] which facilitates the organization of competitions

to develop software artifacts, Kaggle [2] which facilitates the organization of data

mining competitions, Foldit [15] which organizes protein foldings competitions,

EteRNA [7] which organizes protein synthesis competitions, and Project Euler [5]

as well as Jutge [32] which organize competitions for educational purposes.

With few exceptions, mainstream competitions organized to drive scientific

research follow a specific pattern; the contest pattern where the performance of

research products is measured against a specific set of static benchmarks. As a

consequence, communications received by participants in the context of a competi-

tion originate in a central administrator organizing the competition according to the

rules. Participants do not directly communicate in the context of the competition.

In some competitions, participants may influence benchmarks which may be

considered as an indirect, one-way communication between participants. In the

SAT competition, there is an informal process by which a participant may influence

the benchmarks; a call for benchmarks is sent out before the competition. The

competition owners choose which of the submitted benchmarks to include in the

competition. In Foldit, a central administrator keeps a database of best known

protein foldings to compare foldings submitted by participants in the context of a

competition against the protein foldings database. Protein foldings submitted by

participants are automatically integrated into the database of best known protein

foldings.

The TopCoder platform enables a restricted form of direct communication be-

tween developers participating in a competition; developers get a brief chance to

submit an optional test input to their opponents’ programs. The point is to test
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corner cases where a particular input can cause the opponents’ programs to crash

or run for too long. Developers do not submit test cases, consisting of inputs and

expected outputs, as it would enable the unproductive behavior of submitting test

cases with the wrong expected output. Furthermore, developers are discouraged

from submitting the optional test input as they are penalized in case their test input

does not cause any of the opponents’ programs to crash or to run for too long.

In this dissertation, we present an alternative approach to organize a scien-

tific community around a formally specified computational problem. Nowadays,

formally specified computational problems are becoming commonplace in natu-

ral sciences such as physics and biology [24] (See Section 2.2 for more details).

Our approach is based on direct two-way communication between participants. We

start by presenting a thesis summarizing our approach, then we present a list of our

contributions, then we describe three application areas, and finally we describe the

organization of this dissertation.

1.1 Thesis

Our thesis is: “Semantic games of interpreted logic sentences provide a useful

foundation to collectively solve formally specified computational problems with

several unreliable participants.”.

A Semantic Game (SG) is a two-party debate of the truth of a particular inter-

preted logic sentence, or claim for short. The debate is structured as a two-person

game with two distinguished participants, the verifier and the falsifier. The party

taking the position that the underlying claim is true (respectively f alse) becomes

the verifier (respectively falsifier). The rules of the game are derived from the syn-

tax of the underlying claim such that the game gives the claim a meaning in the

sense that if there is a winning strategy for the verifier (respectively falsifier) then
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the underlying claim is true (respectively f alse).

For example, consider the claim “x is o(x2)”. This claim can be formally

defined as ∀c > 0 : ∃x0∀x ≥ x0 : |x| ≤ c · |x2| interpreted in the structure of real

arithmetic. An SG for this claim proceeds as follows:

1. The falsifier provides a value for c that makes the, logically weaker, subclaim

∃x0∀x≥ x0 : |x| ≤ c · |x2| false.

2. Given the value provided by the falsifier for c, the verifier provides a value

for x0 that makes the, logically stronger, subclaim ∀x≥ x0 : |x| ≤ c · |x2| true.

3. Given the values for c and x0 provided so far, the falsifier provides a value for

x that is greater than or equal to x0 and makes the, logically weaker, subclaim

|x| ≤ c · |x2| false.

To play an SG, participants must initially decide the underlying claim in order

to select a side in the debate. Then, depending on the underlying claim and the side

they select, participants are required to solve certain computational problems. For

example finding c, finding x0 given c, finding x given c and x0 in the aforementioned

example.

The losing party in an SG can always be blamed for falling into a contradic-

tion in the following sense: suppose that the losing party is the verifier (respectively

falsifier), then either the verifier (respectively falsifier) has chosen the wrong side,

or the verifier (respectively falsifier) must have strengthened (weakened) the un-

derlying claim too much to f alse (respectively true) by failing to correctly solve

a required computational problem. There are no ties in SGs even if neither party

correctly solves all required computational problems.

SGs can be used to combine the efforts of two participants to collectively solve

the required computational problems of a given claim in the following two senses:
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1. In the short term, competitive, sense, an SG provides an objective basis to

discriminate between participants and their solutions to the required compu-

tational problems. Winning participant’s solutions can be assumed to be the

better solution.Also, the winning participant can be assumed to have a better

grasp of the underlying structure.

2. In the long term, collaborative, sense, to win an SG, the winning participant

must point out a specific mistake in the losing participant’s solutions. Assum-

ing that SGs are repetitively played in the context of some process (such as

a research, development or education process) and that participants are keen

on winning and can effectively learn from their mistakes, the reliability of

the winner’s solution improves over time [14](Section 2.3 gives more details

about embedding SGs in a process).

To support our thesis, we developed the Scientific Community Game (SCG);

SCG is a tournament of SGs, guaranteeing that a perfect participant must rank at the

top. The main challenge in developing SCG is that standard tournament formats,

such as elimination, round robin, and Swiss, cannot be used with SGs because SGs

can only be played between two participants voluntarily taking opposite sides. To

adopt SGs to fit in standard tournament formats, it is inevitable to force a side

on one of the participants in an SG when both participants choose the same side.

Forcing a side on a randomly chosen participant creates a game with imbalanced

winning chances. Consequently, there is no guarantee that a perfect participant will

rank on top.

There is another challenge in evaluating different tournament design alterna-

tives for SCG. In order to evaluate a tournament design alternative , a formal char-

acterization of the best participant in a given set of participants is needed. This

can be done in two different ways, using a reference tournament or using a model
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of the performance of a participant of a given strength in an SG. Unfortunately,

there is no clear objective way to decide on a reference tournament. Furthermore,

existing models for participants’ performance based on their strength such as the

Thurstone-Mosteller model [42] and the Bradley-Terry model [13] where devel-

oped for sports games and their underlying assumptions are not preserved by SGs.

1.2 Contributions

This research is about designing, implementing, and empirically evaluating SCG.

More precisely, we claim the following contributions:

1. We propose the idea of organizing a scientific community around an SG-

based competition, called SCG.

2. We present a number of alternative SCG designs based on adopting SGs to

standard tournament formats.

3. We present a latent variable model relating the latent strength of participants

to the winning probabilities of participants in an SG.

4. We empirically evaluate SCG design alternatives we presented.

5. We report on the Formal Science Wikipedia(FSW) [8]; an SCG implementa-

tion intended to organize formal scientific knowledge in an active, disputable

form on the web.

1.3 SCG Applications

SCG can be directly applied to the following areas:
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1. Crowdsourcing solutions for computational problems: computational prob-

lems such as decision, search, optimization, counting, and promise problems

can be formulated as decision problems.

2. Software development: as a software development process for components

solving computational problems.

3. Education: gives a minimal structure to Self Organized Learning Environ-

ments (SOLEs) [18] for formal knowledge. We have already used SGs in

teaching an algorithms class in the spring of 2012 using Piazza [4] as a com-

munication medium. Competition encouraged students to invest time to solve

algorithmic problems such as the problem of finding the worst-case inputs

for the Gale-Shapely stable matching algorithm. We also observed that a few

good students became effective teachers for the rest.

1.4 Organization

The rest of this dissertation is organized as follows: In Chapter 2 we present back-

ground information on SGs and how they can be utilized to organize communities

around computational problems. In Chapter 3 we describe the related work to SCG.

More specifically, we describe work related to our choice of SGs, to balancing the

winning chances in games, to tournament design and to the SCG applications. In

Chapter 4 we present a number of alternative tournament designs for SCG. In Chap-

ter 5 we present a model for participants’ performance based on their strength. We

also present an empirical study aiming at selecting the best tournament design for

SCG. In Chapter 6 we present the Formal Science Wikipedia, an SCG implementa-

tion intended to organize formal scientific knowledge in an active, disputable form

on the web. Chapter 7 concludes this dissertation.
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Chapter 2

Background

In this chapter we present background information on SGs and on our approach

of utilizing SGs to organize communities around computational problems. In Sec-

tion 2.1, we describe SGs, their rules and how are they are played. Then, in Sec-

tion 2.2, we describe our approach to formulating claims. More specifically, how

to leverage the slightly restricted interpretation structure of claims to 1) formu-

late complex computational problems arising in natural sciences, and to 2) focus

the community on important computational problems. Finally, in Section 2.3 we

describe a workflow for a community to collaborate on solving a computational

problem via SGs.

2.1 Semantic Games

A claim is a logical sentence interpreted in a computable structure. A claim family

is a parameterized claim. An SG is a formal two-party debate of the truth1 of a

particular claim. The two sides of the debate are called the verifier side and the

1as opposed to logical validity.



falsifier side 2; participants taking the verifier side assert that the claim is true. s

taking the falsifier side assert that the claim is false.

In the theory of SGs, claims derive their meaning from SGs [33]; the existence

of a winning strategy for the verifier implies that the underlying claim is indeed true

and the existence of a winning strategy for the falsifier implies that the underlying

logical sentence is indeed false.

The rules of SGs are prompted by the logical connectives encountered in

claims. Table 2.1 shows the rules for first order logic proposed by Hintikka [29].

We use SG(〈Φ, A〉, ver, f al) to denote an SG where the underlying claim is com-

prised of the formula Φ interpreted in the structure A and ver, respectively f al, de-

notes the participant taking the verifier, respectively falsifier, side. For universally

quantified formulas ∀x : Ψ(x), the falsifier provides a value x0 for the quantified

variable x and the game proceeds as SG(〈Ψ[x0/x], A〉, ver, f al). For existentially

quantified formulas, the verifier provides a value for the quantified variable. For

and-compounded formulas, the falsifier chooses one of the subformulas. For or-

compounded formulas, the verifier selects a subformula. For negated formulas ¬Ψ,

no moves are required and the game proceeds as SG(〈Ψ, A〉, f al, ver). Primitive

formulas are evaluated in the underlying structure and the verifier wins if they hold,

otherwise the falsifier wins.

2.1.1 Playing Semantic Games

In an SG, participants are required to:

1. Take a side on the underlying claim. They do so by solving an instance of a

decision problem.

2other names have been also used in the literature such as I and Nature, Propo-
nent and Opponent, Alice (female) and Bob (male), and ∃loise and ∀belard.
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Φ Move Subgame
∀x : Ψ(x) f al provides x0 SG(〈Ψ[x0/x], A〉, ver, f al)

Ψ∧ χ f al chooses θ ∈ {Ψ, χ} SG(〈θ , A〉, ver, f al)
∃x : Ψ(x) ver provides x0 SG(〈Ψ[x0/x], A〉, ver, f al)

Ψ∨ χ ver chooses θ ∈ {Ψ, χ} SG(〈θ , A〉, ver, f al)
¬Ψ N/A SG(〈Ψ, A〉, f al, ver)

p(x0) N/A N/A

Table 2.1: moves for SG(〈Φ, A〉, ver, f al)

2. Support their side. They do so by solving several other computational prob-

lem instances depending on the syntax of the underlying claim.

We illustrate this point through the claim SP(0.5) from the claim family de-

fined by the formula SP(c∈ [0,1]) := ∀x∈ [0,1]∃y∈ [0,1] : x ·y+(1−x) ·(1−y2)≥

c interpreted in the structure of real arithmetic. First, participants decide whether

SP(0.5) holds. s that decide that SP(0.5) holds become verifiers. s that decide that

SP(0.5) does not hold become falsifiers. Let f al be an arbitrary falsifier, and ver be

an arbitrary verifier. According to the rules, f al is required to provide a value for

the universally quantified variable x. Suppose that f al provided 0 for x. The game

proceeds as a game between the same two participants taking the same sides but

with the claim ∃y ∈ [0,1] : (1− y2) ≥ 0.5. According to the rules, ver is required

to provide a value for existentially quantified variables. Suppose that ver provided

0, then the game proceeds on the claim 1 ≥ 0.5. This is a true primitive claim,

according to the structure of real arithmetic, and therefore the ver wins.

2.1.2 Avatars

An avatar represents a human participant in a computer game. An SG avatar pro-

vides a solution for the computational problems of the underlying claim. It is cer-

tainly desirable to have fully automated avatars. It is also possible ensure that an SG
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avatar is fully automated by sandbox execution. However, there are claims where

it is very difficult or even impossible to develop a fully automated avatar.

2.2 Formulating Claims

A logical specification of a computational problem p constitutes a claim family CF

such that at least one of the participants would be required to solve an instance of

p while playing an SG with an underlying claim from the claim family CF . In

the following paragraphs we show examples of claim families specifying different

kinds of computational problems.

A decision problem can be specified by an arbitrary claim family. For exam-

ple, consider Bertrand’s postulate that there is always at least one prime between

n and 2 · n which can be specified as Bertrand() := ∀n ∈ N \ {0,1} : ∃k s.t. k ∈

N∧ n ≤ k ≤ 2 · n : prime(k). In an SG with Bertrand() as the underlying claim,

participants would be required to solve the following computational problems:

• deciding Bertrand’s postulate,

• searching for an n making ∃k ∈ [n,2 ·n] : prime(k) false, and

• given and n, searching for a k ∈ [n,2 ·n] such that prime(k) holds.

A search or function problem can be specified by a singleton claim fam-

ily of the form ∀i : ∃o : Φ(i,o) where Φ is a logical formula that holds when

o is the correct output for the input i. For example, consider the search prob-

lem of finding a topological ordering of a DAG. This problem can be specified as

TopologicalOrdering() := ∀g ∈ DAG : ∃s ∈ sequences(nodes(g)) :

correcTopologicalOrdering(g,s).

An optimization problem can be specified by a singleton claim family of the

form ∀i : ∃o1 : ∀o2 : Ψ(i,o1,o2) where Ψ(i,o1,o2) is a logical formula that holds
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when o1 is the correct output for i and o1 is better than o2 or when o2 is not a correct

output for i. For example, the MAX-SAT problem can be specified as ∀ f ∈CNF :

∃ j1 ∈ assignments(vars( f )) : ∀ j2 ∈ assignments(vars( f )) : sat( j1, f )≥ sat( j2, f ).

Alternatively, when only approximate solutions are sought, an optimization

problem can be specified by a singleton claim family of the form ∀i : ∀δ : ∃o1 :

∀o2 : Ψ(i,δ ,o1,o2) where Ψ(i,δ ,o1,o2) is a logical formula that holds when o1 is

the correct output for i and o2 is at most δ better than o1 or when o2 is not a correct

output for i.

Promises can be added to the problem specification as a restriction on the

domain of discourse. For example, in the aforementioned Bertrand’s postulate ex-

ample, the domain of discourse for the universally quantified variable n is N\{0,1}

and the domain of discourse for the existentially quantified variable k is restricted

to satisfy the following predicate k ∈ N∧ n ≤ k ≤ 2 · n. Alternatively, promises

can be directly added to claims. In this case, it is the opponent’s responsibility to

watch for violated promises. For example, we can formulate Bertrand’s postulate

as Bertrand′() := ∀n : ¬(n ∈ N \ {0,1})∨∃k : k ∈ N∧ n ≤ k ≤ 2 · n∧ prime(k).

Note that promises are added to universally quantified variables using logical im-

plications but added to existentially quantified variables using logical conjunctions.

It is worth noting that we do not restrict the structures used to interpret sen-

tences in claims beyond the slight requirement of computability. This has the fol-

lowing two practical consequences:

1. It makes it convenient to express complex claims, such as claims about com-

puter simulation models of natural phenomenas and claims about the re-

source consumption of algorithms, without the need to axiomatize complex

computer simulation models or interpreters. For example, consider the fol-
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lowing claim in the protein folding domain3. HHHSSSPPP666000HasNativeState :=

∃ f ∈ HHHSSSPPP666000Foldings : ∀ f2 ∈ HHHSSSPPP666000Foldings : energy(HHHSSSPPP666000, f )≤

energy(HHHSSSPPP666000, f ) interpreted in a structure defining the constant HHHSSSPPP666000,

the set HHHSSSPPP666000Foldings, the function energy and the predicate ≤. The func-

tion energy hides a computer simulation model for the energy of a particular

protein folding.

2. It makes it possible to focus the participants on specific problems. Other

problems can be scraped into the structure. For example, the aforementioned

formulation of Bertrand’s postulate scrapes primality testing into the struc-

ture. Alternatively, Bertrand’s postulate may be formulated as : Bertrand′′() :=

∀n ∈ N \ {0,1} : ∃k ∈ [n,2 · n] : ∀ j ∈ (1,k) : remainder(k, j) ≥ 0 In this for-

mulation, the participants would be also required to search for a factor for a

given number.

2.3 Organizing a Community via Semantic Games

Participants of an SG both compete and collaborate on solving the computational

problems of the underlying claim. They collaborate on in the sense that the winning

participant informs the losing participant about a mistake in their solutions to the

computational problems of the underlying claims. In a community of participants

playing a tournament of SGs, participants get a better chance to learn about more

mistakes from a larger group of participants. Moreover, by playing another tourna-

3The folding of a protein is a 3-D structure of the protein. Proteins comprise
long chains of amino acids. Certain amino acids attract, others repulse. Certain
amino acids are hydrophilic and would rather be on the outside closer to water
molecules, others are hydrophobic and would rather be inside away from water
molecules. These forces determine the native state of the protein which is the most
stable folding of the protein.
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ment of SGs after the losing participants fix their mistakes, participants get another

chance to fix other mistakes.

Figure 2.1 describes a workflow in which a community of participants col-

laborate on solving computational problems by repeatedly playing a tournament

of SGs. A distinguished member of the community, the admin, is responsible for

providing claims and controlling the tournaments played for each claim.

workflow(admin , participants){
do{

claim = admin provides claim;
do{

avatars = participants provide avatars for claim;
(results , history) = run a tournament of SGs between

avatars;
notify(admin , (results , history));
notify(participants , (results , history));

} while(admin chooses to continue);
}while(admin chooses to continue);

}

Figure 2.1: Community Collaboration Workflow

In a research community, the role of participants can be played by scholars and

the role of admin can be played by a principal investigator. Claims may be chosen

by the principal investigator as a part of an exploratory research for claim families

with interesting properties.

In an educational community, the role of participants can be played by students

and the role of admin can be played by a teacher or a professor. Claims may be

chosen by the teacher according to a curriculum. The teacher may also participate

as a student to point out personalized mistakes to “other” students.

In a software development community, the role of participants can be played

by developers and the role of admin can be played by a manager. Claims may be

chosen by the manager by adding “features”.
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Chapter 3

Related Work

In this chapter we describe work in three areas related to SCG. First, in Section 3.1

we describe work in the area of logical games. This work is related to our choice

of semantic games to build SCG on. Then, in Section 3.3 we describe strategies

for balancing the winning chances in games. This work is related to our work on

balancing the winning chances in SGs. Then, in Section 3.4 we describe work

in the area of tournament design. This work is related to our work of designing

SCG as a tournament of SGs. Then, in Section 3.5 we describe work related to

the application of SCG in crowdsourcing. Finally, in Section 3.6 we describe the

origins of SCG.

3.1 Logic and Games

Logical games have a long history going back to Socrates. More recently, they

became a familiar tool in many branches of logic. Important examples are semantic

games used to define truth, back-and-forth games used to compare structures, and

dialogue games to express (and perhaps explain) formal proofs [31], [21], [25].



3.2 Dialogical Games vs Semantic Games

The main difference between Dialogical (or Lorenzen) games and semantic games

is that dialogical games characterize validity (or logical truth) while semantic games

characterize material truth (or truth in a specific model). For classical propositional

and first order logics, an exact connection between “intuitionistic dialogues with

hypotheses” and semantical games was shown in [36].

3.2.1 Model Checking Games

Modal logics interpreted in Kripke structures (or labeled transition systems, or la-

beled graphs) give rise to semantic games; truth-defining two-person games where

the verifier has a winning strategy if and only if a given formula holds in a given

structure [41], [21], [20].

3.2.2 Semantic Games with Retractable Moves

There are interpreted logical formulas with non-computable winning strategies for

semantic games without retractable moves. Semantic games with retractable moves

enable the development of recursive winning strategies [16]. Recursive strate-

gies can undo previously taken moves and are admissible strategies for semantic

games with retractable moves [16]. There are interpreted logic sentences with non-

computable winning strategies yet with recursive winning strategies. the intuition

behind the extra power of recursive winning strategies comes from their ability to

encode a recursive adversarial search where they learn from previous mistakes [11],

[9].

To illustrate recursive winning strategies, consider the formula ∃x∀y f (x) ≤

f (y) where f is a parameter representing a function over the natural numbers. There

is no computable function Min( f ) that returns the value at which f is minimum.
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However, it is possible to use the following recursive winning strategy for the veri-

fier:

1. the verifier provides 0 for x.

2. in case the falsifier is able to find some value y1 such that f (0) > f (y1), the

verifier retracts the move for x and replaces it with y1.

3. Step 2 is repeated until the falsifier is unable to win. This will terminate

because < is well founded on naturals.

3.2.3 Semantic Games for Independence Friendly Logic

Independence Friendly Logic extends classical logic with a syntactic specification

of quantifier dependencies. For example, the independence friendly logic sentence

(∀x)(∃y/∀x)P(x,y) precisely expresses the situation that the existential has a con-

stant witness regardless of the interpretation given to the universally quantified vari-

able x. In other words, the value of y is determined without any knowledge of the

value of x.

Independence Friendly Logic can express logical sentences with indeterminate

truth value. We illustrate this by the following example. Consider the sentence

(∀x)(∃y/∀x)|y2−5| ≥ |x2−5| which can be informally described as for all x there

is another value y that is closer to the square root of 5 than x, regardless of the value

of x. Neither the verifier, nor the falsifier of this sentence has a winning strategy.

Therefore, according to the game-theoretic semantics of Hintikka, this sentence is

neither true nor false.

SGs for independence friendly logic formulas are games of imperfect infor-

mation. This hiding of information makes certain SGs interesting. For example,

by dropping the independence specification in the previous example, the resulting
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sentence ∀x∃y|y2−5| ≥ |x2−5| becomes trivially true with a winning strategy for

the verifier defined by the Skolem function f (x) = x.

An alternative approach is to use encryption to hide information. For example,

consider the sentence ∀xenc∃y∀key|y2−5| ≥ |decrypt(xenc,key)2−5|. Although the

verifier is given some information about the x chosen by the falsifier, this informa-

tion is hard to utilize. Similarly, it is also hard to imagine the falsifier choosing a

value for the key based on y.

3.3 Techniques for Balancing Winning Chances

There are games that offer asymmetric roles to players where participants in certain

roles have an advantage over participants in other roles. For example, in chess

there are the white and black participant roles where the white role provides the

participant with the first move advantage. In soccer, each team attacks a different

goal. One team can have an advantage due to wind direction for example. In SGs,

participants taking the verifier role have an advantage when the underlying claim is

true and participants taking the falsifier role have an advantage when the underlying

claim is false.

There are generic approaches to restore fairness either in a single game round

or across multiple game rounds. One approach is adding compensation points for

the participants at a disadvantage or subtracting compensation points form partici-

pants at an advantage. An example is the Komi points added to the black participant

in the game Go.

Another approach is the Pie rule in reference to a class of logical games called

cut-and-choose games [21]. In the traditional cut-and-choose game one participant

cuts a piece of cake into two smaller pieces; then the opponent chooses one of the

pieces and eat it, leaving the other one for the cutter. This mechanism is supposed
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to put pressure on the cutter to cut the cake fairly.

The pie rule can be applied to games with a demonstrated first move advantage

as follows: participants are first assigned roles at random. The first participant

makes a move; then the second participant gets to choose which side whether or not

to swap roles with the first participant. This puts pressure on the first participant

not to take advantage of the first move. This rule has been used in board games

such as Hex and Mancala. It has also been applied to an extended version of go

where the first move is to select the amount of Komi points to compensate the black

participant. The Pie rule is not applicable to selecting a side in SGs because there

are only two possible moves one that is good and one that is bad.

A third approach is to play multiple game rounds where participants alter-

nate their roles. For example, in soccer, matches are split in halves where teams

switch the goal they attack (and the team kicking off the half-match). In chess tour-

naments, it is often the responsibility to ensure that each participant receives, as

nearly as possible, the same number of games as White and Black.

There are, also, game specific approaches to restore fairness that involve tweak-

ing the rules of the game so that each role has a different form of advantage. For

example, in soccer, one team that gets to choose the goal to attack and the other gets

the kick-off. In chess, different starting configurations where the white is missing

more pieces than the black were proposed [35].

3.4 Tournament Design

Tournaments turn a two-participant game into a multi-participant game comprising

several two-participant games. A tournament is defined by a schedule and an eval-

uation algorithm. The tournament schedule specifies the number of rounds in the

tournament and the two-participant games simultaneously played in each round.
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The evaluation algorithm computes the standings of participants. The standings

take the form of either an ordinal ranking or a cardinal rating. The output of a

tournament is the standings of either all or only the top participants.

There are three major tournament formats in the literature: the round robin

format, the Swiss format and the elimination (a.k.a knock out) format. Below we

describe each of these major formats along with its variants.

In a round robin tournament, each participant plays once against every other

participant. Which is generally considered a fair selection of each participant’s

opponents during the course of the tournament. Furthermore, in case ties are not

possible in the underlying two-participant game, the points system is a unique [37],

widely accepted ranking algorithm satisfying the following three natural axioms:

• anonymity which means that the ranks are independent of the names of par-

ticipants,

• positive responsiveness to the winning relation which means that changing

the results of a participant p from a loss to a win, guarantees that p would

have a better rank than all other participants that used to have the same rank

as p, and

• independence of irrelevant matches which means that the relative ranking of

two participants is independent of those matches in which neither is involved.

The matches of a round robin tournament of n participants are commonly mod-

eled as the edges of the complete graph Kn. A round robin tournament schedule par-

titions the edge set with no two adjacent edges in the same partition [26]. Round

robin tournament schedules are considered static as matches are independent of the

current standings of participants. Round robin tournament schedules are chosen

to optimize other psychological or logistical objectives. For example to minimize
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breaks and carry over effects in the home-away patterns. An annotated bibliogra-

phy of round robin tournament scheduling is given in [26].

Matches involving a “weak” player are problematic. Matches between two

“weak” participants are often not interesting to spectate. Matches between “strong”

and “weak” participants are also uninteresting because their results are pretty much

expected. Furthermore, participants’ incentives to win might be imbalanced in the

later rounds of round robin tournaments. For example, winning a game in the final

round might result in winning the tournament for one participant but not much for

their opponent. This situation might encourage cheating.

A single elimination (a.k.a Knock Out) tournament avoids the problems of the

round robin tournament format by dynamically scheduling matches only between

“strong” participants. However the criteria for judging a participant to be “strong”

is to win all games in the tournament. This makes elimination tournaments sen-

sitive to minor fluctuations in participant’s abilities and is consequently lowering

their predictive power [38]. The predictive power of a tournament is the probability

that the best participant wins the tournament. There are several variations of the

elimination tournament with enhanced predictive power through biasing the tour-

nament to the benefit of participants already known to be strong. The following

paragraph summarizing these variations.

Single elimination tournaments are modeled as trees with internal nodes rep-

resenting games. Participants start at the leaves and winners flow to the root. The

probability of a participant winning the tournament depends on the number and

the strengths of opponents it may meet on their path to the root. Some variants

of the elimination tournament skew the schedule tree to shorten the paths taken by

the strongest participant [45]. Other variants, such as the McIntyre System, add

more paths to the root for the top participant(s). Other variants add more paths

to the root for all participants such as the double elimination tournaments. In
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those variants, the tournament is no longer a tree. There are also variants that

dynamically seed (i.e. assign participants to nodes) the participants after each

round [22], [40], [19], [45].

The Swiss tournament format avoids the problems of the round robin tourna-

ment format by dynamically scheduling matches between opponents with similar

current standings. It is worth mentioning that this pairing strategy is the exact oppo-

site of the pairing common in single elimination tournaments. In single elimination

tournaments, it is desirable to delay the confrontation of strong participants [40]

because one of the participants must be eliminated after every confrontation. Early

elimination corresponds to giving the eliminated participant a low rank. There are

several variations of the Swiss tournament format regarding tie breaking rules and

bye rules.

3.5 Crowdsourcing and Human Computation

Crowdsourcing has become an important problem solving approach that enables

us to tackle large scale problems that require human intelligence to solve. There

are two main reasons that human intelligence is required to solve a problem. 1)

The problem is underspecified such as image labeling [44], the construction of web

page classifiers [23], and the creation of Wikipedia pages. Humans are needed to

partially specify what the problem is. 2) The problem is formally specified but com-

plex enough that we have either no known solution procedure or a rather inefficient

one. Examples include, programming and discovering protein folding [15], [7].

Humans are needed either to solve the problem or to decide how to solve the prob-

lem. SCG can be used to crowdsource solutions of logically specified computa-

tional problems.

SGs provide attractive solutions to the four key challenges that crowdsourcing
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systems need to address [17]:

1. What contributions can users make? SG participants are required to solve a

specific set of computational problems defined by the syntax of the underly-

ing claim.

2. How to evaluate users and their contributions? SG provides an objective basis

to favor winners’ solutions.

3. How to combine user contributions to solve the target problem? SGs combine

the efforts of participants in the two senses described in 2.3.

4. How to recruit and retain users? SGs can be engaging to play and to spectate.

A comprehensive study of crowdsourcing is in [28]. They argue that an ideal

crowd work system would offer peer-to-peer and expert feedback and encourage

self-assessment. Such a system would help workers to learn, and produce better

results. In SCG, participants directly communicate and may gain feedback which

leads to learning. SCG provides also significant autonomy for the workers, as long

as they follow the SG rules.

Kittur and Chi and Suh [27] argue that a crowdsourcing system should make

the creation of believable invalid responses as effortful as completing the task in

good faith. They also show that introducing verifiable questions improves the re-

sponse quality significantly. The recommendation for micro-task markets is: “It is

extremely important to have explicitly verifiable questions as part of the task.” In

SCG all requests to solve computational problems are verifiable. Indeed, in SCG it

is hard to create believable invalid responses. For example, if a participant decides

to intensionally take the falsifier side on a true claim, then this participant will be

stuck to defending a false claim.
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A socio-technical ecosystem supports straightforward integration of contribu-

tions from many participants and allows easy configuration [1]. The NSF workshop

report [39] discusses socio-technical innovation through future games and virtual

worlds. SGs can be easily configured through claims.

SCG provides a specific but incomplete proposal of a programming interface

to work with the global brain [12]. What is currently missing is a payment mecha-

nism for users.

SGs can be seen as a generic version of the “Beat the Machine” approach

for improving the performance of machine learning systems [10] as well as other

scientific discovery games, such as FoldIt [15] and EteRNA [7].

3.6 Origins

We started this line of work with the Specker Challenge Game (SCG) [30]. The

goal was to create an educational game in which students can learn from each other

with a minimal interaction with the teaching staff. The rules where informally

described by ad-hoc rules that were called refutation protocols 1.

1In reference to the seminal work [34] of the famous philosopher of science,
Karl Popper.
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Chapter 4

The Scientific Community Game

In this chapter we address the problem of designing the Scientific Community

Game (SCG) as a tournament of semantic games, guaranteeing that a perfect par-

ticipant must rank at the top. The main challenge in designing SCG is that an SG

can only be played by two participants voluntarily taking opposite sides; standard

tournament formats, such as elimination, round robin and Swiss do not handle the

situation where it is not possible to play a match between two participants. To adopt

SGs to fit in standard tournament formats, it is inevitable to force a side on one of

the participants in an SG when both participants choose the same side. Forcing a

side on one of the participants creates a game with imbalanced winning chances.

And consequently, there is no guarantee that a perfect participant will rank on top.

There are numerous approaches to rebalance the winning chances either locally

across a single match or globally across all matches in the tournament. Every ap-

proach (or combination of approaches) gives rise to an SCG design.

First, in Section 4.1 we present a number of requirements and design goals.

Then, in Section 4.2 we present a number of alternative SCG designs.



4.1 Requirements and Design Goals

4.1.1 Perfect Participants Must Win

We define a perfect participant to be a participant winning all SGs when not forced.

We require that a perfect participant in an SCG must be among the winners.

4.1.2 Minimizing The Advantage Given to Participants Taking

the Most or Least Popular Side

Depending on the tournament format, participants taking the most popular side

have a larger chance of playing against participants from the same side. Since forc-

ing is inevitable in this case, overcompensating (respectively, undercompensating)

forced players may give an undesirable advantage to participants taking the most

(respectively, least) popular side. It is desirable to minimize the advantage given to

participants taking the most or least popular side.

4.1.3 Maximizing The Expected Rank of The Best

Participant(s)

The better the rank assigned by the tournament to the best participant, the better the

tournament design. This goal is related to maximizing the predictive power [45], [38]

of the tournament. Intuitively, the predictive power of a tournament is the proba-

bility that the best participant wins the tournament.
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4.1.4 Minimizing The Number of Participants Ranking on Top

Other Than The Best Participants

The less participants, other than the best participant ranking on top of the tourna-

ment, the better the tournament design. We refer to this quality as the discriminative

power of the tournament.

4.1.5 Minimizing The Number of Semantic Games

It is also desirable to minimize the average number of SGs to be played in the

context of SCG.

4.1.6 Minimizing Manipulation Chances

It is also desirable to reduce the chances of manipulating the tournament results.

The key is to reduce opponent dependent behavior, such as selectively losing against

a specific opponent.

One possibility to reduce opponent dependent behavior is to restrict partici-

pants to take the same side on the underlying claim in all SGs held in the context

of an SCG. Another possibility is to hide the opponent identity in all SGs held in

the context of an SCG. However, it is sometimes possible to infer the identity of

the hidden opponent from the exchange taking place in the context of an SG. For

example, if a participant is required to provide a CNF formula, they can produce

formulas with a particular naming scheme to variables or with a particular structure

that may be identifiable by other participants. Obfuscation can be used to further

hide opponent identities. It is also possible for participants to identify their oppo-

nent through side communication outside the context of the SCG. When avatars are

used, it is possible to sandbox-execute the avatars to prevent side communications.
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4.2 Design Space

As we mentioned before, the naive approach of adopting a standard tournament

format with a simple match setup consisting of playing a single SG with one po-

tentially forced player might not be the best SCG design. Therefore, we present a

wider SCG design space which may contain a better SCG design according to the

criteria mentioned in Section 4.1. We start by presenting a number of alternative

match designs in Section 4.2.1. Then, we briefly outline SCG tournament design in

Section 4.2.2. Finally, in Section 4.2.3 we summarize the SCG design alternatives

we presented.

4.2.1 Matches

There are two approaches to balance the winning chances in a set of SGs with a

potential forced player:

• compensating forced participants with points, and

• ensuring that the forcing disadvantage is as evenly distributed as possible.

We start by presenting a number of SCG match styles aiming at distributing the

forcing disadvantage as evenly as possible. Table 4.1 summarizes the match styles

we presented. The first style is called the 0.5G style. In case both participants

choose opposing sides, a single SG is played. In case both participants choose the

same side, no games are played. However, each participant is given a point to avoid

giving the least common side participants an advantage.

The second style is called the 1.0GRF style. It involves a single SG played

between participants. In case participants choose the same side, one randomly

chosen participant is forced to be devil’s advocate. The third style is called the

1.0GRFC. It involves a single SG played between participants. In case participants

28



Chosen
0.5G 1.0GRF 1.0GRFC 2G

Side
Opposite 1 SG 1 SG 1 SG 2 SGs

Same
No SGs 1 SG 1 SG 2 SGs

each scores Randomly Force least forced Force one
1 point force or randomly at a time

Table 4.1: SCG Match Styles

choose the same side, the participant that has been forced the fewest number of

times thus far is forced to be devil’s advocate. If both participants were equally

forced, a randomly chosen participant is forced. The forth style is called the 2G

style. It involves two SGs played between participants. In case participants choose

the same side, participants play devil’s advocate in exactly one of the two SGs.

4.2.1.1 Scoring

Table 4.2 presents an interesting family of scoring rules for SGs with a potentially

forced participant. This family of scoring rules is interesting because it satisfies the

following three properties:

1. Does not encourage losing because, according to the rules, a participant can

never score more by losing.

2. Does not give an advantage to participants of the most (respectively least)

common side in terms of the maximum attainable score. This is because

the winning participant always gets the same number of points regardless of

forcing.

3. It is compensating because a non-forced winning (respectively losing) par-

ticipant never scores more than a forced winning (respectively losing) partic-

ipant.
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Forced Participant Compensating Score (α)
winning losing winning losing

not forced not forced 1 0
not forced forced 1 0≤ α ≤ 1

forced not forced 1 0

Table 4.2: Scoring SGs with a Potentially Forced Participant

4.2.2 Tournaments

Elimination tournament formats are not suitable for SCG because of the chances of

ties in most match styles. Either the round robin or the Swiss tournament format

may be used.

4.2.3 Summary

A specific SCG design in our design space can be denoted as SCG(T ∈{RR,SW},M ∈

{0.5G,1GRF,1GRFC,2G},α ∈ [0,1]). Where RR denotes the round robin tourna-

ment format and SW denotes the Swiss tournament format. To make the design

space finite, we restrict α to be in the set {0,0.25,0.5,0.75,1}.
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Chapter 5

Evaluation

This chapter describes an empirical study aiming at identifying the best tournament

design for SCG according to the criteria in Section 4.1. Three of the qualities

mentioned in Section 4.1 require a formal characterization of the best participant(s).

Such formal characterization can only be developed against a model of participants’

performance in semantic games. We start in Section 5.1 by modeling participants’

performance in semantic games. Then, in Section 5.2 we present our experiments.

Finally, in Section 5.3 we present our results.

5.1 Modeling Participant Performance in Semantic

Games

In order to evaluate tournaments, we need a formal characterization of the best

participant among a set of participants. Such formal characterization can only be

developed against a model of participants’ performance in semantic games. The

literature has two kinds of models of participants’ performance; direct models and

latent variable models (respectively called general models and monotonic models

in [45]).



Direct models represent observable features of the participants’ performance

such as the pairwise winning probabilities. The main disadvantage of direct mod-

els is that sometimes there is no clear best participant and that there is no single

objective approach to identify the best participant.

In latent variable models, observable features are locally independent and de-

rived from a set of latent features. The set of latent features are chosen such that

there is an obvious objective approach to identify the best participant. Examples

of latent variable models in the literature include the Thurstone-Mosteller model

[42] and the Bradley-Terry model [13]. Both models have participants’ strength as

latent features from which pairwise winning probabilities are derived.

Neither the Thurstone-Mosteller model nor the Bradley-Terry model is suit-

able for SGs. Both models have been designed for sports games and make the

assumption that the pairwise winning probability depends on the difference of the

strengths of the two participants. SGs can be perfectly played. A perfect participant

is guaranteed to win an SG regardless of the strength of their opponent. Further-

more, when participants are not perfectly playing, the underlying claim may affect

the SG outcome.

5.1.1 Direct Model

The direct model describes observable features of participant performance. We

model the following two features of participant’s performance in an SG of a specific

claim:

• the probability of taking the verifier side, and

• the winning probability when taking the verifier side.
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The direct model of participant performance in an SG of a specific claim is

a two dimensional matrix W listing the pairwise winning probabilities of partici-

pants in the SG. The probability that participant Si, taking the verifier side, winning

against another participant S j, taking the falsifier side, is given by the entry wi j in

W . The probability that participant Si, taking the falsifier side, winning against an-

other participant S j, taking the verifier side, is given by 1−w ji. The probability that

participant Si chooses to take the verifier side is given by the entry wii; in theory,

a participant can choose a side by playing an SG with itself and choosing a side

based on that SG outcome.

Now, we present a latent variable model for participant performance in seman-

tic games.

5.1.2 Latent Variable Model

In our latent variable model, the performance of a participant is modeled with a

single variable representing the participant strength. With this model there is an

obvious definition of the best participant; the best participant is the participant with

the highest strength. To give this model a meaning, we relate it to the direct model

of participant performance. We do this in two steps, first we give a model for the

behavior of a participant S with strength p. Then we relate participant behavior to

the probability of taking the verifier side and winning as verifiers which form the

direct model.

The behavior of a participant S with strength p can be described as follows:

1. It takes the correct side with probability p and takes the incorrect side with

probability 1− p.

2. It plays the best possible strategy for the side it chooses with probability p

and plays the worst possible strategy for the side it chooses with probability
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1− p.

We define the best (respectively worst) possible strategy for a participant tak-

ing a particular side to be the deterministic strategy that maximizes (respectively

minimizes) the participant’s probability of winning against a randomly acting op-

ponent. We illustrate the construction of best and worst strategy with the following

example. Consider the claim toy(0.5) := ∀x ∈ [0,1] : ∃y ∈ [0,1] : x+ y > 0.5. This

is a true claim. Therefore, the correct side is the verifier side. A participant with

strength p will take the verifier side with probability p and the falsifier side with

probability 1− p. The best strategy for the falsifier is to provide the smallest pos-

sible value for x which is 0. The worst strategy for the falsifier is to provide the

largest possible value for x which is 1. A participant with strength p playing in the

falsifier side will provide 0 for x with probability p and will provide 1 for x with

probability 1− p. The best strategy for the verifier is to provide the largest possible

value for y which is 1. The worst strategy for the verifier is to provide the smallest

possible value for y which is 0. A participant with strength p playing in the verifier

side will provide 1 for y with probability p and will provide 0 for y with probability

1− p.

In well understood domains, we can use the best and worst strategies for both

sides to construct synthetic participants that behave according to this model. In less

understood domains, we may not be able to construct the best and worst strategies

yet we can assume their existence.

We now extend our model to compute the winning probabilities for a semantic

game between two participants. As we mentioned before, the underlying claim

may affect the game outcome. We model the effect of the underlying claim as three

variables t, wbb (worst beats best) and wbw (worst beats worst). The variable t is

a boolean variable representing the truth of the underlying claim. t determines the
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correct side
best worst

in
co

rr
ec

ts
id

e best 1 wbb

worst 1 wbw

Table 5.1: Winning Probability of Participants Taking the Correct Side

correct side to take on the underlying claim. For the claim toy(0.5), the value of t

is true. The variable wbb (respectively wbw) represent the winning probability of

the participant taking the correct side and using the worst possible strategy against

an opponent using the best (respectively worst) possible strategy. For deterministic

strategies, the values of wbb and wbw are either 0 or 1. For example, the worst

verifier strategy for toy(0.5) is to provide 0 for y will be beaten by the best falsifier

strategy which is to provide 0 for x. Therefore, for toy(0.5) the value of wbb is 0.

Also, the worst verifier strategy for toy(0.5) beats the worst falsifier strategy for

toy(0.5) leading to a value of 1 for wbw.

Once we know the values of t, wbb and wbw, we can compute the values of

direct model variables for any set of participants S1, . . . ,Sn with strengths pi, . . . , pn.

The probability of Si taking the verifier side, denoted as wii in the direct model, is pi

if t = true and 1− pi if t = f alse. The winning probability of the participant taking

the correct side are shown in Table 5.1. This table demonstrates the important

property of semantic games that the participant taking the correct side and using the

best possible strategy shall win regardless of the strength of the opponent. However,

when the participant taking the correct side uses the worst possible strategy, the

probability of wining depends on the underlying claim as well as on the strength of

the opponent.

According to Table 5.1, when t = true, the winning probability of participant
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Si, taking the verifier side, against participant S j, taking the falsifier side, can be

computed as wi j = pi +(1− pi) · (p j ·wbb+(1− p j) ·wbw). When t = f alse, the

winning probability of participant Si, taking the verifier side, against participant S j,

taking the falsifier side, can be computed as wi j = 1− (p j +(1− p j) · (pi ·wbb +

(1− pi) ·wbw)).

Now, we proceed to describe our empirical evaluation of SCG tournament

designs.

5.2 Experimental Plan

The goal of our experimental plan is to measure, for each SCG design, the following

quantities:

• best participant’s rank both with and without a perfect participant among

participants, and

• the number of extra winners, and

• the number of SGs, and

• advantage to most popular side participants.

We measure the aforementioned quantities via two separate experiments that

we describe below.

5.2.1 Experiment I

To measure the best participant’s rank, the number of extra winners, and the number

of SGs, we run a 1K simulations for each of the 40 tournament designs for each of

the 8 different SG kinds for 2K populations of size between 10 to 30 participants
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with randomly generated strengths where half of the populations have a perfect

participant. Figure 5.1 shows a pseudocode of our first experiment.

SGKinds = the set of all 8 SGKinds;
tournaments = the set of all 40 Tournaments;
minPopulationSize = 10;
maxPopulationSize = 30;
numPopulations = 1000;
numSimulations = 1000;

for(hasPerfectParticipant ∈ {false , true}){
for(i ∈ {1.. numPopulations }){
p = generatePopulation(minPopulationSize , maxPopulationSize ,

hasPerfectParticipant)
best = p.bestParticipants ();
for(SGKind ∈ SGKinds){
w = SGKind.latent2direct(p);
for(tournament ∈ tournaments){
for(j ∈ {1,..., numSimulations }){

Result result = simulate(tournament , w);
yieldBestsRank (tournament , hasPerfectParticipant ,

result.getRankOf(best));
yieldNumExtraWinners (tournament , hasPerfectParticipant ,

result.getNumExtraWinners(best));
yieldNumSGs (tournament , result.getNumSGs ());

}
}

}
}

}

Figure 5.1: Experiment I

5.2.2 Experiment II

To measure the winning chances of participants taking the most popular side, we

use a winning probability matrix that gives each participant a 0.5 probability of

winning regardless of the side. Diagonal entries are set to either a 1 or a 0 making

participants always take either the verifier or the falsifier side during the simulation.

Without loss of generality we set more entries to 1.
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We run 1K simulations for each tournament design with the aforementioned

winning probability matrix for a population of a 100 participants for a fraction of

verifiers ranging from 51% to 99%. We measure the fraction of verifiers among

the winners. A 75% winning chance for verifiers matches the fraction of verifiers

accross all populations. Therefore, a 75% winning chance for verifiers means that

verifiers are not given any additional advantage that can be attributed to taking the

most popular side. Figure 5.2 shows a pseudocode of our second experiment.

tournaments = the set of all 40 Tournaments;
populationSize = 100;
numSimulations = 1000;

for(tournament ∈ tournaments){
numWinners = 0;
numWinningVerifiers = 0;
for(numVerifiers ∈ {51..99}){
w = populationSize by populationSize matrix with

numVerifiers 1’s on the diagonal. The rest of the
diagonal has 0’s. The rest of the matrix has 0.5’s.

for(i ∈ {1.. numSimulations }){
Result result = tournament.simulate(w);
for(winner ∈ result.getWinners ()){
numWinners ++;
if(winner.isVerifier ()) numWinningVerifiers ++;

}
}

yieldWinningChances(tournament , numWinningVerifiers/
numWinners);

}

Figure 5.2: Experiment II

5.3 Results and Discussion

The results of our experiments are summarized in Tables 5.2, 5.3. For each Tour-

nament design, we report:
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• the average and the standard deviation of best participant’s rank both with

and without a perfect participant among participants, and

• the average and the standard deviation of the number of extra winners both

with and without a perfect participant among participants, and

• the average number of SGs, and

• the average winning chances of participants taking the most popular side

when both verifiers and falsifiers have an equal chance of winning an SG.

We made the following observations about the results:

• There are only 16 designs where a perfect participant is guaranteed to rank

at the top. In all of these 16 designs the forced player is fully compensated

with 1 point. There is a simple explanation to this observation; full compen-

sation, makes a perfect participant scores the maximum attainable score in an

SCG because a perfect participant, by definition, will win when not forced,

and consequently score a point. Also, a perfect participant will also score

the compensation point when forced. Since all participants have the same

maximum attainable score, a perfect participant is guaranteed to rank at the

top.

• In the absence of a perfect participant, fully compensating the forced player

with 1 point lowers the average rank of the best participant. There is no

similar conclusion that can be drawn for other amounts of compensations.

• Whether or not there is a perfect participant, fully compensating the forced

player with 1 point significantly increases the average number of participants

ranking at the top. There is no similar conclusion that can be drawn for other

amounts of compensations.
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• When any compensation at all is given to forced players, the wining chances

of participants of the popular side dramatically increase (assuming that par-

ticipants of both sides have the same winning chance in a single SG). Fully

compensating the forced player with 1 point brings the the winning chances

of participants of the popular side close to 100%.

• By Focusing on the 16 designs where a perfect participant is guaranteed to

rank at the top and ignoring that the advantage given to participants taking

the most popular side we can make the following observations:

• 1. There is no significant differences regarding the average rank of the best

player, and

2. the design SCG(RR, 2G, 1.0) minimizes the number of extra winners

but requires significantly more SGs than others.
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Chapter 6

The Formal Science Wikipedia

[TBD] Describe the syntax for claims and give examples.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

This dissertation describes our research on developing the scientific community

game as an alternative approach to organizing scientific research competitions for

computational problems. SCG is essentially a tournament of semantic games, guar-

anteeing that a perfect participant must rank at the top.

The main challenges we addressed were:

• In developing SCG: standard tournament formats, such as elimination, round

robin, and Swiss, cannot be used with SGs because SGs can only be played

between two participants voluntarily taking opposite sides. To adopt SGs to

fit in standard tournament formats, it is inevitable to force a side on one of the

participants in an SG when both participants choose the same side. Forcing a

side on a randomly chosen participant creates a game with imbalanced win-

ning chances. Consequently, there is no guarantee that a perfect participant

will rank on top.

• In evaluating SCG: a formal characterization of the best participant in a given



set of participants is needed. This can be done in two different ways, using a

reference tournament or using a model of the performance of a participant of

a given strength in an SG. Unfortunately, there is no clear objective way to

decide on a reference tournament. Furthermore, existing models for partici-

pants’ performance based on their strength such as the Thurstone-Mosteller

model [42] and the Bradley-Terry model [13] where developed for sports

games and their underlying assumptions are not preserved by SGs.

In this dissertation we described:

• how SCG can be used to organize scientific research competitions, and

• a number of additional design goals for SCG, and

• a number of SCG designs based on adopting SGs to two standard tournament

formats, and

• a model for participant’s performance in SG, and

• an empirical evaluation of SCG designs we presented, and

• a description of the formal science wikipedia, our web based SCG imple-

mentation.

Based on our empirical evaluation of the SCG designs we presented, we con-

clude that when standard Swiss or round robin tournament formats are used, it is

inevitable to fully compensate forced participants with a point in order to guar-

antee that a perfect participant will rank on top. On the other hand, none of the

SCG designs guaranteeing that a perfect participant will rank at the top, among

the SCG design alternatives we considered, reasonably satisfy the design goals we

presented. Further research into non-standard tournament formats is necessary.
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7.2 Future Work

As a future work, we want to:

1. Consider other SCG designs with non-standard tournament formats. Exam-

ples of non-standard formats we want to consider include:

a) Separately rank participants taking the verifier side and participants tak-

ing the falsifier side, then somehow combine both rankings. The goal is

to lower the advantage given to the most popular side.

b) Develop a Hybrid version between the Swiss and the Round Robin tour-

nament. The goal is to lower the average number and at the same time

minimizing the number of extra winners.

2. Utilize relations between claims in the formal science wikipedia to effectively

merge communities organized around claims.
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