Abbreviated Path Expressions With Iterated Wild Cards: WYSIWYG Semantics and Efficient Implementation

Ahmed Abdelmeged
College of Computer & Information Science
Northeastern University
mohsen@ccs.neu.edu

Karl Lieberherr
College of Computer & Information Science
Northeastern University
lieber@ccs.neu.edu

ABSTRACT
Abbreviated Path expressions are used as an information hiding tool in Adaptive Programming (AP), eXtensible Markup Language (XML) document processing, and Aspect Oriented Programming (AOP). In the context of AP, the classical semantics of wild cards as place holders for any symbol leads to modularity and ambiguity problems when these wild cards are iterated. We show that a slightly restricted semantics for wild cards, called the WYSIWYG semantic can not only solve these problems but also lead to the construction of more efficient recognizers for abbreviated path expressions with iterated wild cards.

1. INTRODUCTION
Path expressions are used to specify a set of paths pertaining to some task at hand. Path expressions are ubiquitous to Object Oriented Programming (OOP), Adaptive Programming (AP), eXtensible Markup Language (XML) document processing, and Aspect Oriented Programming (AOP). In OOP, path expressions are used to retrieve information from object graphs. In AP, strategies are a form of path expression used to guide the navigation of object graphs. In XML document processing, XPath expressions are used to specify elements in XML documents for either retrieval or update. Finally, In AOP, point cut designators are used to specify certain join points during the course of program execution.

There are two categories of applications employing path expressions: control driven and data driven. Field access in OOP and Document Object Model (DOM) style XML processing applications fall into the control driven category. AP and AOP, fall into the data driven category. In the data driven category, some externally predetermined navigation of some structure takes place (e.g. a depth first walk of the object graph in AP, and program execution in AOP which is a walk through the dynamic call flow graph of some program) resulting in a set of active paths (i.e. stack contents). We want to recognize the subset of these active paths that can possibly lead to some path specified by a given path expression. We call this problem, the path recognition problem. Path recognition can be employed to perform optimal navigation in AP, efficient execution of XPath expressions, enhance the runtime performance programs in AOP.

Path expression occur in methods or aspects and refer to some external structure (e.g. object graphs in OOP and AP, XML document, and the dynamic control flow graph in AOP). Abbreviated path expressions can be used as an information hiding tool to avoid unnecessarily hard coded dependencies between the method or aspect and some external structure and thus lead to increased modularity, reusability, and maintainability of object oriented programs, adaptive programs, XML processing applications, and aspect oriented programs.

Abbreviated path expression formalisms fall into two broad categories: explicit and implicit. Explicit formalisms provide developers with wild cards to replace the abbreviated path components. Wild cards can also be iterated to replace multiple consecutive abbreviated path components. Examples of explicit formalisms is XPath where developers are provided with "//" as form of iterated wild card and the AspectJ point cut language that provides the “cflow” construct as a form of iterated wild cards. Regular expressions with wild cards are a third example.

Implicit formalisms do not provide developers with wild cards. Instead, the navigation paths are translated into an explicit form by inserting wild cards into certain places defined by what we call an expansion semantics. Implicit formalisms save the developers from writing too many wild cards to make their methods flexible. An example of implicit formalisms is the regular-expression-like strategy language in AP.

The classical interpretation of wild cards as place holders for “anything” leads to modularity and ambiguity problems when these wild cards are iterated. In this paper, we show that a slightly restricted interpretation of wild cards, called WYSIWYG, can not only solve both problems but also improve the efficiency of recognizing paths containing them. A second contribution of this paper is to show that it is possible to improve upon the efficiency of the classical Cartesian product approach for path recognition [4].

The rest of this paper is organized as follows: In section 2, we introduce our notation. In section 3, we introduce the WYSIWYG interpretation of wild cards. In section 4, we show that it is possible to improve the efficiency of path recognition. In section 5, we give a construction of an efficient recognizer for abbreviated path expressions with iterated wild cards. In section 6, we discuss some of the related
work. In section 7, we conclude this paper. It is worth mentioning that sections 3 and 4 are independent of each other and can be read separately.

2. NOTATION

We use

- uppercase Greek letters to denote alphabets (e.g. Σ_C),
- lowercase Greek letters to denote strings,
- uppercase Latin letters to denote regular languages (e.g. C),
- lowercase Latin letters to denote symbols (e.g. a) as well as functions (e.g. $meta$),
- Σ^* to denote the free monoid on an alphabet Σ,
- f^* to denote a homomorphism $f^* : \Sigma_A \rightarrow \Sigma_B$ constructed by extending the function $f : \Sigma_A \rightarrow \Sigma_B$ the usual way,
- C to denote the state complexity of a regular language C. The state complexity of a regular language is the number of states in the minimal deterministic finite automaton that accepts it,
- R^c to denote the prefix closure of a regular language R. Formally, $R^c = \{ \omega | \exists \sigma \in R : \omega \subseteq \sigma \}$.
- $P(S)$ to denote the power set of some set S.

3. WYSIWYG INTERPRETATION OF ITERATED WILD CARDS

Given:

- An alphabet Σ_C. Words over Σ_C are called concrete paths.
- A set of abbreviated paths $A \subseteq (\Sigma_A \cup \phi)^*$ where $\Sigma_A \subseteq \Sigma_C$ and $\phi \notin \Sigma_C$ is a distinguished wild card symbol.
- All occurrences of ϕ are iterated (i.e. ϕ only shows under the Kleene star). Formally, $\forall \alpha, \beta \in (\Sigma_A \cup \phi)^* : \alpha \cdot \phi \cdot \beta \in A \Rightarrow \alpha \cdot \phi^* \cdot \beta \subseteq A$.

The WYSIWYG interpretation of a set of abbreviated paths A in the concrete path alphabet Σ_C, denoted $\text{WWG}(\Sigma_C, A) \subseteq \Sigma_C^*$, is the set of all concrete paths obtainable by replacing all wild cards in some path in A by symbols from $\Sigma_C \setminus \Sigma_A$. Given a concrete path ω, there can be at most one corresponding abbreviated path α. Furthermore, α can be obtained from ω by replacing all occurrences of symbols not in Σ_A in ω by wild cards. This observation enables us to have the following succinct formal definition for $\text{WWG}(\Sigma_C, A)$:

$$\text{WWG}(\Sigma_C, A) = \{ \alpha \in \Sigma_C^* | f^*(\alpha) \in A \},$$

Where:

$$f(\alpha) = \begin{cases} a, & a \in \Sigma_A, \\ \phi, & \text{otherwise}. \end{cases}$$

Throughout the rest of this section we shall contrast $\text{WWG}(\Sigma_C, A)$ to the classic interpretation $\text{CLASSIC}(\Sigma_C, A)$ of abbreviated paths in which wild cards can be replaced by symbols from Σ_C.

3.1 Modularity

The purpose of using abbreviated paths in module M to refer to some structure defined in another module N is to lower the coupling between M and N. In the context of AP, abbreviated paths mentioned in a method select a subset of paths in the class graph. The CLASSIC interpretation of a set A of abbreviated paths often contains more paths than it should. And consequently, selects more paths in the class graph than it should. These extra paths are referred to in the literature as surprise paths. The solution to surprise paths is to identify and bypass those paths. This solution increases the coupling between methods and the class graph.

To illustrate this issue, consider the “Bus Route Class Graph” shown in Figure 1. Suppose that we are using the abbreviated path expression $A = \text{BusRoute} \cdot \phi^* \cdot \text{Passenger}$ to select paths in the class graph. According to both the CLASSIC and the WYSIWYG semantics, the set of selected paths is $\text{BusRoute} \cdot \text{LoB} \cdot \text{LoB}^* \cdot \text{Bus} \cdot \text{LoP} \cdot \text{LoP}^* \cdot \text{Passenger}$. Now assume that Pass were added to the class graph as indicated in Figure 2. According to the WYSIWYG semantics, the set of selected paths does not change. However, according to the CLASSIC semantics, the set of selected paths becomes $\text{BusRoute} \cdot \text{LoB} \cdot \text{LoB}^* \cdot \text{Bus} \cdot \text{LoP} \cdot \text{LoP}^* \cdot \text{Passenger} \cdot \text{Pass}$. This illustrates the increased coupling. Furthermore, to bypass the extra paths, we need to mention the “Noise” class Passenger in our abbreviated path expression, increasing the coupling even further.

3.2 Ambiguity

Ambiguity is not a problem for recognition. It becomes a problem when events during the recognition process are observed. In AP, we associate behavior with paths in an abbreviated path expression. Therefore, confusion can occur when one concrete path can match more than one abbreviated path. As mentioned earlier, with the WYSIWYG semantics, there can be at most one abbreviated path cor-
responding to some concrete path. With the CLASSIC semantics, ambiguity can occur. For example, consider the set $A = a \cdot \circ^* \cdot \bullet \cdot \circ^* \cdot d \cup a \cdot \circ^* \cdot \circ \cdot \circ^* \cdot d$, and the concrete path $\omega = a \cdot \bullet \cdot \circ^* \cdot d$. According to the CLASSIC semantics, ω matches both $a \cdot \bullet \cdot \circ^* \cdot d$, and $a \cdot \circ^* \cdot \circ \cdot \circ^* \cdot d$. According to WYSIWYG semantics, ω matches neither.

3.3 Efficiency

Another, important property of the set $\text{WWG}(\Sigma_c, A)$ is that it has the same state complexity as the set A, which, as we shall see later, is directly related to the efficiency of its recognition.

Theorem 3.1 (efficiency). Let $W = \text{WWG}(\Sigma_c, A)$, $\mathcal{W} = \mathcal{A}$.

Proof. Let $AA = (Q, \Sigma_a \cup \phi, \delta, q_0, F)$ be the minimal DFA that recognizes A. From Automata Theory, the DFA $\text{WWG}(AA, \Sigma_c) = (Q, \Sigma_c, \gamma, q_0, F)$, where $\gamma(q_i, a) = \delta(q_i, f(a))$, recognizes $\text{WWG}(\Sigma_c, A)$. Furthermore, $\text{WWG}(AA, \Sigma_c)$ has the same number of states as AA. Hence, the theorem.

A similar construction for $\text{CLASSIC}(\Sigma_c, A)$ results in a nondeterministic finite automaton. Therefore, the state complexity of $\text{CLASSIC}(\Sigma_c, A)$ can be exponentially larger than $\text{WWG}(\Sigma_c, A)$. An example illustrating this exponential complexity is given in [4].

4. RELAXED PATH RECOGNITION

Given:

- A schema modeled as a prefix closed regular language $C \subseteq \Sigma_c$. We call Σ_c the set of classes.
- A set of specified paths modeled as another regular language $S \subseteq \Sigma_c$ over classes, those paths in $S \cap C$ are called fruitful. Typically, S is the result of interpreting path expressions with iterated wild cards.
- A prefix closed set of object paths modeled as a regular language $O \subseteq \Sigma_0$. We call Σ_0 the set of objects.
- A function $\text{meta} : \Sigma_0 \rightarrow \Sigma_c$ that maps objects to classes. We say that $\pi \in \Sigma_0$ is an instance of $\text{meta}^*(\pi)$. We also define a function $\text{shadow} : \mathcal{P}(O) \rightarrow \mathcal{P}(C)$ to be $\text{shadow}(P) = \{\text{meta}^*(\pi) \mid \pi \in P\}$ that maps a subset of object paths to their corresponding subset of schema paths.
- O is legal, meaning that O conforms to C. Formally, $\text{shadow}(O) \subseteq C$.

The problem of path recognition is to identify all paths in O whose shadow can be legally extended to a fruitful path. In other words, the problem of path recognition is to identify the largest subset of O that contains only instances of fruitful path prefixes because these are the only paths that can be legally extended to fruitful path instances. Formally, $\text{goal}(S) = \{\pi \in O \mid \text{meta}^*(\pi) \in (S \cap C)^\circ\}$. One application of $\text{goal}(S)$ is to optimally guide a walk of some object graph through all instances of fruitful paths starting at a certain node.

The language $\text{goal}(S)$ is prefix closed. The intuition behind is that if $\pi \in O$ is a prefix of some instance of a fruitful path, then so is every prefix of π. All these prefixes are in O because O is prefix closed by its definition.

From the definition we can derive that $\text{shadow}(\text{goal}(S)) = (S \cap C)^\circ$. We precompute a finite state recognizer $\text{rec}(\text{shadow}(\text{goal}(S)))$ that recognizes $\text{shadow}(\text{goal}(S))$ at compile time. The size of the minimal deterministic finite state recognizer for $\text{shadow}(\text{goal}(S))$ is equal to the state complexity of $\text{shadow}(\text{goal}(S))$ which is upper bounded by $C \cdot S$.

It is desirable to minimize the size of $\text{rec}(\text{shadow}(\text{goal}(S)))$ to improve the overall performance at runtime. One approach to reduce its size is to construct a nondeterministic finite state recognizer. This approach was adopted in [4], and it is possible when the language $\text{shadow}(\text{goal}(S))$ has a minimal nondeterministic finite state recognizer that is smaller than the minimal deterministic finite state recognizer.

Theorem 3.1 (correctness).

Proof. Since O conforms to C, we conclude $L.H.S = \{\pi \in O \mid \text{meta}^*(\pi) \in C^\circ \cap \text{shadow}(\text{goal}(S))\}$.

But, since $\text{shadow}(\text{goal}(S))$ is valid, $\text{goal}(S) \subseteq C^\circ \cap \text{shadow}(\text{goal}(S))$. Therefore by the definition of $\text{shadow}(\text{goal}(S))$, $\text{goal}(S) \subseteq C^\circ \cap \text{shadow}(\text{goal}(S))$. Therefore by the definition of the prefix closure operation, $C^\circ \cap \text{shadow}(\text{goal}(S)) \subseteq C^\circ \cap \text{shadow}(\text{goal}(S))$. Therefore by the definition of $\text{shadow}(\text{goal}(S))$, $\text{shadow}(\text{goal}(S)) \subseteq C^\circ \cap \text{shadow}(\text{goal}(S))$. Also, since $\text{shadow}(\text{goal}(S))$ is valid, $\text{goal}(S) \subseteq C^\circ \cap \text{shadow}(\text{goal}(S))$.

4.1 Characterization of Relaxed Shadows

Definition. The language $\text{rshadow}(\text{goal}(S))$ is a valid shadow for goal(S) if and only if:

1. $C^\circ \cap \text{rshadow}(\text{goal}(S)) \subseteq \text{shadow}(\text{goal}(S))$. [soundness]

2. $\text{shadow}(\text{goal}(S)) \subseteq \text{rshadow}(\text{goal}(S))$. [completeness]

We now prove that any language that satisfies this characterization can be used to recognize $\text{goal}(S)$.

Theorem 4.1 (correctness). $\forall C \subseteq \Sigma_c$, $S \subseteq \Sigma_c$, $O \subseteq \Sigma_c$ such that O conforms to C and $\text{rshadow}(\text{goal}(S))$ is valid:

$$\{\pi \in O \mid \text{meta}^*(\pi) \in \text{rshadow}(\text{goal}(S))\} = \text{goal}(S).$$

Proof. Since O conforms to C, we conclude $L.H.S = \{\pi \in O \mid \text{meta}^*(\pi) \in C^\circ \cap \text{rshadow}(\text{goal}(S))\}$.

But, since $\text{rshadow}(\text{goal}(S))$ is valid, $C^\circ \cap \text{shadow}(\text{goal}(S)) \subseteq C^\circ \cap \text{rshadow}(\text{goal}(S))$. Therefore by the definition of $\text{shadow}(\text{goal}(S))$, $C^\circ \cap (C \cap S)^\circ \subseteq C^\circ \cap \text{rshadow}(\text{goal}(S))$. Therefore by the definition of $\text{shadow}(\text{goal}(S))$, $\text{shadow}(\text{goal}(S)) \subseteq C^\circ \cap \text{rshadow}(\text{goal}(S))$. Therefore by the definition of $\text{shadow}(\text{goal}(S))$, $\text{shadow}(\text{goal}(S)) \subseteq \text{goal}(S)$. Also, since $\text{rshadow}(\text{goal}(S))$ is valid, $C^\circ \cap \text{shadow}(\text{goal}(S)) \subseteq \text{shadow}(\text{goal}(S))$.

\[\text{goal}(S) \subseteq C^\circ \cap \text{shadow}(\text{goal}(S)) \subseteq \text{goal}(S).\]
Therefore, \(C^\circ \cap \text{shadow}(\text{goal}(S)) = \text{shadow}(\text{goal}(S)). \) Therefore, \(\mathcal{L}_H \mathcal{S} = \{ q \in O \mid \text{meta}^*(\pi) \in \text{shadow}(\text{goal}(S)) \} \)
\(= \text{goal}(S) = R.H.S. \)

\[\Box \]

5. RECOGNIZING ABBREVIATED PATH EXPRESSIONS

Given:

- A class graph modeled as a pair \(C = (\Sigma_C, E_C) \) where \(\Sigma_C \neq \emptyset \) is a non-empty set of nodes, called classes, and \(E_C \subseteq \Sigma_C \times \Sigma_C \) is a set of edges. Let \(C \) be the regular language of all paths in \(C \). By its definition, \(C \) has the following two properties:
 - \(C^\circ = C \) and
 - \(\forall a, \beta \in \Sigma_C^* \cdot x \in \Sigma_C : a \cdot x \in C \land x \cdot \beta \in C \Rightarrow a \cdot x \cdot \beta \in C. \)

- An Automaton \(S = (Q, \Sigma_S \cup \circ, \delta, q_0, F) \) representing a set of abbreviated paths. We require \(S \) to have the following four properties:
 - \(S \) has only one stuck state denoted \(q \in F \).
 Formally, \(\forall q \in Q \cup \circ : \delta(q, \gamma) = q \) and \(\forall q \in Q \cup \circ : \exists a \in \Sigma_S \cup \circ \land \delta(q, a) \neq q \).
 - All wild card symbols appear on loops. \(\forall q : \delta(q, \circ) \neq q \land \delta(q, \circ) = q. \)
 - \(S \) is compatible with \(C \) meaning that every transition labeled with a symbol from \(\Sigma_S \) be part of some fruitful path. Formally, \(\forall q \in Q \cup \circ : \exists a \in \Sigma_S : \delta(q, a) \neq q \land \exists \beta \in \Sigma_S \land a \cdot \beta \in C \land \delta^*(q, f^*(a \cdot \beta)) \in F. \)
 - \(\mathcal{L}(S) \) has at least one fruitful path, \(\exists \beta \in \Sigma_S^* \land \beta \in C \land \delta^*(q_0, f^*(\beta)) \in F. \)

We show how to construct a relaxed recognizer for \(\text{goal}(\text{WWG}(\Sigma_C, \mathcal{L}(S))). \) We prove its correctness and show that its the same number of states as \(S. \)

\[RR(S, C, \Sigma_C) \equiv \{ Q, \Sigma_C, \eta, q_0, Q \mid q_0 \} \]

where:

\[\eta(q_0, a) = \begin{cases} \delta(q_0, f(a)) & \text{if } a \in \Sigma_S \cup \Delta_q, \quad q_0 \in F, \\ \delta^*(q_0, f^*(a \cdot \beta)) & \text{otherwise}. \end{cases} \]

\[\Delta_q = \{ a \in (\Sigma_C \cup \Sigma_S) \mid \exists \beta \in \Sigma_S \land a \cdot \beta \in C \land \delta^*(q_0, f^*(a \cdot \beta)) \in F \} \]

Lemma 5.1. \(\forall q \in Q \cup \circ : a \in \Sigma_C : \eta(q_0, a) \neq q_0 \Leftrightarrow \exists \beta \in \Sigma_S \land a \cdot \beta \in C \land \delta^*(q_0, f^*(a \cdot \beta)) \in F. \)

The automaton \(RR \) gets into a stuck state iff there is no way to achieve a fruitful path, i.e., a path that satisfies both the class graph and the strategy automaton.

Proof. \(\Rightarrow \) direction:
- case \(a \in \Sigma_S \): Immediate, from the definition of \(\eta \) and the compatibility condition.
- case \(a \in \Delta_q \): Immediate, from the definition of \(\Delta_q. \)
- case otherwise: from the definition of \(\eta(q_0, a) = \delta(q_0, f(a)) = \delta(q_0, f^*(a \cdot \beta)) = \delta^*(q_0, f^*(a \cdot \beta)) = \delta^*(q_0, f^*(a \cdot \beta)) \in F. \)

\[\Box \]

Lemma 5.2. \(\forall q \in L, a \in \Sigma_C^* : \eta^*(q_0, a) \neq q_0 \Rightarrow \eta^*(q_0, a) = \delta^*(q_0, f^*(a \cdot \beta)). \)

Proof. Immediate, by simple induction on \(|a| \).

Theorem 5.3 (correctness). \(RR(S, C, \Sigma_C) \) is a valid recognizer for the language \(\text{goal}(\{ \omega \in \Sigma_C^* \mid \delta^*(q_0, f^*(\omega)) \in F \}). \)

Proof. Soundness:
\(\mathcal{L}(RR(S, C, \Sigma_C)) \subseteq (C \cap \{ \omega \in \Sigma_C^* \mid \delta^*(q_0, f^*(\omega)) \in F \}) \)
Which, by the definition of prefix closure, reduces to:
\(\mathcal{L}(RR(S, C, \Sigma_C)) \subseteq (C \cap \{ \omega \in \Sigma_C^* \mid \exists \beta \in \Sigma_S \land a \cdot \beta \in C \land \delta^*(q_0, f^*(a \cdot \beta)) \in F \}) \)
Which further reduces to:
\(\forall \alpha \in \Sigma_C^* \land \eta^*(q_0, a) \neq q_0 \land C \cap \{ \omega \in \Sigma_C^* \mid \delta^*(q_0, f^*(a \cdot \beta)) \in F \}) \)
We proceed by induction on \(|a| \):
Base case: \(|a| = 0 \)
\(\alpha = \varepsilon \) and therefore, \(\eta^*(q_0, \varepsilon) = q_0. \) By the definition of \(S, \exists \beta \in \Sigma_C \land a \cdot \beta \in C \land \delta^*(q_0, f^*(a \cdot \beta)) \in F. \)
Therefore, \(\delta^*(q_0, f^*(a \cdot \beta)) \in F. \)

Induction step: Let \(\alpha = \omega \cdot a \).
Therefore, \(\eta^*(q_0, \omega \cdot a) \neq q_0. \) But, \(\eta^*(q_0, \omega \cdot a) = \eta(q_0, \omega). \)
Therefore, \(\eta^*(q_0, \omega \cdot a) \neq q_0. \) Therefore, \(\eta^*(q_0, \omega \cdot a) = \eta(q_0, \omega). \)

Completeness:
\(\{ \omega \in \Sigma_C^* \mid \delta^*(q_0, f^*(\omega)) \in F \} \subseteq \mathcal{L}(RR(S, C, \Sigma_C)) \)

Which, by the definition of prefix closure, reduces to:
\(\{ \alpha \in \Sigma_C \mid \exists \beta \in \Sigma_S \land a \cdot \beta \in C \land \delta^*(q_0, f^*(a \cdot \beta)) \in F \} \subseteq \mathcal{L}(RR(S, C, \Sigma_C)) \)

We proceed by induction on \(|a| \):
Base case:\(\{ \alpha = 0 \} \)
\(\alpha = \varepsilon \) and therefore, \(\eta^*(q_0, \varepsilon) = q_0 \neq q_0. \)

Induction step: Let \(\alpha = \omega \cdot a \).
Therefore, \(\eta^*(q_0, \omega \cdot a) = \eta(q_0, \omega). \)
By induction hypothesis, \(q_0 \neq q_0. \) By lemma 5.2, \(\delta^*(q_0, f^*(\omega)) = q_0. \)

Theorem 5.4 (efficiency). \(RR(S, C, \Sigma_C) \) has the same number of states as \(S. \)

Proof. Immediate from the definition of \(RR(S, C, \Sigma_C) \).

6. RELATED WORK

The WYSIWYG expansion idea was introduced from a complexity perspective in [5] under the name of pure paths. WYSIWYG semantics was further explored in [9, 1] which
provide a first glimpse at the treatment provided in this paper. But the proofs are long. The solution provided in this paper is clearly better and provides a nice demonstration of the power of regular languages.

Disambiguation techniques for matching a single string against a regular expression are discussed in [3, 2]. Mendelzon and Wood analyzed the complexity of finding regular paths in graphs [6]. They showed that finding simple regular paths in a graph is NP-complete problem while finding regular paths is a polynomial-time problem.

Sereni and de Moor study the static determination of eflow pointcuts in AspectJ [8]. They reason also in terms of sets of paths, and they use regular expressions as pointcut language. They model pointcut designators as automata. They do whole program analysis on the call graph of the program and try to determine whether a potential join point fits into one of the following three cases: (1) it always matches a eflow pointcut; (2) it never matches a eflow pointcut; (3) it maybe matches a eflow pointcut. In case (3), there is still a need to have dynamic matching code.

7. CONCLUSION

This paper brings a line of work, called the Theory of Traversals for Adaptive Programming [7, 4, 1, 9] to a natural conclusion. The paper simplifies the model to its essence which allows a very elegant derivation of provably correct algorithms for implementing basic tools useful for numerous applications, e.g., XML, AOP and AP. Correctness arguments that used to fill many pages are reduced to just a few lines.

8. REFERENCES