
Abbreviated Path Expressions With Iterated Wild Cards:
WYSIWYG Semantics and Efficient Implementation

Ahmed Abdelmeged
College of Computer &

Information Science
Northeastern University

mohsen@ccs.neu.edu

Karl Lieberherr
College of Computer &

Information Science
Northeastern University
lieber@ccs.neu.edu

ABSTRACT
Abbreviated Path expressions are used as an information
hiding tool in Adaptive Programming (AP), eXtensible Markup
Language (XML) document processing, and Aspect Ori-
ented Programming (AOP). In the context of AP, the clas-
sical semantics of wild cards as place holders for any symbol
leads to modularity and ambiguity problems when these wild
cards are iterated. We show that a slightly restricted seman-
tics for wild cards, called the WYSIWYG semantic can not
only solve these problems but also lead to the construction of
more efficient recognizers for abbreviated path expressions
with iterated wild cards.

1. INTRODUCTION
Path expressions are used to specify a set of paths pertain-

ing to some task at hand. Path expressions are ubiquitous to
Object Oriented Programming (OOP), Adaptive Program-
ming (AP), eXtensible Markup Language (XML) document
processing, and Aspect Oriented Programming (AOP). In
OOP, path expressions are used to retrieve information from
object graphs. In AP, strategies are a form of path expres-
sion used to guide the navigation of object graphs. In XML
document processing, XPath expressions are used to specify
elements in XML documents for either retrieval or update.
Finally, In AOP, point cut designators are used to specify
certain join points during the course of program execution.

There are two categories of applications employing path
expressions: control driven and data driven. Field access
in OOP and Document Object Model (DOM) style XML
processing applications fall into the control driven category.
AP and AOP, fall into the data driven category. In the data
driven category, some externally predetermined navigation
of some structure takes place (e.g. a depth first walk of the
object graph in AP, and program execution in AOP which
is a walk through the dynamic call flow graph of some pro-
gram) resulting in a set of active paths (i.e. stack contents).
We want to recognize the subset of these active paths that
can possibly lead to some path specified by a given path ex-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

pression. We call this problem, the path recognition prob-
lem. Path recognition can be employed to perform optimal
navigation in AP, efficient execution of XPath expressions,
enhance the runtime performance programs in AOP.

Path expression occur in methods or aspects and refer to
some external structure (e.g. object graphs in OOP and
AP, XML document, and the dynamic control flow graph in
AOP). Abbreviated path expressions can be used as an in-
formation hiding tool to avoid unnecessarily hard coded de-
pendencies between the method or aspect and some external
structure and thus lead to increased modularity, reusability,
and maintainability of object oriented programs, adaptive
programs, XML processing applications, and aspect oriented
programs.

abbreviated path expression formalisms fall into two broad
categories: explicit and implicit. Explicit formalisms pro-
vide developers with wild cards to replace the abbreviated
path components. Wild cards can also be iterated to replace
multiple consecutive abbreviated path components. Exam-
ples of explicit formalisms is XPath where developers are
provided with “//” as form of iterated wild card and the As-
pectJ point cut language that provides the “cflow” construct
as a form of iterated wild cards. Regular expressions with
wild cards are a third example.

Implicit formalisms do not provide developers with wild
cards. Instead, the navigation paths are translated into an
explicit form by inserting wild cards into certain places de-
fined by what we call an expansion semantics. Implicit for-
malisms save the developers from writing too many wild
cards to make their methods flexible. An example of im-
plicit formalisms is the regular-expression-like strategy lan-
guage in AP.

The classical interpretation of wild cards as place holders
for “anything” leads to modularity and ambiguity problems
when these wild cards are iterated. In this paper, we show
that a slightly restricted interpretation of wild cards, called
WYSIWYG, can not only solve both problems but also im-
prove the efficiency of recognizing paths containing them. A
second contribution of this paper is to show that it is possi-
ble to improve upon the efficiency of the classical Cartesian
product approach for path recognition [4].

The rest of this paper is organized as follows: In section
2, we introduce our notation. In section 3, we introduce
the WYSIWYG interpretation of wild cards. In section 4,
we show that it is possible to improve the efficiency of path
recognition. In section 5, we give a construction of an effi-
cient recognizer for abbreviated path expressions with iter-
ated wild cards, In section 6, we discuss some of the related

work. In section 7, we conclude this paper. It is worth men-
tioning that sections 3 and 4 are independent of each other
and can be read separately.

2. NOTATION
We use

• uppercase Greek letters to denote alphabets (e.g. ΣC),

• lowercase Greek letters to denote strings,

• uppercase Latin letters to denote regular languages
(e.g. C),

• lowercase Latin letters to denote symbols (e.g. a) as
well as functions (e.g. meta),

• Σ∗ to denote the free monoid on an alphabet Σ,

• f∗ to denote a homomorphism f∗ : Σ∗A → Σ∗B con-
structed by extending the function f : ΣA → Σ∗B the
usual way,

• C to denote the state complexity of a regular language
C. The state complexity of a regular language is the
number of states in the minimal deterministic finite
automaton that accepts it,

• R◦ to denote the prefix closure of a regular language
R. Formally, R◦ = {ω | ∃σ ∈ R : ω v σ}.

• P(S) to denote the power set of some set S.

3. WYSIWYG INTERPRETATION OF ITER-
ATED WILD CARDS

Given:

• An alphabet ΣC. Words over ΣC are called concrete
paths.

• A set of abbreviated paths A ⊆ (ΣA ∪ �)∗ where ΣA ⊆
ΣC and � 6∈ ΣC is a distinguished wild card symbol.

• All occurrences of � are iterated (i.e. � only shows
under the Kleene star). Formally, ∀α , β ∈ (ΣA ∪ �)∗ :
α · � · β ∈ A⇒ α · �∗ · β ⊆ A.

The WYSIWYG interpretation of a set of abbreviated
paths A in the concrete path alphabet ΣC, denoted
WWG(ΣC , A) ⊆ Σ∗C, is the set of all concrete paths ob-
tainable by replacing all wild cards in some path in A by
symbols from ΣC\ΣA. Given a concrete path ω, there can
be at most one corresponding abbreviated path α. Further-
more, α can be obtained from ω by replacing all occurrences
of symbols not in ΣA in ω by wild cards. This observation
enables us to have the following succinct formal definition
for WWG(ΣC , A):
WWG(ΣC , A) = {α ∈ Σ∗C | f∗(α) ∈ A}, Where:

f(a) =

(
a , a ∈ ΣS ,

� , otherwise .

Throughout the rest of this section we shall contrast
WWG(ΣC , A) to the classic interpretaion CLASSIC(ΣC , A)
of abbreviated paths in which wild cards can be replaced by
symbols from ΣC.

BusRoute LoB Bus

LoP

Passenger

Figure 1: Bus Route Class Graph

BusRoute LoB Bus

LoP

PassengerPass

Figure 2: Evolved Bus Route Class Graph

3.1 Modularity
The purpose of using abbreviated paths in module M to

refer to some structure defined in another module N is to
lower the coupling between M and N . In the context of AP,
abbreviated paths mentioned in a method select a subset of
paths in the class graph. The CLASSIC interpretation of a
set A of abbreviated paths often contains more paths than
it should. And consequently, selects more paths in the class
graph than it should. These extra paths are referred to in the
literature as surprise paths. The solution to surprise paths is
to identify and bypass those paths. This solution increases
the coupling between methods and the class graph.

To illustrate this issue, consider the “Bus Route Class
Graph” shown in Figure 1. Suppose that we are using the
abbreviated path expression A = BusRoute · �∗ ·Passenger
to select paths in the class graph. According to both the
CLASSIC and the WYSIWYG semantics, the set of selected
paths is BusRoute·LoB ·LoB∗ ·Bus·LoP ·LoP ∗ ·Passenger.
Now assume that Passes were added to the class graph as
indicated in Figure 2. According to the WYSIWYG seman-
tics, the set of selected paths does not change. However, ac-
cording to the CLASSIC semantics, the set of selected paths
becomes BusRoute·LoB·LoB∗·Bus·LoP ·LoP ∗·Passenger·
(Pass·BusRoute·LoB·LoB∗·Bus·LoP ·LoP ∗·Passenger)∗.
This illustrates the increased coupling. Furthermore, to by-
pass the extra paths, we need to mention the “Noise” class
Passenger in our abbreviated path expression, increasing
the coupling even further.

3.2 Ambiguity
Ambiguity is not a problem for recognition. It becomes

a problem when events during the recognition process are
observed. In AP, we associate behavior with paths in an ab-
breviated path expression. Therefore, confusion can occur
when one concrete path can match more than one abbre-
viated path. As mentioned earlier, with the WYSIWYG
semantics, there can be at most one abbreviated path cor-

responding to some concrete path. With the CLASSIC se-
mantics, ambiguity can occur. For example, consider the set
A = a · �∗ · b · �∗ · d ∪ a · �∗ · c · �∗ · d, and the concrete
path ω = a · b · c · d. According to the CLASSIC semantics,
ω matches both a · b · � · d, and a · � · c · d. According to
WYSIWYG semantics, ω matches neither.

3.3 Efficiency
Another, important property of the set WWG(ΣC , A) is

that it has the same state complexity as the set A, which,
as we shall see later, is directly related to the efficiency of
its recognition.

Theorem 3.1 (efficiency). Let W = WWG(ΣC , A),
W = A.

Proof. Let AA = 〈Q, ΣA ∪ �, δ, q0, F 〉 be the mini-
mal DFA that recognizes A. From Automata Theory, the
DFA WWG(AA, ΣC) = 〈Q, ΣC, γ, q0, F 〉, where γ(qi, a) =
δ(qi, f(a)), recognizes WWG(ΣC , A). Furthermore, WWG(AA, ΣC)
has the same number of states as AA. Hence follows the the-
orem.

A similar construction for CLASSIC(ΣC , A) results in
a nondeterministic finite automaton. Therefore, the state
complexity of CLASSIC(ΣC , A) can be exponentially larger
than WWG(ΣC , A). An example illustrating this exponen-
tial complexity is given in [4].

4. RELAXED PATH RECOGNITION
Given:

• A schema modeled as a prefix closed regular language
C ⊆ Σ∗C. We call ΣC the set of classes.

• A set of specified paths modeled as another regular
language S ⊆ Σ∗C over classes, those paths in S∩C are
called fruitful. Typically, S is the result of interpreting
path expressions with iterated wild cards.

• A prefix closed set of object paths modeled as a regu-
lar language O ⊆ Σ∗O. We call ΣO the set of objects.
Typically, O is the set of all paths that were once ac-
tive during some traversal of some graph defined over
the set of objects.

• A function meta : ΣO → ΣC that maps objects to
classes. We say that π ∈ Σ∗O is an instance ofmeta∗(π).
We also define a function shadow : P(O) → P(C)
to be shadow(P) = {meta∗(π) |π ∈ P} that maps a
subset of object paths to their corresponding subset of
schema paths.

• O is legal, meaning that O conforms to C. Formally,
shadow(O) ⊆ C.

The problem of path recognition is to identify all paths
in O whose shadow can be legally extended to a fruitful
path. In other words, the problem of path recognition is to
identify the largest subset of O that contains only instances
of fruitful path prefixes because these are the only paths that
can be legally extended to fruitful path instances. Formally,
goal(S) = {π ∈ O |meta∗(π) ∈ (S ∩ C)◦}. One application
of goal(S) is to to optimally guide a walk of some object
graph through all instances of fruitful paths starting at a
certain node.

The language goal(S) is prefix closed. The intuition be-
hind that is that if π ∈ O is a prefix of some instance of a
fruitful path, then so is every prefix of π. All these prefixes
are in O because O is prefix closed by its definition.

From the definition we can derive that shadow(goal(S)) =
(S ∩ C)◦. We precompute a finite state recognizer
rec(shadow(goal(S))) that recognizes shadow(goal(S)) at com-
pile time. The size of the minimal deterministic finite state
recognizer for shadow(goal(S)) is equal to the state com-
plexity of shadow(goal(S)) which is upper bounded [10] by
C ∗ S.

It is desirable to minimize the size of rec(shadow(goal(S)))
to improve the overall performance at runtime. One ap-
proach to reduce its size is to construct a nondeterministic
finite state recognizer. This approach was adopted in [4],
and it is possible when the language shadow(goal(S)) has
a minimal nondeterministic finite state recognizer that is
smaller than the minimal deterministic finite state recog-
nizer. This was the case with the classic interpretation of
wild cards adopted there. However, this is not the case in
general and certainly it is not the case when the WYSIWYG
interpretation of wild cards is adopted.

Fortunately, there is another approach. We can rely on
the fact that only legal object graph paths are going to be
checked against rec(shadow(goal(S))) at runtime, to relax
shadow(goal(S)) by adding some illegal paths to it. The
state complexity of a relaxed shadow can be significantly
lower than the shadow itself. For example, if C = S, then
C = S∩C meaning that all legal paths are fruitful. Since at
runtime we are going to check only legal paths, it is valid to
assume that all paths are legal. In other words, we can use
Σ∗C (whose state complexity is 1) as a relaxed shadow and
construct a recognizer for goal(S) from it.

In the following subsection we shall provide a character-
ization of relaxed shadows. This characterization serves as
a basis for judging the correctness of any relaxed recognizer
for goal(S).

4.1 Characterization of Relaxed Shadows

Definition The language rshadow(goal(S)) is a valid shadow
for goal(S) if and only if:

1. C◦∩rshadow(goal(S)) ⊆ shadow(goal(S)). [soundness]

2. shadow(goal(S)) ⊆ rshadow(goal(S)). [completeness]

We now prove that any language that satisfies this char-
acterization can be used to recognize goal(S).

Theorem 4.1 (correctness). ∀C ⊆ Σ∗C, S ⊆ Σ∗C, O ⊆
Σ∗O s.t. O conforms to C ∧ rshadow(goal(S)) is valid :
{π ∈ O |meta∗(π) ∈ rshadow(goal(S))} = goal(S).

Proof. Since O conforms to C, we conclude L.H.S =
{π ∈ O |meta∗(π) ∈ C◦ ∩ rshadow(goal(S))}.

But, since rshadow(goal(S)) is valid,
C◦ ∩ shadow(goal(S)) ⊆ C◦ ∩ rshadow(goal(S)). There-
fore by the definition of shadow(goal(S)), C◦ ∩ (C ∩ S)◦ ⊆
C◦ ∩ rshadow(goal(S)). Therefore by the definition of the
prefix closure operation, (C ∩ S)◦ ⊆ C◦ ∩ rshadow(goal(S)).
Therefore by the defintion of shadow(goal(S)),
shadow(goal(S)) ⊆ C◦ ∩ rshadow(goal(S)).

Also, since rshadow(goal(S)) is valid,
C◦ ∩ rshadow(goal(S)) ⊆ shadow(goal(S)).

Therefore, C◦∩rshadow(goal(S)) = shadow(goal(S)). There-
fore, L.H.S = {π ∈ O |meta∗(π) ∈ shadow(goal(S))}
= goal(S) = R.H.S.

5. RECOGNIZING ABBREVIATED PATH EX-
PRESSIONS

Given:

• A class graph modeled as a pair C = 〈ΣC, EC〉 where
ΣC 6= ∅ is a non empty set of nodes, called classes, and
EC ⊆ ΣC × ΣC is a set of edges. Let C be the regular
language of all paths in C. By its definition, C has the
following two properties:

– C◦ = C and

– ∀α , β ∈ Σ∗C , x ∈ ΣC : α · x ∈ C ∧ x · β ∈ C ⇒
α · x · β ∈ C.

• An Automaton S = 〈Q, ΣS ∪ �, δ, q0, F 〉 representing
a set of abbreviated paths. We require S to have the
following four properties:

– S has only one stuck state denoted q⊥ 6∈ F . For-
mally, ∀a ∈ ΣS ∪ � : δ(q⊥, a) = q⊥ and ∀qi ∈
Q\q⊥ : ∃a ∈ ΣS ∪ � s.t. δ(qi, a) 6= q⊥.

– All wild card symbols appear on loops. ∀qi :
δ(qi, �) 6= q⊥ ⇒ δ(qi, �) = qi.

– S is compatible with C meaning that every tran-
sition labeled with a symbol from ΣS be part
of some fruitful path. Formally, ∀qi ∈ Q, a ∈
ΣS : δ(qi, a) 6= q⊥ ⇒ ∃β ∈ Σ∗C s.t. a · β ∈
C ∧ δ∗(qi, f

∗(a · β)) ∈ F .

– L(S) has at least one fruitful path, ∃β ∈ Σ∗C s.t. β ∈
C ∧ δ∗(q0, f∗(β)) ∈ F .

We show how to construct a relaxed recognizer for
goal(WWG(ΣC , L(S))). We prove its correctness and show
that its the same number of states as S.
RR(S, C, ΣC) ≡ 〈Q, ΣC, η, q0, Q \ {q⊥}〉

where :

η(qi, a) =

(
δ(qi, f(a)) if a ∈ ΣS ∪∆qi ,

q⊥ otherwise .

∆qi ={a ∈ (ΣC\ΣS) | ∃β ∈ Σ∗C s.t.
a · β ∈ C ∧ δ∗(qi, f

∗(a · β)) ∈ F}

Lemma 5.1. ∀qi ∈ Q, a ∈ ΣC : η(qi, a) 6= q⊥ ⇔ ∃β ∈
Σ∗C s.t. a · β ∈ C ∧ δ∗(qi, f

∗(a · β)) ∈ F .

The automaton RR gets into a stuck state iff there is no way
to achieve a fruitful path, i.e., a path that satisfies both the
class graph and strategy automaton.

Proof. ⇒ direction:
case a ∈ ΣS: Immediate, from the definition of η and the
compatibility condition.
case a ∈ ∆qi : Immediate, from the definition of ∆qi .
case otherwise: from the definition of η, η(qi, a) = q⊥.

⇐ direction:
By the definition of ∆qi and the compatibility condition,
a ∈ ΣS ∪∆qi . Therefore, from the definition of η, η(qi, a) =

δ(qi, f(a)). But, δ(qi, f(a)) 6= q⊥ because δ∗(qi, f
∗(a · β)) =

δ∗(δ(qi, f(a)), f∗(β)) ∈ F and by definition of q⊥, q⊥ 6∈ F
and ∀α ∈ Σ∗C : δ∗(q⊥, α) = q⊥.

Lemma 5.2. ∀qi ∈ Q, α ∈ Σ∗C : η∗(qi, α) 6= q⊥ ⇒ η∗(qi, α) =
δ∗(qi, f

∗(α)).

Proof. Immediate, by simple induction on |α|.

Theorem 5.3 (correctness). RR(S, C, ΣC) is a valid
recognizer for the language goal({ω ∈ Σ∗C | δ∗(q0, f∗(ω)) ∈ F}).

Proof. Soundness:
L(RR(S, C, ΣC))∩C◦ ⊆ (C ∩ {ω ∈ Σ∗C | δ∗(q0, f∗(ω)) ∈ F})◦
Which, by the defnition of prefix closure, reduces to:
L(RR(S, C, ΣC)) ∩ C◦ ⊆ {α ∈ Σ∗C s.t. ∃β ∈ Σ∗C s.t. α · β ∈
(C ∩ {ω ∈ Σ∗C | δ∗(q0, f∗(ω)) ∈ F})}
Which further reduces to: ∀α ∈ Σ∗C s.t. η

∗(q0, α) 6= q⊥∧α ∈
C : ∃β ∈ Σ∗C s.t. α · β ∈ C ∧ δ∗(q0, f∗(α · β)) ∈ F

We proceed by induction on |α|:
Base case: (|α| = 0)
α = ε and therefore, η∗(q0, ε) = q0. By the definition of
S, ∃β ∈ Σ∗C s.t. β ∈ C ∧ δ∗(q0, f

∗(β)) ∈ F . Therefore,
α · β ∈ C, and δ∗(q0, f

∗(α · β)) ∈ F .
Induction step: Let α = ω · a

Therefore, η∗(q0, ω · a) 6= q⊥. But, η∗(q0, ω · a) = η(qi, a),
where qi = η∗(q0, ω). Therefore, qi 6= q⊥, and by lemma 5.2,
δ∗(q0, f

∗(ω)) = qi. Furthermore, η(qi, a) 6= q⊥. Therefore,
by lemma 5.1, ∃β ∈ Σ∗C s.t. a ·β ∈ C ∧ δ∗(qi, f

∗(a · β)) ∈ F .
But, ω ·a ∈ C, therefore, by the definition of C, ω ·a ·β = α ·
β ∈ C. And, δ∗(qi, f

∗(a · β)) = δ∗(δ∗(q0, f
∗(ω)), f∗(a · β)) =

δ∗(q0, f
∗(ω · a · β)) = δ∗(q0, f

∗(α · β)), therefore,
δ∗(q0, f

∗(α · β)) ∈ F .
Completeness:

(C ∩ {ω ∈ Σ∗C | δ∗(q0, f∗(ω)) ∈ F})◦ ⊆ L(RR(S, C, ΣC))
Which, by the defnition of prefix closure, reduces to: {α ∈
Σ∗C s.t. ∃β ∈ Σ∗C s.t. α · β ∈ (C ∩ {ω ∈ Σ∗C | δ∗(q0, f∗(ω)) ∈
F})} ⊆ L(RR(S, C, ΣC))
Which further reduces to: ∀α ∈ Σ∗C s.t. ∃β ∈ Σ∗C s.t. α · β ∈
C ∧ δ∗(q0, f∗(α · β)) ∈ F : η∗(q0, α) ∈ Q\{q⊥}
Which, by the definition of RR(S, C, ΣC), reduces to: ∀α ∈
C s.t. ∃β ∈ C s.t. α · β ∈ C ∧ δ∗(q0, f∗(α · β)) ∈ F :
η∗(q0, α) 6= q⊥

We proceed by induction on |α|:
base case: (|α| = 0)
α = ε and therefore, η∗(q0, ε) = q0 6= q⊥.
induction step: Let α = ω · a
η∗(q0, α) = η∗(q0, ω · a) = η(qi, a), where qi = η∗(q0, ω).
By induction hypothesis, qi 6= q⊥. By lemma 5.2, δ∗(q0, f

∗(ω)) =
qi. But, δ∗(q0, f

∗(α · β)) = δ∗(q0, f
∗(ω · a · β)) =

δ∗(δ∗(q0, f
∗(ω)), f∗(a · β)) = δ∗(qi, f

∗(a · β)), therefore,
δ∗(qi, f

∗(a · β)) ∈ F . And α · β ∈ C, therefore, a · β ∈ C.
By lemma 5.1, we can conclude η(qi, a) 6= q⊥. Hence,
η∗(q0, α) 6= q⊥.

Theorem 5.4 (efficiency). RR(S, C, ΣC) has the same
number of states as S.

Proof. Immediate from the definition ofRR(S, C, ΣC)

6. RELATED WORK
The WYSIWYG expansion idea was introduced from a

complexity prespective in [5] under the name of pure paths.
WYSIWYG semantics was further explored in [9, 1] which

provide a first glimpse at the treatment provided in this
paper. But the proofs are long. The solution provided in this
paper is clearly better and provides a nice demonstration of
the power of regular languages.

Disambiguation techniques for matching a single string
against a regular expression are discussed in [3, 2]. Mendel-
zon and Wood analyzed the complexity of finding regular
paths in graphs [6]. They showed that finding simple regu-
lar paths in a graph is NP-complete problem while finding
regular paths is a polynomial-time problem.

Sereni and de Moor study the static determination of cflow
pointcuts in AspectJ [8]. They reason also in terms of sets
of paths, and they use regular expressions as pointcut lan-
guage. They model pointcut designators as automata. They
do whole program analysis on the call graph of the program
and try to determine whether a potential join point fits into
one of the following three cases: (1) it always matches a
cflow pointcut; (2) it never matches a cflow pointcut; (3) it
maybe matches a cflow pointcut. In case (3), there is still a
need to have dynamic matching code.

7. CONCLUSION
This paper brings a line of work, called the Theory of

Traversals for Adaptive Programming [7, 4, 1, 9] to a natu-
ral conclusion. The paper simplifies the model to its essence
which allows a very elegant derivation of provably correct
algorithms for implementing basic tools useful for numerous
applications, e.g., XML, AOP and AP. Correctness argu-
ments that used to fill many pages are reduced to just a few
lines.

8. REFERENCES
[1] A. Abdelmeged, T. Skotiniotis, and K. Lieberherr.

Navigating Object Graphs Using Incomplete
Meta-Information. Technical Report NU-CCIS-10-2,
CCIS/PRL, Northeastern University, Boston, March
2010.

[2] C. Brabrand and J. G. Thomsen. Typed and
unambiguous pattern matching on strings using
regular expressions. 2010.

[3] A. Frisch and L. Cardelli. Greedy regular expression

matching. In Proc. of ICALPÕ04, pages 618–629,
2004.

[4] K. Lieberherr, B. Patt-Shamir, and D. Orleans.
Traversals of object structures: Specification and
efficient implementation. ACM Trans. Program. Lang.
Syst., 26(2):370–412, 2004.

[5] K. J. Lieberherr and B. Patt-Shamir. The refinement
relation of graph-based generic programs. In
M. Jazayeri, R. Loos, and D. Musser, editors, 1998
Schloss Dagstuhl Workshop on Generic Programming,
pages 40–52. Springer, 2000. LNCS 1766.

[6] A. O. Mendelzon and P. T. Wood. Finding regular
simple paths in graph databases. In VLDB, pages
185–193, 1989.

[7] J. Palsberg, C. Xiao, and K. Lieberherr. Efficient
implementation of adaptive software. ACM
Transactions on Programming Languages and
Systems, 17(2):264–292, Mar. 1995.

[8] D. Sereni and O. de Moor. Static analysis of aspects.
In AOSD ’03: Proceedings of the 2nd international

conference on Aspect-oriented software development,
pages 30–39, New York, NY, USA, 2003. ACM.

[9] T. Skotiniotis. Modular Adaptive Programming. PhD
thesis, Northeastern University, 2010. 190 pages.

[10] S. Yu. State complexity of regular languages. J.
Autom. Lang. Comb., 6(2):221–234, 2001.

