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ABSTRACT
We present the Formal Science Crowdsourcing Platform (FSCP).
FSCP represents claims as interpreted predicate logic formulas.
FSCP-based crowdsourcing systems focus a crowd of scholars on
examining a family of claims to separate the true claims from false
ones. Scholars examine a claim through participating in a substan-
tiation game. Substantiation games are built on top of Hintikka’s
Game Theoretical Semantics (GTS). Furthermore, FSCP collects
the defense and attack strategies on claims.

We also present an approach to evaluate scholars that we believe
is new. We also present two approaches to estimate the truth likeli-
hood of claims. We report on our experience with using an earlier
version of FSCP in class.
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1. SELF
SSS is an international forum for researchers and practitioners in

the design and development of distributed systems with self-* prop-
erties: (classical) self-stabilizing, self-configuring, self-organizing,
self-managing, self-repairing, self-healing, self-optimizing, self-adaptive,
and self-protecting.

SCG is self-protecting. A malicious scholar cannot disturb the
system?

SCG is self-managing. Each game progresses the system: see
the progress claim.

SCG is self-repairing. False claims wll eventually be eliminated?
SCG serves all three tenants of the academic mission, namely,

research, education, and outreach.

2. COMPUTATIONAL PROBLEMS

2.1 Kinds of Crowdsourcing

To be submitted for review to the HCOMP 2013 Conference on Human
Computation and Crowdsourcing November 7-9, 2013 - Palm Springs, Cal-
ifornia USA. Due May 1, 2013 5pm, version March 25

http://www.academia.edu/963662/The_Promise_of_Idea_Crowdsourcing_Bene�ts_Contexts_Limitations

Do we do knowledge discovery and management and broadcast
search (crowd wisdom)? Distributed human intelligence tasking.

• Tools to help with predicate logic

https://files.ifi.uzh.ch/rerg/arvo/ftp/papers/LOPSTR98.pdf

University of Zurich

Lot’s of expertise in formal methods is around.

Users of SCG only need to understand syntax and semantics
of logical formulas. The semantics involves the concept of a
structure/model and whether a formula holds in a structure.
The concept of Skolem function is needed. They need to un-
derstand how a logical formula is translated into a semantical
game between a verifier and falsifier.

With logics that have semantic games we can express lots of dif-
ferent computational problems for SCG-style crowdsourcing. Some-
times one logic formula is enough to define a useful computational
problem. Sometimes we have a decision problem for an infinite set
of logical formulas.

The logical formulas that define a computational problem are
often trivially true. But there are exceptions.

Computational claims have the following form:
Claim(inputParameters, outputParameters) =
∀i ∈ Input : satisfyI(i, inputParameters)
∃s ∈ Solution : satisfyO(s, outputParameters)
predicate(i, s)

The set of inputParameters or outputParameters maybe empty.

2.2 Decision/Search Problems

2.2.1 Truth of IPLFs
Decision Problem; undecidable ? although interpreted.
Instance: Given an interpreted second order predicate logic for-

mula. Solution: true/false

2.2.2 Truth of first-order IPLFs: FIN-MC
Decision Problem; PSPACE-complete
http://www.lsv.ens-cachan.fr/ goubault/Complexite/fagin.pdf
∀F ∈ FO∀I ∈Model(F )I |= F
INPUT: a finite structure I, in its standard representation; a first-

order sentence F. QUESTION: I |= F?

2.2.3 Truth over structures: FIN-MC(F)
Decision Problem
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Given a fixed first-order formula F, the problem FIN-MC(F) is
the following variant: INPUT: a finite structure I, in its standard
representation. QUESTION: I |= F?

Can one solve FIN-MC(F) in polynomial time ? If so, for which
class of first-order formulae F?

2.2.4 Truth of Presburger arithmetic claims
Decision Problem: decidable
Given a set of first-order axioms for Presburger arithmetic.
INPUT: φ a proposition in Presburger arithmetic. QUESTION:

Is φ true or false in Presburger arithmetic?

2.2.5 Truth of arithmetic claims
Decision Problem: undecidable
Given a set of first-order axioms for basic arithmetic defining a

theory T.
INPUT: φ a proposition in basic arithmetic. QUESTION: Is φ

true or false in T?

2.2.6 Fagin’s Theorem
An existential second order claim (ESO) defines a problem in

NP.
A problem π ∈ NP ⇐⇒ There is a second order sentence of

the form φ = ∃R1∃R2...∃Rmψ, where ψ is a first order formula
such that ‖φ‖ = π.

See
https://wiki.engr.illinois.edu/download/attachments/56000570/notes26.pdf?version=1&modificationDate=1335465330000
CS498MV: Logical Foundations of Computer Science Mahesh

Viswanathan vmahesh@cs.uiuc.edu

2.2.7 IMPORTANT: Logic to Computational Prob-
lem

Each sentence φ in logic L defines a computational problem
‖φ‖ = {A|A |= φ}. In other words, given A (a structure), the
problem asks if A |= φ.

Example: structure = CNF, φ = exists a satisfying assignment.

2.2.8 One IPLF: Topological Order
Decision/Search Problem: decidable: decision: always yes; func-

tion problem: O(n+m)
∀g ∈ DAG ∃ sequence s of nodes in g: topologicalOrder(s)
Instance: DAG g. Solution: true or topological order.

2.2.9 One IPLF: SAT
Decision/Search Problem
decidable: decision yes/no: NP-complete; function problem: sat-

isfying assignment or none: NP-hard.
SATLabClaim(S ∈ CNF) =
∃J ∈ assignments(S): satisfied(S,J)
SATLabClaim(S) is true iff S is satisfiable.

2.2.10 One IPLF: Partial SAT
Decision/Search Problem
PartialSAT2LabClaim(g1 ∈ R) =
∀S ∈ 2− satisfiable CNF
∃J ∈ assignments(S):
fsatisfied(S, J) ≥ g1

Let g = (
√

(5)− 1)/2. PartialSAT2LabClaim(0.6) is true,
PartialSAT2LabClaim(g) is true, PartialSAT2LabClaim(0.7)
is false.

2.2.11 One IPLF: Partial SAT negated
Decision/Search Problem

PartialSAT2NLabClaim(g1 ∈ R) =
∀ε ∈ Rs.t.ε > 0
∃S ∈ 2− satisfiable CNF
∀J ∈ assignments(S) :
fsatisfied(S, J) < g1 + ε
g1 is an output parameter. PartialSAT2NLabClaim(0.6) is

false and PartialSAT2NLabClaim(0.7) is true and
PartialSAT2NLabClaim(g) is true.

2.2.12 Bertrand’s Postulate
Bertrand(n ∈ N, n > 1) =
∃k ∈ [n, 2 · n] : prime(k)

An arithmetic fact: Between n and 2 · n there is always a prime.
prime(n ∈ N) =
∀ks.t.1 < k < n : ¬divides(k, n)

2.3 Optimization Problems
Optimization problems are now also expressed using logic but

they require a minimum special treatment. We need a predicate
stronger(c1, c2) to compare claims.

We denote a claim by c(~x = ~v) = f(v). ~x = ~v is an assignment
to the free variables ~x in f . f is the predicate logic formula defining
the claim.
stronger(c(~x = ~v), c(~x = ~v′)) is a predicate that is claim-

specific.
c(~x = ~v) is optimum if
¬(∃~v′ : stronger(c(~x = ~v), c(~x = ~v′)) and c(~x = ~v)

Sometimes we don’t want to express that a claim is maximum
but that a solution is maximum. The pattern for maximization is (s
has maximum quality):

(∃s ∈ Solution
¬(∃sbetter ∈ Solution :
quality(sbetter > quality(s)
) THE FOLLOWING OPTIMIZATION formalization is outdated.
There is a simpler way of expressing it without quantifying over
scholars and claims and referring to refutation games. See below
the HSR example.

We want to express that a claim c(x=v) is optimum: there exists a
scholar s1 who has a defense strategy for c(x = v) and a refutation
strategy for any stronger claim.

optimum (c(x=v)=f(v) = ∃s1 ∈ Scholar so that the follow-
ing two conditions hold: 1.∀s2 ∈ Scholar s1 = c.RG(c(x =
v), s1, s2) 2.∀s2 ∈ Scholar∀c(x = v′) that are stronger than
c(x = v) : s1 = RG(c(x = v′), s2, s1)

2.3.1 One IPLF: Max Sat
Optimization problem; computable: NP-hard.
MaxSatLabClaim(S ∈ CNF, q ∈ N) =
∃J ∈ assignments(S):
satisfied(S, J) = q∧
∀J1 ∈ assignments(S) :
satisfied(S, J1) ≤ q

2.3.2 Algorithm Worst-Case Lab (AWCLab)
We are given an algorithm A that takes inputs i in INP. Al-

gorithm A returns its resource consumption on an input i as Re-
sourceUse(A,i) as an integer. For example, A might consists of one
outermost loop. ResourceUse will count the number of loop iter-
ations. We consider all inputs of size n and want to determine an
input i for which ResourceUse(A,i) is maximum.

Predicate logic expression:
AWCLabClaim(n ∈ N, q ∈ N, A) =
∃i ∈ INP :
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size(i) = n ∧ResourceUse(A, i) = q∧
∀i1 ∈ INPs.t.size(i1) = n :
ResourceUse(A, i1) ≤ q.

Free variables are n, q and the algorithm A. The maximum prop-
erty is expressed with the universal quantifier.

In our implementation we don’t permit this level of parameteri-
zation. We would have to hardwire the algorithm.

Example:

• AWCLab(n = 10, q = 20, A = GaleShapley)

The GaleShapley algorithm consists of one while loop (if
written in the style of a typical algorithm text book []) and
ResourceUse(GaleShapley,i) counts the number of iterations
on input i. The claim says that 20 iterations is maximum for
inputs with 10 men and 10 women.

2.3.3 Highest Safe Rung (HSR)
One predicate logic expression defines a claim family = knowl-

edge base to be maintained. Each member of the claim family is a
test case for the computational problem to be solved by the lab. If
the computational problem is not optimally solved the knowledge
base is not clean and will contain false (non-optimal) claims.

As an example, consider exercise 8 in chapter 2 of Kleinberg
and Tardos []. For k=2, the problem asks for HSR(n,2,f(n)) so that
f(n) grows slower than linearly. The problem asks for an algorithm
that correctly finds the highest safe rung but not necessarily with
the minimal number of questions but with an asymptotically good
solution. There are lots of suboptimal functions f(n). But there is
an optimal function that can be computed efficiently.

Ahmed’s solution:

• A decision tree has minimum depth:

HSRminDepth(n ∈ N, k ∈ N, q ∈ N) =
∀d ∈ DTs.t.correct(d, n, k) : depth(d) ≥ q.

• An algorithm computes a minimum depth decision tree:

HSRminDepthTreeAlgo(a ∈ N ∗ N => DT ) =
∀n, k ∈ N : HSRminDepth(n, k, depth(a(n, k)))

• An algorithm that computes the depth of the minimum depth
decision tree.

HSRminDepthExpr(e ∈ N ∗ N => N) =
∀n, k ∈ N : HSRminDepth(n, k, e(n, k))

• An algorithm that computes the minimum depth decision tree
in linear time (constant c).

HSRminDepthTreeLinAlgo(c, nmin, nmax ∈ N) =
∃a ∈ N ∗ N => DT
∀n, k ∈ Ns.t.nmin ≤ n ≤ nmax
let(q, r) = RT (a(n, k))
r ≤ c · n ∧HSRminDepth(n, k, q)

RT is an interpreter that runs the algorithm and returns its
result in the first element of the return pair and the resource
consumption in the second element of the return pair. Stan-
dardRT functions are provided and can be user defined. RT
could measure the wall clock time, count virtual machine in-
structions or just simply count the number of loop iterations
of an algorithm consisting of a single loop.

Note that we use an additional binding construct called let.
We have now the claim expression, ∀, ∃ and let as binding
constructs. The let binding construct does not change the
nature of the Semantical game.

THE FOLLOWING ABOUT HSR IS OUTDATED.
HSR is a traditional decision problem, involving evaluated ver-

sions of the predicate logic formula.
HSRLabClaim(c, nmin, nmax) =
∃ algorithm DT (N,N)
∀n, k ∈ N ∧ k < n ∧ nmin < n < nmax
RT (DT, n, k)) < c · n ∧DT (n, k) is correct ∧
depth(DT (n, k)) is minimum

RT is the running time of the algorithm. Correctness is expressed
using the binary search tree property and that the tree must be
tilted as determined by k. The minumum property is expressed
by: ¬(∃q1 < q and a decision tree dt : depth(dt) = q1 ∧ dt is
correct).

Example HSRLabClaim:

• HSR(c = 3, nmin = 8, nmax = 106, n = 25, k = 2, q =
5)

This claim says that there is an algorithm to compute the
correct and minimum decision tree in time 3·n for n between
nmin and nmax. And that when the algorithm is applied to
n = 25 and k = 2 a decision tree of depth 5 is constructed
which is correct and minimum.

We define a second HSR lab, called HSR2. We need a simpler
predicate logic formula where the goal is just to go for the correct
minimum decision trees.
HSR2LabClaim(n, k, q)
∃ algorithm DT (N,N)
∀n, k ∈ N
∃q ∈ N :
k < n ∧ q < n ∧DT (n, k) is correct ∧
depth(DT (n, k)) = q is minimum

• HSR2LabClaim Example:

HSR2LabClaim(n = 25, k = 2, q = 5). n and k are
input parameters and q is an output parameter.

HSR3LabClaim(n, k, q) =
∀n, k ∈ N ∧ k < n
(∃ep ∈ CorrectExperimentalP lan(n, k) : depth(ep) = q

∧ (minimum depth)

¬(∃ep2 ∈ CorrectExperimentalP lan(n, k) :
depth(ep2) < q)
)

Here the lab designer does not introduce the concept of a deci-
sion tree. Instead it is called a correct experimental plan.

The HSR example shows how labs are organized. They consist
of a set of claims that are symbolic evaluations of the predicate
logic expression of the lab.

2.4 Counting problems

2.4.1 One IPLF: #Sat
Counting problem. #P-complete.
CountingSatAssignments(S ∈ CNF ) =
∃n ∈ N : n is the number of all satisfying assignments of S.

In order to win, we have to enumerate all satisfying assignments.
If we miss some, our claim can be refuted.

2.5 Robotics Computational Problems
∀ noisy sensors that measure partial information
∀ models of the system
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∃ state that is most consistent with noisy sensors

3. PROBLEM SOLVING WITH FSCP
An important goal of FSCP is to make the workers better prob-

lem solvers by sharpening their intuition through interaction with
others.

The problems to be solved: Distinguish true/false claims and
substantiate your decision by computing an assignment for the quan-
tified variables jointly with your opponent.

While doing this there is the need to spawn new labs that help
with the solution of the current lab. The scholars get a significant
new move: define a new lab. But they must substantiate their re-
duction and show how the old lab reduces to the new one. The
reduction lives in a lab with claims that are subject to refutation.

Labs about labs
Claims about claims
We need higher order predicate logic.
Definition: Weakly/Strongly Solving a lab means

• Weakly: Avoid Contradictions.

Sharpen our intuition about the claims in the labs.

Guess a defense strategy for the true claims and, guess a refu-
tation strategy for the false claims.

• Strongly Prove Strategy Correct.

After you have found the defense and refutation strategies,
prove them correct.

The two items are successively harder but already the first helps
to sharpen our intuition about the lab. Already when at least one
scholar can avoid all contradictions, we consider the lab solved.

The weak reductions are useful during problem solving. We can
try solution approaches and try to refute them. This is useful for
theorem proving where the theorem prover often needs human help.

To sharpen our intuition about a lab it is beneficial to decompose
the lab into one or more component labs so that a solution to the
component labs will result in a solution for the original lab.

Lab reductions are a useful tool in this process. Finding the right
reductions often requires innovation.

Informally, lab L2 is a reduction of lab L1 (L1 reduces to L2)
(L1 < L2), if a solution for L2 (which we can use as a black box)
implies a solution for L1.

Lab reductions are based on claim reductions. A typical use of
claim reductions is to start with a claim C, reduce it through a
sequence reductions to a claim Cn and then solve Cn directly.

For the formal definition we use a Karp-style reduction with an
explicit transformation. A lab reduction L1 < L2 is a mapping f
from L1 to L2 which has the following properties:

• f is a computable function f : L1.Model− > L2.Model.
We extend f to claims: f : L1.Claim− > L2.Claim and
to game histories associated with the claims.

• LabReductionProperty

∃f ∈ computable functions
∀C ∈ L1.Claim
∀h ∈ GameHistories(C)
(defend(f(h), f(C))⇒ defend(h,C) and
refute(f(h), f(C))⇒ refute(h,C))

old:

For all claims c in L1.Claim for all game histories w of the
game associated with c: w is a defense of c in L1 iff f(w) is a

defense of f(c) in L2 and, w is a refutation of c in L1 iff f(w)
is a refutation of f(c) in L2.

Notes: (1) f might not be one-to-one and in that case the inverse
function f−1 does not exist. (2) The definition of lab reduction
does not refer to true or false claims or to defense or refutation
strategies.

Which Lemma is more informative?
Lemma: (implied by LabReductionProperty) If L1 < L2, then if

L2 has a winning strategy to defend, then L1 has a winning strategy
to defend and if L1 does not have a winning strategy to defend, then
L2 does not have a winning strategy to defend.

Lemma: (implied by LabReductionProperty) If L1 < L2, then if
L2 has a winning strategy to defend, then L1 has a winning strategy
to defend and if L2 has a winning strategy to refute, then L1 has a
winning strategy to refute.

3.1 Small Steps
Find the right place: Incremental approach
A successful refutation of claim c is viewed as a small step to-

wards a proof of the negation of c. If the proponent is perfect, the
successful refutation counts as a proof of !c because the perfect
proponent would have found a way to defend if such a defense of
!c exists.

A successful defense of claim c is viewed as a small step to-
wards a proof of c. If the opponent is perfect, the successful de-
fense counts as a proof of c because the perfect opponent would
have found a way to refute if such a refutation of c exists. Restric-
tion: if the opponent is not perfect, it is possible that c is false and
the defense happened because the opponent made a mistake.

3.2 Lab Reduction Examples

3.2.1 Safe Haven
The informal lab description: A safe haven in a directed graph

is a vertex that can be reached from any vertex in the graph. Using
pseudo-code, develop an algorithm that will compute the number
of safe havens in a directed graph in linear time.

Solution ideas: reverse edges, computing strongly-connected com-
ponent graph of G reduces problem to a DAG, find nodes without
predecessors, There must be exactly one node without predecessor
in strongly connected component graph.

Lab1: Graph G=(V,E), A structure in the vocabulary (E) of one
binary relation is a finite directed graph (V,E). Find the number of
safe havens.
SH(G ∈ Graph, j ∈ N) =
∃shs ∈ Set(V )
∀v1 ∈ V
∃v2 ∈ V
( ∃path p : v1− > v2 ⇐⇒ v2 ∈ shs ) ∧ size(shs) = j.

Lab2: Find the number of all nodes from which all other nodes
can be reached.

The set of all nodes from which all other nodes can be reached
is called a basis of the graph.

This definition comes from Udi Manber’s book: Introduction to
Algorithms - A creative approach by Addison Wesley:

Exercise 7.92, page 260: A vertex basis of a directed graph
G=(V,E) is a minimum-size subset B of V with the property that,
for each vertex v on V, there is a vertex b in B such that there is
a path of length 0 or more from b to v. Prove the following two
claims, and then use them to design a linear time algorithm to find
a vertex basis in general directed graphs.

a. a vertex that is not on a cycle and has a nonzero indegree
cannot be in any vertex basis.

4



b. A DAG has a unique vertex basis, and it is easy to find.
Base(G, j) means that graph G has a base of size j.
Base(G ∈ Graph, j ∈ N) =
∃b ∈ Set(V )
∀v1 ∈ V
∃v2 ∈ V
( ∃path p : v2− > v1 ⇐⇒ v2 ∈ b ) ∧ size(b) = j.

Lab3 (reduction) Lab1 < Lab2: reverse all edges.
G1=(V,E1), G2=(V,E2). ∃f : G1− > G2 :
∀e = (v1, v2) ∈ E1
∃ a reverse edge er = (v2, v1) ∈ E2.

Lab4: Given a DAG G=(V,E) find all nodes from which all other
nodes can be reached. This is the same as Lab 2 but Lab 4 is sim-
pler: we only need to deal with directed graphs. This is simpler:
we find all nodes without a predecessor. If there is more than one,
the base is empty. If there is exactly one, it is the base.

Lab5 (reduction) Lab2 < Lab4: Construct graph of strongly con-
nected components using Tarjan’s algorithm. If a node in the DAG
is selected, select all nodes in the corresponding strongly connected
component.

Lab6: DAG G=(V,E). Find all nodes without predecessor.
Lab7 (reduction) Lab4 < Lab6 if there is exactly one node v with-

out predecessor, from v all nodes in the DAG can be reached.
Lab6 is solved directly using a subalgorithm of Topological Or-

dering.

3.2.2 NP-Completeness
Lab1: Want to convince ourselves: scholars S1 and S2 problem

X is NP-complete
spawned by S1: Lab2: We are already convinced: S1 and S2

problem Y is NP-complete
spawned by S2: Lab3: we are convinced: S1 and S2 X is in NP
spawned by S1: Lab 4 (Reduction): claim is of the form: Exists

T ForAll sY in Y: T is polynomial ... transformation T provided by
S1: Y < X (Karp) provides transformation from Y to X Consider
an arbitrary instance sY of Y. Transform sY using T into sX=T(sY)
in polynomial time: (1) if sY in Y, then sX=T(sY) is in X. (2) if sX
in X, then sY in Y.

Scholar S1 of Lab1 used the option to spawn an additional Lab
that helps in the resolution of Lab1. This is a creative step because
it is important to find Y that is known to be NP-complete and that
is "close to" X.

A refutation in Lab4 takes the form: find a sY so that (1) or (2)
don’t hold.

Once Lab2, Lab3 and Lab4 show strong evidence that their claims
are true, the claim in Lab1 must also be true.

3.2.3 HSR
Lab1
HSR(n,k)=q
Lab2 M(k,q)=n
Lab3: Reduction Lab1 < Lab2 Transformation T:
Lab4: Modified Pascal Triangle claim: Exists alg A in P to

compute values defined by recurrence: M(k, k) = 2kM(0, q) =
1M(k, q) = ... Lab5: Reduction Lab2 < Lab4 Transformation T:
identity

3.2.4 BFS Lab
Need a better lab name.
Solve the lab through a reduction.
The reduced problem uses a layered graph with n/2 layers. BFS

provides the reduction.

s x1

3.2.5 Local versus Global Satisfaction
“Local versus global” is an old theme in computer science and

mathematics [4].
Here we illustrate how lab reductions create a connection be-

tween different structures and how we can take knowledge from
the simpler lab back to the more complex-appearing lab.

Our

plan
reductions to illustrate
1. from formulas to continuous
use biased coin, linearity of expectation

2. From general formulas to symmetric formulas
3. subset of relations is su�cient
eliminate noise

We investigate combinatorial optimization problems of the fol-
lowing form: Given a sequence of Boolean constraints, find an as-
signment which satisfies as many as possible. Constraint satisfac-
tion problems appear in many applications.

Maximization problems of this type are naturally formulated as
maximum ψ-satisfiability problems [Schaefer (1978)]. ψ is a finite
set of logical relations R1, . . . , Rm which are used to express the
constraints. A ψ-formula S with n variables is a finite sequence
of clauses each of the form Ri(x1, . . . , xri). ri is the rank of Ri
and x1, . . . , xri are a subset of the variables of S. The maximum
ψ-satisfiability problem consists of finding, for any ψ-formula S,
a Boolean assignment to the n variables satisfying the maximum
number of the clauses.

Let τψ be the fraction of the clauses which can be satisfied effi-
ciently in any ψ-formula S.

The ψ-formula lab, called ψ-FormulaLab, has the purpose to ap-
proximate τψ and to find efficient algorithms that find such assign-
ments.

The ψ saddle point lab, called ψ-SaddlePointLab, has the pur-
pose to find saddle points in polynomials that depend on ψ. The
ψ-SaddlePointLab is a reduction of the ψ-FormulaLab so that if we
start with a ψ-formula and translate it to a ψ-polynomial, a solution
to the polynomial provides a solution to the formula. We can find
good assignments to the ψ-formulas by maximizing polynomials.

But we also want to find “hard” ψ-formulas where only a small
fraction can be satisfied, i.e., a fraction close to τψ . This problem
we also want to solve in the ψ-SaddlePointLab. A challenge is to
map the SaddlePointLab saddle point back into a formula in the
FormulaLab. There are many ways to assign a formula to a ~t vector
~t = (tR1 , . . . , tRm). Fortunately, there is a hardest one, namely a
symmetric ψ-formula. If ~t contains irrational numbers, we can find
a symmetric ψ-formula whose satisfaction ratio is close to what the
SaddlePointLab predicted.

Exercise for reader (solution in [?]: The following theorem ana-
lyzes subclasses of the regular satisfiability problem.

Theorem 4.1 Let F (p, q) be the class of propositional formu-
las in conjunctive normal form which contain in each clause at least
p positive or at least q negative literals (p, q > 1). Let α be the so-
lution of (1− x)p = xq in (0, 1) and let τp,q = 1− αq . Then the
fraction τp,q of the clauses in any formula ∈ F (p, q) can be sat-
isfied in time O(|S|| clauses(S)|). The set of formulas ∈ F (p, q)
which have an assignment satisfying the fraction τ ′ > τp,q of the
clauses is NP-complete (τ ′ rational).

Reduction to a continuous min-max-problem
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Which fraction can be satisfied in any formula?
Probabilistic approach: biased coin with bias x. Linearity of

expectation.
Lab 1 is about formulas
Lab 2 is about polynomials in x in interval [0,1].
Mapping f: formula -> polynomial interpretation -> rational num-

ber
(S,J) -> (t,x)
if have a rational vect and x that yield f there is a formula S =

T−1(vect). (T(S)= t) and an assignment J to S that yield f. (J sets
the fraction x of the clauses to true).

Why? consider gcd of all elements in t.
Need more: symmetry.
defense: can get g in f(S) => can satisfy g in S
There is something special about refutation: cannot get g+eps in

f(S) => cannot satisfy g+eps in S
This holds for symmetric formulas but not in general for unsym-

metric ones. S may be big if eps is small.
There is a subset of formulas
In the following we sketch how the computation of τψ can be

simplified to a discrete minimax problem involving polynomials (a
more detailed explanation is in [Lieberherr (1982)]).
τψ is by definition the fraction of the clauses which can be satis-

fied in all ψ-formulas. First we consider ψ-formulas with at most
n variables and let τn,ψ be the fraction of clauses which can be
satisfied in all such formulas.

For computing τn,ψ we determine the worst-case formulas, i.e. the
formulas where the smallest fraction of the clauses can be satisfied
(by the optimal assignment) among all ψ-formulas with n vari-
ables. It is easy to prove that these formulas are symmetric, i.e. they
are invariant under permutations of the variables, up to a permuta-
tion of the clauses.

Fortunately the worst-case formulas have a nice structure and
therefore it is easy to compute an optimal assignment for them. For
computing an optimal assignment for a symmetric formula we only
have to compute the maximum of a polynomial. This polynomial
can be derived by elementary combinatorial analysis.

In this section we prove a theorem which simplifies the computa-
tion of τψ to the solution of a continuous minimax problem which
does not involve a limit operation. Let ψ = {R1, R2, . . . , Rm}
be a finite set of relations and let S be a symmetric ψ-formula in
which the fraction tRi of the clauses contains clauses involving
relation Ri. In order to compute τn,ψ we have to find the worst as-
signment to the parameters tR1 . . . tRm which makes the optimal
fraction of satisfiable clauses as small as possible.

m∑
i=1

tRi = 1, tRi ≥ 0 (1 ≤ i ≤ m))

tR is the fraction of clauses containing relation R
r(R) is the rank of R
qs(R) is the number of satisfying rows

in the truth table of R which contains s ones
(α)β

α!
β!(α−β)! , where α, β are positive integers, α ≥ β.

Let

τ ′ψ = min
tRi

real

1≤i≤m

max
0≤x≤1

real

m∑
i=1

tRi · appSATx(Ri),

m∑
i=1

tRi = 1, tRi ≥ 0

appSATx(R) =

r(R)∑
s=0

qs(R)xs(1− x)r(R)−s.

Let S be a ψ-formula containing relation Ri (1 ≤ i ≤ m) for
the fraction tRi of the clauses. Let ~t = (tR1 , . . . , tRm). Let

appmeanx(~t) =

m∑
i=1

tRiappSATx(Ri).

How does this relate to the title of this subsection, local versus
global?

Consider a conjunctive normal form (CNF) as a sequence of
clauses (repetition of clauses is allowed). A CNF is a special kind
of ψ-formula. Now consider a property of CNFs that can be con-
sidered local: assume that any subset of k clauses is satisfiable.
We call such CNFs k-satisfiable. Now consider a global property
implied by the local property: which fraction of the clauses can
be satisfied in any k-satisfiable CNF? For k=1, the answer is ob-
viously 1/2. For k=2, the answer is, using the reductions men-
tioned above and the reductions mentioned in the next subsection,
g = (

√
(5)−1)/2. For general k, the limit is surprisingly 3/4. See

the paper by Trevisan on Local versus Global Satisfiability [36].
Another important reduction in this context is noise elimination.

3.2.6 Semantic Games
Put elsewhere. We need a good background on semantic games

because they are important to our work. From: http://www.polkfolk.com/docs/Ref-
Library/Pierce/Springer,

Semantic games may be viewed as a special class of extensive
forms of games that show the flow of semantic information and
the distribution of the strategic actions of the players during the
actual playing of a game. Variations in the information structure of
the players give rise to different kinds of logics, including the IF
(independence-friendly) logics introduced in Hintikka and Sandu
(1989).

Semantic games seek to establishing when the propositions are
true in a model and when they are false in a model.

Among the early ludents was Ernst Zermelo (1871ÂŰ1953), who
showed that for a two-player strictly competitive gamewith finitely-
many possible positions, a player can avoid losing for only a finite
number of moves (if his opponent plays correctly), if and only if
the opponent is able to force a win (Zermelo, 1913). The modern
received version of the theorem states that every finite, strictly com-
petitive perfect-information two-player game is determined: either
player 1 or player 2 has a winning strategy.

In the twentieth century, game interpretations of logic were used,
at least occasionally if not systematically, by a number of logicians.
Skolem introduced what are known as Skolem functions (Skolem,
1920), and onemay viewthem as winning strategies in the relevant
logical game.

These theories are not, in fact, based on purely semantic ideas.
An application inwhich theGTS framework is, however, put into
practical use is in the construction of knowledge bases (Jackson,
1987).

3.2.7 Noise Elimination
Fix a property L (for Local) on ψ-formulas. Consider a mapping

f from ψ-formulas satisfying L to φ-formulas satisfying L where
the set of relations φ is a subset of ψ. Consider a property p over
formulas and we want to show p(φ-formulas satisfying L) implies
p(ψ-formulas satisfying L). Here it is apparent that p(φ-formulas
satisfying L) is simpler because we have to deal with fewer rela-
tions.

To make the illustration concrete, we considerψ = all or-relations
and φ = the two or relations A or B and !A and p = has an as-
signment satisfying the fraction g of the clauses.
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The transformation f exploits the peculiarities of L. f has to
keep the property L invariant and we want f to have the property
that if in f(S) we can satisfy the fraction g1 of the clauses then we
can satisfy at least fraction g1 of the clauses in S.

The claim for the reduction lab is:
∃f ∀S ∈ ψ−formulas ∀J ∈ Assignment
(fsat(S, J) ≥ fsat(f(S), f(J))).

Modify our view of reductions: they take many forms: we of-
fer some standard reductions and give the corresponding predicate
logic claims.

LabReductionProperty
∃f ∈ computable functions
∀C ∈ L1.Claim
∀h ∈ GameHistories(C)
(defend(f(h), f(C))⇒ defend(h,C) and
refute(f(h), f(C))⇒ refute(h,C))

Standard reduction:
∃f ∈ computable functions
∀C ∈ L1.Claim
∀h ∈ GameHistories(C)
(defend(h,C) ⇐⇒ defend(f(h), f(C)) and
refute(h,C) ⇐⇒ refute(f(h), f(C)))

Standard many-one reduction??
∃f ∈ computable functions
∀C ∈ L1.Claim
(C ⇐⇒ f(C))

Important requirement for reduction labs: it ensures that a so-
lution that is always correct for L2 can be converted into a solution
that is always correct for L1.

There are many different reductions, all expressible as interpreted
predicate logic formulas, that satisfy this criterion.

New View: Reduction labs can use any claim C involving the
mapping function f in an existential quantifier. There are a lot of
different concepts of reduction. But there must be an implication
claim which says that C => LabReductionProperty.

Illustration with mapping from JACM paper. f is a renaming
(substitute some x by !x) plus a shortening of clauses (deleting of
literals). In the original CNF it is easier to satisfy clauses because
the clauses are longer.

defense game history: Have assignment satisfying g in L2, have
assignment satisfying g in L1. Note: only one direction.

refutation game history: In L2 exists S where cannot satisfy
g+eps implies: in L1 exists S where cannot satisfy g+eps. Note
only one direction.

4. BOOTSTRAPPING CROWDSOURCING
Start with a crowdsourcing platformCP, have a set of labs IMCP

(for IMprove) to have the crowd find better crowdsourcing algo-
rithms for CP, put new algorithms from IMCP into crowdsourc-
ing platform. CP = CP improved by results from IMCP . Iterate
until fixpoint is reached.

start with initial CP;
repeat
results_IM_CP = run IM_CP;
CP = CP improved by results_IM_CP;

until CP at �xpoint

Notes:
1. Any crowdsourcing platform should support this bootstrap-

ping possibility. This requirement enforces a level of sophistication
in the crowdsourcing platform. 2. We assume that the improve-
ments don’t change the interface of CP but only the algorithms. We

could also allow interface changes to CP. 3. What are the knowl-
edge bases for crowdsourcing? 4. CP could get worse if improve-
ments are not really improvements.

5. MORE RELATED WORK
SCG/FSCP is a design for a social media platform where people

can join various labs and make contributions in them. A subset of
users will create labs both to solve a new problem as well as to
solve one of the existing labs.

This paper:
http://www.ics.uci.edu/ singhv/Publications_files/Mechanism_Design_Social_Media.pdf
Vivek Singh UCI et al.
studies mechanism design for incentivizing social media contri-

butions. Is this paper useful to justify the design of SCG/FSCP.
If not, why is the SCG/FSCP design good? Is an other mecha-

nism design principle applicable?
Do we fill a whole described in: [32]

6. LEARNING-BASED EVALUATON

6.1 Scholar Assessment with SCG
SCG has an natural assessment approach implied by the Scien-

tific Method.

6.1.1 A perfect master teacher is available (gold stan-
dard)

input: claim; output: true, false
input: true claim; output: interaction objects that lead to defense
input: true claim, prefix of interaction objects; output: does pre-

fix lead to defense?
MAKE GENERIC
input: false claim. output: first step in refute(c,P,O) that leads to

refutation.
input: false claim. Partial elaboration of refute(c,P,O) with next

step to be made by O. output: step by O that leads to refutation.
input: true claim. Partial elaboration of refute(c,P,O) with next

step to be made by P. output: step by P that leads to defense.
The above perfect master teacher capabilities can be used to

guide and assess the scholar.

6.1.2 No perfect master teacher
We still have the blame assigned based on the refutation protocol

outcome. The scholar who gets into a contradiction gets blamed
(see table ??).

reason for loss (e.g., proposed claim refutation) not easy to find
claim could be false and properly attacked (error in propose) claim
could be false and improperly attacked and improperly defended
(error in propose,provide and solve) claim could be true but not
properly defended (error in provide or solve)

don’t know in which situation we are. How does SCG help?
Yes, SCG helps: reason: (oB column in Figure ??.

6.2 Learning Science and SCG
This is finer-grained than just counting the number of contradic-

tions a scholar creates. What is the connection?
I understand your concerns about incorporating learning scien-

tists. I believe, SCG has very good learning science built in. Below
is a description how learning happens and how it is measured in
SCG.

In an SCG lab, learning happens during the elaboration of the
refutation protocol for a claim. When a claim is defended or re-
futed, there is a sequence S of instances and solutions which has
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been produced by the refutation protocol. If the claim is defended,
the claim predicate evaluates to true for S. The sequence S contains
a surprise for the opponent of the claim because the opponent’s
intention was to make the predicate false. This surprise is the crys-
tallization point for learning. The scholar playing the role of the
opponent is encouraged to ask and answer the following questions:
(O1) Why is my prediction wrong that I will successfully refute?
(O2) What is the general pattern behind the clever construction that
my partner used to defend the claim? Can I interfere with the clever
construction? Can I reconstruct it from S? (O3) Can I defend the
claim against a partner, successfully? (O4) Can I improve my ap-
proach to trying to refute the claim in a second attempt? (O5) Do I
still believe that I can refute the claim? (O6) Did I make a mistake?
Was there a second or third mistake? Do a blame assignment.

The proponent of the claim is pleased with winning but is not
off the hook: (P1) Did I win by accident? Has the opponent made
a mistake which made me win this time but not against a better
partner? (P2) How do I repeat my success even when the opponent
plays differently? (P3) Have I a systematic defense strategy? (P4)
Works my systematic defense strategy in all cases?

Emotions of the proponent when she wins: joy, I found a clever
construction to defend. Emotions of the opponent when he loses:
disappointment, I will try to figure out your clever construction and
maybe change my mind about trying to refute.

SCG offers the following approach to measure learning in a lab
for a given scholar:

this does not look right for generalized SCG: Instead look for

• Transitions from contradiction to no contradiction (00):

Refer to Table ??. The scholar learned to avoid to be pushed
into a contradiction.

target is reached consistently

learner gets learning points

vv01 -> vv00 s1 learned to defend

vv10 -> vv00 s2 learned to defend

ff10 -> ff00 s2 learned to refute

ff01 -> ff00 s1 learned to refute

• Transitions from one contradiction to dual contradiction:

The scholar learned to push the contradiction to the other
scholar.

vf10 -> vf01 s2 learned to refute

fv10 -> fv01 s2 learned to defend

vf01 -> vf10 s1 learned to defend

fv01 -> vf10 s1 learned to refute

OLD from old SCG:

• unsuccessful => successful

(1) Defense attempts are unsuccessful (dau)=> defense at-
tempts are successful (das). Scholar learned to recognize,
correctly, defensible claims.

(2) Refutation attempts are unsuccessful (rau) => refutation
attempts are successful (ras). Scholar learned to recognize,
correctly, refutable claims.

Amount learned: das-dau + ras-rau

• change of mind

(1) Claim C was unsuccessfully defended in role Proponent
(udP) => claim C is successfully refuted consistently in role
Opponent (sdO). Scholar initially believed claim C was true
but then developed the skill to refute C.

(2) Claim C was unsuccessfully refuted in role Opponent
(urO) => claim C is successfully defended in role Propo-
nent consistently (sdP). Scholar initially believed claim C
was false but then developed the skill to defend C.

Amount learned: sdO-udP + sdP-urO

7. INDEPENDENCE-FRIENDLY LOGIC
We want to make the point that our approach to progress-guaranteed

community building for solving computational problems is not hard-
wired to predicate logic but also works for other logics. We il-
lustrate here the generalization to independence-friendly logic pro-
posed by Hintikka and Sandu.

What we rely on is that each interpreted formula φ with model
M has an associated game G(φ,M, ver, fal). We don’t use the
fact that the verifier ver has a winning strategy to defend or the
falsifier fal has a winning strategy . Indeed, it is perfectly fine
to have indeterminate claims, i.e., claims that are neither true nor
false.

Consider the following claim:
∀x ∈ X
∀y ∈ Y (x)
∃z ∈ Y (x)
quality(x, z) ≥ quality(x, y)

This claim is obviously true: choose z = y.
But now, lets assume that we dont know y when we choose z.

The game becomes more interesting. If the verifier chooses the
highest quality z, she is guaranteed to win. But the task is now
more challenging.

In Independence-Friendly logic, we can express more interesting
claims by expressing games with incomplete information, as we
did in the example above: we did not know y when we chose z.
As shown by Hintikka ([]), IF-logic also has semantical games and
we can use our Contradiction-Agreement game to get the progress
property for the corresponding scientific community.

8. INTRODUCTION
See: http://www.eecs.harvard.edu/ parkes/cs286r/spring02/papers/stoc01.pdf
Games, Algorithms and the Internet by Papadimitriou
We do crowdsourcing formal science using games based on logic

-> Crowdsourcing, Formal Science, Games and Logic.
Crowdsourcing contests have received a lot of attention in recent

years. A crowdsourcing system is a generic system that enlists a
crowd of users to help solve a problem defined by the system own-
ers [12].

This paper presents the Formal Science Crowdsourcing Platform
(FSCP), a highly configurable platform for constructing crowd-
sourcing systems for formal scientific knowledge. FSCP represents
formal scientific knowledge as a set of claims. A claim is a pred-
icate logic formula where all nonlogical symbols (i.e. constants,
functions and predicates) are interpreted in a particular domain.
Logical connectives are interpreted using the Game Theoretic Se-
mantics (GTS) of Hintikka to yield two-person, zero-sum games,
called refutation games (a.k.a semantical games). The two players
are called the verifier and the falsifier. The existence of a winning
strategy for the verifier means that the formula is true, the existence
of a winning strategy for the falsifier means that the game is false.
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In FSCP, owners specialize the platform by creating labs. A lab is
a crowdsourcing system that focuses a crowd of scholars on exam-
ining a family of claims to separate the true claims from false ones.
Claim families are constructed by partially interpreting nonlogi-
cal symbols of a predicate logic formulas in a particular domain.
Individual claims are obtained by completing the interpretation in
the same domain. Scholars contribute to the lab by participating
in refutation games that are syntactically derived from claims. By
doing so, scholars provide evidence to the truth likelihood of indi-
vidual claims in the lab. Furthermore, playing those games helps
building the knowledge and intuition of individual scholars regard-
ing the critical constructions of examples and counter examples
embedded in the current winning strategies. The FSCP evaluates
the performance of individual scholars as well as the truth like-
lihood of individual claims based on the history of all refutation
games played in a particular lab.

8.1 FSCP Applications
FSCP has several applications, including:

1. problem solving and research in formal science. Funding
agencies, such as NSF, define, in collaboration with inter-
ested researchers, labs that define the problem to be solved.
Through playing the game, NSF builds a knowledge base of
refutable claims and refutation attempts. Furthermore, the
self-evaluating nature of FSCP will fairly evaluate the con-
tributions of scholars and the collaborative nature will lead
to productive team work. Newcomers can contribute by par-
ticipating in a long-running lab (dozens of years).

2. teaching (traditional, online and massively open online) courses
in STEM areas. To teach a particular problem solving skill,
we design a lab for the problem. Playing FSCP challenge
the students’ self-image about their ability to solve the lab’s
problem. Thus, encouraging students to acquire the desired
problem solving skill. The self-evaluating nature of FSCP
helps lifting much of the evaluation from the teacher and al-
lows stronger students to give precisely targeted feedback to
weaker students.

3. software development for computational problems. A com-
putational task is defined by a lab where the role of a scholar
is played by an avatar (software). Competitions are held, and
the winning avatars will contain the best (within this group
of competing avatars) algorithms for the computational task.

8.2 Organization
This paper is organized as follows: In section 9 we present FSCP

while in section ?? we present a novel approach for evaluating
scholars and an approach for computing the truth likelihood of
claims. In section 10, we present our experience with SCG, a very
close predecessor of FSCP. In section 11, we present some of the
related work. Section 12 concludes the paper.

9. THE FSCP PLATFORM
A lab in FSCP consists of a claim family and a number of schol-

ars. We begin by describing how claim families are specified in
FSCP. Then we describe how refutation games and substantiation
games are derived from claim families. Then we describe how
scholars interact with the FSCP. Finally, we describe few approaches
to derive scholar interactions in a lab.

9.1 Claim Families

A claim family consists of a logical formula and a model that
provides an interpretation of all predicates mentioned in the for-
mula. A claim consists of an assignment of values from the model
to all free variables in the formula. Figure 1 shows theClaimFamily
and Claim structures.

f i n a l c l a s s ClaimFamily {
f i n a l Formula f ;
f i n a l Model m;

f i n a l c l a s s Claim {
f i n a l Assignment g ;
. . .

}
}

Figure 1: ClaimFamily Structure

9.1.1 Formulas
A Formula is either a simple Predicate, a Compound formula,

a Negated formula, or a Quanti�ed formula. A Compound for-
mula consists of two subformulas, left and right and a Connective
which is either anAnd or anOr connective. AQuanti�ed formula
consists of a Quanti�cation and a subformula. A Quanti�cation
consists of a Quanti�er, two identifiers representing the quanti-
fied variable name and type, and an optional Predicate further re-
stricting the values the quantified variable can take. A Quanti�er
can be either a ForAll, an Exists, or Free which we use to de-
clare free variables in a formula. Figure 2 shows the grammar for a
formula expressed using the class dictionary notation [8].

Formula = P r e d i c a t e | Compound | Negated |
Q u a n t i f i e d .

P r e d i c a t e = <name> i d e n t " ( " < a rgs >
CommaList ( i d e n t ) " ) " .

Compound = " ( " < l e f t > Formula < c o n n e c t i v e >
C o n n e c t i v e < r i g h t > Formula " ) " .

C o n n e c t i v e = And | Or .
And = " and " .
Or = " o r " .
Negated = " ( " " n o t " < formula > Formula " ) " .

Q u a n t i f i e d = < q u a n t i f i c a t i o n > Q u a n t i f i c a t i o n
< formula > Formula .

Q u a n t i f i c a t i o n = " ( " < q u a n t i f i e r > Q u a n t i f i e r
<var > i d e n t " i n " < type > i d e n t <

o p t i o n a l Q u a n t i f i c a t i o n P r e d i c a t e > Opt ion (
Q u a n t i f i c a t i o n P r e d i c a t e ) " ) " .

Q u a n t i f i c a t i o n P r e d i c a t e = " where " <pred >
P r e d i c a t e .

Q u a n t i f i e r = F o r A l l | E x i s t s | F r ee .
F o r A l l = " f o r a l l " .
E x i s t s = " e x i s t s " .
F ree = " f r e e " .

Figure 2: Formula Language

9.1.2 Models
Models are used to interpret the types and predicates in a given

formula. Figure 3 shows the Model interface. It has three methods.
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wellFormedTypeName checks whether a given type name is sup-
ported by the model. wellFormed checks whether a given value is a
well formed value of a given type in the model. executePredicate
executes a predicate provided by the model.

i n t e r f a c e Model {
boolean e x e c u t e P r e d i c a t e ( Ass ignment g ,

P r e d i c a t e p red ) ;
boolean wellFormed ( S t r i n g va lue , S t r i n g

t y p e ) ;
boolean wellFormedTypeName ( S t r i n g t y p e ) ;

}

Figure 3: Model Structure

An example of a model is the SaddlePointModel shown in Fig-
ure 4. SaddlePointModel provides one type z1 which is a floating
point number between 0 and 1 inclusive. wellFormedTypeName
returns true only for �z1� . wellFormed returns true for well formed
values of type z1. The code for executePrediate supports a single
predicate p(z1 x,z1 y,z1 q). This model can be used to interpret
for the formula (free q in z1) (forall x in z1) (exists y in z1)
p(x,y,q).

c l a s s S a d d l e P o i n t M o d e l implements Model{
p u b l i c boolean wellFormedTypeName ( S t r i n g

t y p e ) {
re turn t y p e . e q u a l s ( " z1 " ) ;

}
p u b l i c boolean wellFormed ( S t r i n g va lue ,

S t r i n g t y p e ) {
t r y {

f l o a t v = F l o a t . p a r s e F l o a t ( v a l u e ) ;
re turn v>=0 && v <=1;

} catch ( E x c e p t i o n e ) {
re turn f a l s e ;

}
}
boolean e x e c u t e P r e d i c a t e ( Ass ignment g ,

P r e d i c a t e p red ) {
i f ( p r ed . getName ( ) . getName ( ) . e q u a l s ( " p " ) )

{

f l o a t x = . . .
f l o a t y = . . .
f l o a t q = . . .

re turn ( x∗y + (1−x ) ∗(1−y∗y ) ) >= q ;

} e l s e {
throw new Run t imeExcep t ion ( " Unknown

p r e d i c a t e "+ p red . t o S t r i n g ( ) ) ;
}

}
}

Figure 4: Sample Model

9.2 Scholars
The Scholar interface describes the inputs that FSCP collects

from the crowd. The method decide is used to collect a decision

from a scholar regarding whether (s)he wants to verify or falsify the
given formula under the given model and assignment. Typically, a
scholar would want to be the verifier of claims (s)he believes are
true and be the falsifier of claims (s)he believes false. The method
choose is used to collect an object from the given model for the
quantification variable. Finally, the method propose is used to col-
lect an assignment for free variables in the given formula other than
the excluded assignments. It is possible to implement the Scholar
interface such that it forwards requests to human scholars via email
or a web interface for example. It is also possible to provide a self
sufficient implementation that does not rely on human scholars. We
call such Scholar implementations, avatars.

p u b l i c i n t e r f a c e S c h o l a r {
p u b l i c enum Role {

VERIFIER ,
FALSIFIER

}
S t r i n g getName ( ) ;
Role d e c i d e ( Formula f , Model m, Ass ignment

g ) ;
S t r i n g choose ( Q u a n t i f i e d f , Model m,

Ass ignment g ) ;
Ass ignment p r o p o s e ( Formula f , Model m,

C o l l e c t i o n <Assignment > e x c l u d e d ) ;
}

Figure 5: Scholar Interface

9.3 Scholar Interaction
In FSCP, the interaction between scholars is centered around

claims. Two scholars can interact by participating in a substanti-
ation game. Substantiation games build on refutation games which
we start explaining before we move to substantiation a refutation
game or a substantiation game.

9.3.1 Refutation Games
Two scholars taking opposite positions on a specific claim c can

participate in a refutation game denoted as c.RG(veri�er, falsi�er)
where veri�er is the scholar trying to support c and falsi�er is the
scholar disputing c.

Given a claim c and two scholars, a verifier ver and a falsifier
fal. Let φ be the formula and M be the model of c’s enclosing
ClaimFamily. Let g be c’s assignment to the free variables in φ.
We define the refutation game of ver and fal centered around c
c.RG(ver, fal) to be G(φ,M, g, ver, fal) which is a two-player,
zero-sum game defined as follows:

1. If φ = R(t1, ..., tn) and M, g |= R(t1, ..., tn), ver wins;
otherwise fal wins.

2. If φ =!ψ, the rest of the game is as in G(ψ,M, g, fal, ver).

3. If φ = (ψ ∧ χ), fal chooses θ ∈ {ψ, χ} and the rest of the
game is as in G(θ,M, g, ver, fal).

4. If φ = (ψ ∨ χ), ver chooses θ ∈ {ψ, χ} and the rest of the
game is as in G(θ,M, g, ver, fal).

5. If φ = (∀x : p(x))ψ, fal chooses an element a from M
such that p(a) holds, and the rest of the game is as in
G(ψ,M, g[x/a], ver, fal). If fal fails to do so, it loses.
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s1 s2 ref game tested
v v c.RG(s1, s2) s1
v v c.RG(s2, s1) s2
f f c.RG(s1, s2) s2
f f c.RG(s2, s1) s1

Table 1: Scholar Under Test

6. If φ = (∃x : p(x))ψ, ver chooses an element a from M
such that p(a) holds, and the rest of the game is as in
G(ψ,M, g[x/a], ver, fal). If ver fails to do so, it loses.

The definition of G is adopted from the Game Theoretic Se-
mantics (GTS) of Hintikka [22], [37]. We slightly modified Hin-
tikka’s original definition to handle the quantification predicate in
our language. The result of a refutation game consists of a record
RGHistory of the two scholars veri�er and falsi�er, the winner,
the assignment g, and a timestamp.

9.3.2 Substantiation Games
FSCP further extend the potential for interaction between schol-

ars by allowing scholars to participate in test games even if they are
taking the same positions on a specific claim c. Two scholars s1
and s2 taking two, not necessarily contradictory, positions r1 and
r2 on claim c can participate in a substantiation game c.SG(s1,
r1, s2, r2). If the two scholars hold contradictory positions on c,
the substantiation game reduces to a refutation game. Otherwise,
the substantiation game reduces to two refutation games c.RG(s1,
s2) and c.RG(s2, s1) in which the two scholars teach each other.
Given the two positions and the game, Table 1 can be used to iden-
tify the scholar being tested. It is important to identify the scholar
under test for scholar evaluation purposes. The result of a sub-
stantiation game is a list of either one RGHistory record or two
TestHistory records. A TestHistory extends RGHistory records
with a underTest field.

9.4 Labs
An FSCP lab is a crowdsourcing system that consists of a

ClaimFamily and a number of Scholars. Furthermore, based on
its goal, a lab also provides:

1. system wide interaction mechanisms for scholars,

2. an evaluation mechanism for its scholars,

3. a mechanism for combining scholars’ contributions.

We discuss system wide interaction mechanisms below and dis-
cuss scholar evaluation and combination of scholar contributions in
Section ??.

It is possible to build several system wide interaction mecha-
nisms on top of substantiation games and the Scholar interface.
We give here three examples:

9.4.1 Battleship
Scholars independently propose claims to the system. When two

scholars propose the same claim, the system collects their position
and then engages them in a substantiation game.

9.4.2 Guided Search
The system chooses a claim and two scholars, then it collects

their positions on that claim and engages them in a substantiation
game. The system repeats until it reaches its goal. For example,
suppose that we are building a crowdsourcing system to find the

critical point of some free variable (from an ordered domain) in
a formula. This is the value such that all claims above it are, for
example, false. The system can effectively perform a binary search
on the domain of that free variable. At each step in the binary
search, the system creates a claim and chooses two scholars and
engage them in a substantiation game.

9.4.3 Scientific Community Game
The Scientific Community Game (SCG) is a precursor to FSCP.

The focus of SCG was educational. In SCG, scholars play a soccer-
like tournament of binary matches. A match consists of an even
number of rounds where scholars participate in binary games with
alternating roles. SCG binary games are a precursor to substantia-
tion games. In an SCG binary game, a scholar called the proponent
proposes a claim. By doing so, the proponent is implicitly tak-
ing the verifier position on the claim it proposed. Then the other
scholar, called the opponent, is asked to decide whether it agrees
or disputes the claim. In either case, both scholars participated in a
refutation game.

Eventually, a scholar ranking is produced as well as a trace of all
refutation games. The intent was that scholars learn from the traces
and the ranking is used to motivate them.

10. EXPERIENCE WITH THE SCG
The SCG has evolved since 2007. We have used the SCG in soft-

ware development courses at both the undergraduate and graduate
level and in several algorithm courses. Detailed information about
those courses is available from the second author’s teaching page.

10.1 Software Development
The most successful graduate classes were the ones that devel-

oped and maintained the software for SCG Court [1] as well as
several labs and their avatars to test SCG Court. Developing labs
for avatars has the flavor of defining a virtual world for artificial
creatures. At the same time, the students got detailed knowledge of
some problem domain and how to solve it. A fun lab was the High-
est Safe Rung lab from [20] where the best avatars needed to solve
a constrained search problem using a modified Pascal triangle.

10.2 Algorithms
The most successful course (using [20] as textbook) was in Spring

2012 where the interaction through the SCG encouraged the stu-
dents to solve difficult problems. Almost all homework problems
were defined through labs and the students posted both their ex-
ploratory and reformatory actions on piazza.com. We used a multi
player version of the SCG binary game which created a bit of an
information overload. Sticking to binary games would have been
better but requires splitting the students into pairs. The informal use
of the SCG through Piazza (piazza.com) proved successful. All ac-
tions were expressed in JASON which allowed the students to use
a wide variety of programming languages to implement their algo-
rithms.

The students collaboratively solved several problems such as the
problem of finding the worst-case inputs for the Gale-Shapely al-
gorithm (see the section Example above).

We do not believe that, without the SCG, the students would have
created the same impressive results. The SCG effectively focuses
the scientific discourse on the problem to be solved.

The SCG proved to be adaptive to the skills of the students. A
few good students in a class become effective teachers for the rest
thanks to the SCG mechanism.

11. RELATED WORK
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11.1 Crowd Sourcing and Human Computa-
tion

11.1.1 Dealing with Unreliable Workers
Most crowdsourcing systems must devise schemes to increase

confidence in the worker’s solutions to tasks, typically by assign-
ing each task multiple times [17]. Larger et AL. present a general
model for crowdsourcing tasks. In FSCP, because workers need to
justify their answers in a game against another worker, unreliable
workers will run into many contradictions and get a low rating.
This means that their votes will minimally affect the final result,
the knowledge base of true claims.

[9] is related to FSCP scholar ranking. The algorithm is an ex-
tended Bradley-Terry model called Crowd-BTU. The paper focuses
on finding the quality of annotators in a crowdsourced setting. They
study the exploration-exploitation tradeoff which is also relevant to
FSCP for labeling claims as true or false.

The "Evaluating the Crowd with Confidence" paper [16] has a
title that seems very applicable to FSCP. However, they use a model
which is too simple for FSCP. In particular, in FSCP the errors
depend on task difficulty, and worker errors are not independent of
each other because they play a game.

11.1.2 Rating Systems
We use a rating system for games with wins, losses and draws.

This subject has been studied for a long time and there are many ap-
plications of rating systems. For example, in chess and other sports,
the Elo rating system is used. A good survey and critique of rating
systems is given in [6]. Rating systems are a controversial subject
and there are many algorithms that can be used. TopCoder [35]
uses an Algorithm Competition Rating System to rank the coders.

11.1.3 Combining Worker’s Contributions
In FSCP, we use two approaches to combine scholar contribu-

tions: (1) During the refutation games, the scholars give each other
feedback by trying to drive each other into a contradiction. This
is a collaboration which leads potentially to new ideas and knowl-
edge fusion. (2) In FSCP, scholars vote on the truth or falseness of
claims when deciding to verify or falsify claims. Furthermore, it
is not enough for scholar to just vote but also it is important that
they justify their votes through their actions in refutation games.
We combine the votes with justifications into an overall vote for
whether a claim is true. Related work is [9] and [17] which was
already discussed above.

11.1.4 Competitions
There are several websites that organize competitions. What is

common to many of those competitions? We believe that the FSCP
provides a foundation to websites such as TopCoder.com or kag-
gle.com.

The FSCP makes a specific, but incomplete proposal of a pro-
gramming interface to work with the global brain [7]. What is cur-
rently missing is a payment mechanism for scholars and an algo-
rithm to split workers into pairs based on their background.

The FSCP is a generic version of the “Beat the Machine” ap-
proach for improving the performance of machine learning systems
[5].

Scientific discovery games, such as FoldIt and EteRNA, are vari-
ants of the FSCP. [10] describes the challenges behind developing
scientific discovery games. [3] argues that complex games such as
FoldIt benefit from tutorials. This also applies to the FSCP, but a
big part of the tutorial is reusable across scientific disciplines.

11.1.5 Crowdsourcing complex tasks
[19] describes a general-purpose framework for solving complex

problems through micro-task markets. Engaging in the scientific
dialogs of FSCP could be done through a micro-task market. [29]
proposes a language to define crowdsourcing systems. Our lab def-
inition approach provides a declarative description of what needs
to be crowdsourced.

[21] provides an interesting analysis of several issues relevant
to FSCP: how incorrect responses should affect worker reputations
and how higher reputation leads to better results.

11.2 Logic and Imperfect Information Games
Logic has long promoted the view that finding a proof for a claim

is the same as finding a defense strategy for a claim.
Logical Games [28], [14] have a long history going back to Socrates.

The FSCP is an imperfect information game which builds on Paul
Lorenzen’s dialogical games [18].

11.3 Foundations of Digital Games
A functioning game should be deep, fair and interesting which

requires careful and time-consuming balancing. [15] describes tech-
niques used for balancing that complement the expensive playtest-
ing. This research is relevant to FSCP lab design. For example, if
there is an easy way to refute claims without doing the hard work,
the lab is unbalanced.

11.4 Architecting Socio-Technical Ecosystems
This area has been studied by James Herbsleb and the Center

on Architecting Socio-Technical Ecosystems (COASTE) at CMU
http://www.coaste.org/. A socio-technical ecosystem supports straight-
forward integration of contributions from many participants and al-
lows easy configuration.

The FSCP has this property and provides a specific architecture
for building knowledge bases in (formal) sciences. Collaboration
between scholars is achieved through the scientific discourse im-
plied by the refutation game. The information exchanged gives
hints about how to play the game better next time. An interesting
question is why this indirect communication approach works.

The NSF workshop report [33] discusses socio-technical inno-
vation through future games and virtual worlds. The FSCP is men-
tioned as an approach to make the scientific method in the spirit
of Karl Popper available to CGVW (Computer Games and Virtual
Worlds).

11.5 Online Judges
An online judge is an online system to test programs in program-

ming contests. A recent entry is [30] where private inputs are used
to test the programs. Topcoder.com [35] includes an online judge
capability, but where the inputs are provided by competitors. This
dynamic benchmark capability is also expressible with the FSCP:
The claims say that for a given program, all inputs create the correct
output. A refutation is an input which creates the wrong result.

11.6 Educational Games
The FSCP can be used as an educational game. One way to

create adaptivity for learning is to create an avatar that gradually
poses harder claims and makes the scientific discourse more chal-
lenging. Another way is to pair the learner with another learner who
is stronger. [2] uses concept maps to guide the learning. Concept
maps are important during lab design: they describe the concepts
that need to be mastered by the students for succeeding in the game.

11.7 Formal Sciences and Karl Popper
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James Franklin points out in [13] that there are also experiments
in the formal sciences. One of them is the ‘numerical experiment’
which is used when the mathematical model is hard to solve. For
example, the Riemann Hypothesis and other conjectures have re-
sisted proof and are studied by collecting numerical evidence by
computer. In the FSCP experiments are performed when the game
associated with a claim is elaborated.

Karl Popper’s work on falsification [31] is the father of non-
deductive methods in science. The FSCP is a way of doing science
on the web according to Karl Popper.

11.8 Scientific Method in CS
Peter Denning defines CS as the science of information processes

and their interactions with the world [11]. The FSCP makes the
scientific method easily accessible by expressing the hypotheses as
claims. Robert Sedgewick in [34] stresses the importance of the sci-
entific method in understanding program behavior. With the FSCP,
we can define labs that explore the fastest practical algorithms for
a specific algorithmic problem.

11.9 Games and Learning
Kevin Zollman studies the proper arrangement of communities

of learners in his dissertation on network epistemology [38]. He
studies the effect of social structure on the reliability of learners.

In the study of learning and games the focus has been on learning
known, but hidden facts. The FSCP is about learning unknown
facts, namely new constructions.

11.10 SCG
SCG [25], [23], [24] is a close predecessor of FSCP. The orig-

inal motivation for the SCG came from the two papers with Ernst
Specker: [26] and the follow-on paper [27].

The key difference between FSCP and SCG is that SCG was tar-
geted at evaluation of the scholars while FSCP is targeted at crowd-
sourcing true claims. FSCP is cleaner: there is a simple concept of
self-contradiction and there is no longer a need to have the concept
of strengthening a claim explicitly.

12. CONCLUSION AND FUTURE WORK
We presented FSCP, a crowdsourcing platform for formal sci-

ence. FSCP provides a simple interface to a community that uses
the (Popperian) Scientific Method.

We want to extend our model so that we can make claims about
claims. For example, we want to have a "macro" for a claim to be
optimal. We want to leverage claim relationships across labs and
work with lab reductions as a useful problem solving tool.

We see a significant potential in putting the refutation-based sci-
entific method into the cyberinfrastructure and make it widely avail-
able. We plan to, iteratively, improve our current implementation
based on user feedback.

We see an interesting opportunity to mine the game histories and
make suggestions to the scholars how to improve their skills to pro-
pose and defend claims. If this approach is successful, FSCP will
make contributions to computer-assisted problem solving.
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