
Traversal Graphs: Characterization and Efficient Implementation

Ahmed Abdelmeged Therapon Skotiniotis Panagiotis Manolios Karl Lieberherr
College of Computer & Information Science

Northeastern University, 360 Huntington Avenue
Boston, Massachusetts 02115 USA.

{mohsen,skotthe,pete,lieber}@ccs.neu.edu

Abstract
Adaptive Programming (AP) provides programmers with a
graph abstraction of their OO program’s structure (called a
class graph) and encapsulates traversals and computation
along traversals as adaptive methods. An adaptive method
consists of a selector specification, called a strategy, that
selects paths in the class graph, and a behavior definition
with advice on nodes that are executed while traversing the
selected paths.

Any AP implementation faces the following problem:
given a strategy, S and a class graph G compute the set of
paths in G that satisfy S. We represent the set of valid paths
in G as a graph, dubbed a traversal graph.

In this paper we give the first characterization of, and a
new algorithm for computing, traversal graphs. We describe
our new algorithm that is more efficient – the size of the
generated traversal graph is in the worst case as large as
the traversal graph generated by previous approaches – and
more general – our algorithm is defined over general graphs
rather than on the class graph directly. We apply our algo-
rithm in an AP setting by transforming class graphs to gen-
eral graphs. We further show that our algorithm generates a
traversal graph that satisfies our characterization.

1. Introduction
Adaptive Programming (AP) (?) has been developed as an
extension to Object-Oriented (OO) programming and aims
at facilitating evolutionary development by limiting depen-
dencies between traversal code and a program’s class struc-
ture. An adaptive program consists of three loosely coupled
modules:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’08 Tennessee.
Copyright c© 2008 ACM [to be supplied]. . . $5.00

• the class hierarchy, represents the class structure of an
OO program as a graph, called the class graph, including
classes, inheritance edges and containment edges,1

• a strategy, a succinct navigation specification based on
the program’s class hierarchy, and,
• behavior, computation to be performed during the traver-

sal of the program’s object structure, guided by the strat-
egy.

As a concrete example consider a Java program that con-
tains anonymous classes and the task of refactoring these
anonymous classes to nested classes.2 Using AP we can view
the abstract syntax tree (AST) as a graph and we can use the
strategy,

from C la s sDe f v i a AnonClassDef t o ∗ .

where ClassDef and AnonClassDef are both AST nodes,
to select the relevant subgraph for our refactoring. The strat-
egy is a specification that describes paths in the AST. Put
differently, the strategy is a selector that picks all the paths
in the AST that can reach any node (denoted by a *) starting
from a ClassDef node and going through a AnonClassDef
node. Strategies are used along with visitor classes (?) (or
function objects (?)) to define adaptive methods. The fol-
lowing adaptive method can be defined inside ClassDef.

pub l i c vo id r e f a c t o rAnon ()
from C la s sDe f v i a AnonClassDef t o ∗
(AnonToInnerVis) ;

Calling the method refactorAnon starts traversing from
the current object guided by the strategy specification and
executes any applicable visitor methods in AnonToInnerVis
along the way. Strategies allow for a high-level path specifi-
cation that minimizes dependencies between the program’s
structure and operations on the program’s structure.

An efficient implementation of adaptive methods depends
on the efficiency with which we calculate all paths selected
by a strategy in a given graph, i.e., all the paths in the AST
that start from ClassDef go through an AnonClassDef

1 A restricted form of UML’s Class Diagram that does not include methods.
2 A similar refactoring operation is supported by Eclipse (?).

and terminate at any AST node. In order to calculate these
paths we need to take into account the notion of types and
subsumption in the context of an OO language. For example,
consider the situation where ClassDef is an abstract class,
then only paths that go through fields inherited by, or defined
in, ClassDef through AnnonClassDef are valid. A path
to AnnonClassDef that goes through a field defined in a
sublcass of ClassDef is invalid.

Previous approaches to AP (??) gave an algorithm for
calculating valid paths from a strategy specification and a
type hierarchy. The algorithm represents the set of valid
paths as a graph referred to as a traversal graph. Given a
strategy (represented as a graph), a type hierarchy, a name
map between the strategy’s node set and the type hierarchy’s
node set and a constraint map mapping nodes and edges to
predicates returns a traversal graph. The predicates on nodes
and edges capture the conditions under which the algorithm
can use the node or edge during traversal.

In this paper we present

• a formal characterization of traversal graphs, and,
• a new algorithm for constructing traversal graphs given a

selector specification and a graph that:

1. does not restrict the form of supported strategies (??),

2. is defined on general graphs; we show for the case of
class hierarchies and AP how with a series of transfor-
mations the problem is reduced to a selection problem
on general graphs, and

3. is more efficient;our algorithm generates a traversal
graph that is, in the worst case, as large as the traversal
graph generated by previous algorithms (?).

We also show that our algorithm returns a traversal graph
that satisfies our characterization. We believe that similar
reductions to the ones we defined for AP can be defined
for other selector languages, e.g., XPath queries, pointcut
matching in Aspect Oriented Programming languages etc.

1.1 Paper Organization
The rest of this paper is organized as follows: in section
2 we define our notation and provide the characterization
for traversal graphs. In section 3 we describe our traversal
construction algorithm and in section 4 we show that our
algorithm satisfies the characterization given in section 2. In
section 5 we describe a transformation from class graphs to
general graphs and in section 6 we conclude our paper with
a discussion on related work and future directions.

2. Characterization of Traversal Graphs
In (?) a traversal graph refers to a graph constructed as
part of the reachability algorithm that represents all paths
in a graph G selected by a strategy specification s. In this
section we dissassociate the notion of a traversal graph from
the details of a strategy and a class graph. We provide a

characterization for traversal graphs based on two general
graphs as a conforms relationship that must hold between
the two graphs and the properties that should hold between
sets of paths found in these two graphs.

Before we give our characterization we introduce our
notation and provide some definitions used in the remainder
of our paper.

We use the standard notation for general graphs where a
graph G is an ordered pair (N, E) where N is a set of nodes
and E is a binary relation on N. We also use G.nodes and
G.edges for the sets N and E of the graph G. An edge e
∈ E is an ordered pair and we use e.source and e.target
to denote the first and second element of e respectively.
Given a node n ∈ N, we use the notation n.in to denote
{e | e ∈ E ∧ e.target = n} and n.out to denote
{e | e ∈ E ∧ e.source = n}.

A path P is a nonempty sequence v1, . . . , vm of nodes
where v1 is called the source node (also denoted as P.source)
and vn is called the target node (also denoted as P.target).
We use P.nodes to denote the set of nodes in the path P
and P.edges to denote the set {(vi, vi+1) | i ∈ [1, m)}. A
path P is in graph G iff P .nodes ⊆ G.nodes and P .edges
⊆ G.edges .

Selector graphs are special kinds of graphs that have the
notion of source and target nodes. Also, any node in the
selector graph has to be on a path from a source node to
a target node. Consider for example the strategy

from C la s sDe f v i a {MethodSig , F i e l dDe f }
t o TypeName .

in the context of Java’s AST as in section 1. The strategy se-
lects all type names reachable from a ClassDef but going
through either a method signature or a field definition. The
selector graph for this strategy has ClassDef as the only
source and TypeName as the only target. On any path from
source to target we either have to go through a MethodSig
node or a FieldDef node. Selector graphs depend on an-
other graph. For example names used in the strategy are
names of nodes in the class graph and the “edges” implicitly
defined with via and to are edges in the transitive closure
of the edges in the class graph

To capture selector graphs we first define stgraphs and
then define selector graphs as stgraphs for a given graph G
where the nodes of the selector graph are a subset of the
nodes of G and the edges of the stgraph are a subset of the
transitive closure of the edges in G.

An stgraph S is a graph with the following conditions:

• A non empty set S ⊆ S.nodes of source nodes, denoted
S.sources .
• A non empty set T ⊆ S.nodes of target nodes, denoted
S.targets .

such that every node n ∈ S.nodes\(S.sources ∪ S.targets)
is reachable from a node in S.sources , and every node
S.targets is reachable from n.

We define the predicate expansionG(P,Q) to hold iff:

• P and Q are paths. and
• Q.nodes ⊆ P.nodes . and
• P is obtainable from Q by inserting zero or more nodes

from G.nodes .
• P.source = Q.source.
• P.target = Q.target .

We use the expression EXPG(R) where G is a graph and
R is a set of paths over G.nodes3, denotes the set of paths
{P | ∃Q ∈ R : expansionG(P,Q)}.

A path in an stgraph S from a source to a target is denoted
STPS . Formally, STPS = {P | P.source ∈ S.sources ∧
P.target ∈ S.targets ∧ PinS}

The function S.stpaths where S is an stgraph, denotes
the possibly infinite 4 set of all STPS in S.

The function G.paths where G is a graph, denotes the
possibly infinite set of all paths in G.

A selector graph SG for a graph G, is an stgraph such
that:

• SG.nodes ⊆ G.nodes
• SG ⊆ G+.

An overlay map M : GO → GB is a function 5 that
maps nodes of the overlayed graph GO to nodes in the base
graph GB . We say that graph GO conforms-to graph GB

using the overlay map M iff: ∀ (n1, n2) ∈ GO.edges :
(M(n1),M(n2)) ∈ GB .edges . We overload overlay maps
to map sets of nodes. We also overload overlay maps to
map edges, paths and subgraphs of GO to GB only if GO

conforms-to GB .
A traversal graph of a graph G and a selector graph SG

is denoted TG(SG). TG(SG) is an stgraph overlayed on G
using an overlay mapM such that:

(A) TG(SG) conforms-to G usingM. and

(B) M (TG(SG).stpaths) = EXPG(SG.stpaths).

Simply put, M (TG(SG)) are the paths of TG(SG)
mapped to their underlying graphs. M (TG(SG)) contains
all paths that are: expansion of some path in SG , and in 6 G.

3. Traversal Graph Construction
In this section we present a new algorithm for constructing
traversal graphs. The entry point for our algorithm is the
function computeTG which takes as arguments, a graph
g and a selector graph sg defined over the nodes of g.
computeTG starts by creating an initial traversal graph
that is identical to sg, line 1. Every node in the initial traver-

3 But paths in R are not necessarily paths in G
4 Due to loops in S.
5 not necessarily injective.
6 not just over the nodes of G

sal graph is mapped to an underlying node in g. The method
cgNode can be used to retrieve the underlying g node of a
traversal graph node. computeTG then replaces every edge
e in the initial traversal graph by another traversal graph
tge, resulting in the final traversal graph.

Function computeTG(cg, sg)

//g is a graph.
//sg is a selector graph over the nodes of g.
tg = createTG (sg.nodes , sg.edges , sg.sources ,1

sg.targets);
foreach e ∈ tg do2

src = e.source.cgNode ();3

trgt = e.target .cgNode ();4

tge = constructTG (g, src, trgt);5

replace (tg, e, tge);6

end7

The function createTG takes a set of nodes in g, a set of
edges over these nodes, and two other subsets of these nodes
defining source and target nodes. the arguments define an
stgraph. createTG creates a traversal graph that is identi-
cal in structure to the stgraph passed in. Every node in the
newly created graph maps to an underlying node in the set of
input nodes. createTG is used by computeTG to create the
initial traversal graphs and is also used by constructTG to
construct traversal graphs to replace the edges of the initial
graph.

Function createTG(nodes, edges, sources, targets)

//nodes is a set of nodes.
//edges is a edges over nodes .
//sources targets are subsets of nodes .
tg = empty;1

rmap = empty;2

foreach n ∈ nodes do3

tgNode = new TGNode (n);4

if sources.contains (n) then5

tg.sources.add (tgNode);6

end7

if targets.contains (n) then8

tg.targets.add (tgNode);9

end10

tg.add (tgNode);11

rmap.add (n, tgNode);12

end13

foreach e ∈ edges do14

tgsrc = rmap.lookup (e.source);15

tgtrgt = rmap.lookup (e.target);16

tg.add (tgsrc, tgtrgt);17

end18

The function constructTG takes as arguments a graph
g and two nodes src, trgt. constructTG first finds the sub-
graph of g that contains all nodes reachable from src and
can reach trgt. Then, it creates a traversal graph based on
these nodes using the constructTG function defined above.
The functions collectForward and collectBackward will
be described shortly. The function filter(edges, nodes)
takes in a set of edges and a set of nodes and returns the
subset of edges whose end points are in the given set of
nodes.

Function constructTG(cg, src, trgt)

//cg is a graph.
//src, trgt are two nodes in cg.nodes .
backNodes = collectBackward (g.nodes , empty,1

src);
legalNodes = collectForward (backNodes, empty,2

trgt);
legalEdges = filter (g.edges , legalNodes);3

return createTG (legalNodes, legalEdges, empty,4

empty);

The function collectForward takes in a subset of the
nodes of graph g, an auxiliary argument that holds the set of
nodes collected so far, and a source node src. collectForward
performs a depth first search, starting from src, on the subset
of g defined by the given nodes. collectForward collects all
the node that it encounters and eventually returns them. The
function collectBackward is identical to collectForward
except that collectBackward traverses g backwards.

Function collectForward(nodes, collectedNodes,
src)
//nodes is the set of legal nodes.
//collectedNodes is the set of nodes collected so far.
if not (collectedNodes.contains (src)) then1

collectedNodes.add (src);2

foreach e ∈ src.out do3

if nodes.contains (e.target) then4

collectForward (nodes, collectedNodes,5

e.target);
end6

end7

end8

return collectedNodes;9

The function replace takes as arguments a traversal
graph tg, an edge edge in tg, and another traversal graph
tge that is intended to replace edge in tg. Throught replace,
we use equals to compare traversal nodes. What equals
actually does is to compare the two underlying nodes in g
rather than comparing the two traversal graph nodes di-
rectly. replace removes edge from tg. Then replace adds all

nodes from tge to tg except for two nodes in tge that cor-
respond to edge.source and edge.target . Finally, replace
adds the appropriate edges from edge.source, edge.target
to the rest of tge.

Function replace(tg, edge, tge)

//tg is a traversal graph.
//edge is in tg.
//tge is a traversal graph to replace edge in tg.
source = edge.source;1

target = edge.target ;2

tg.removeEdge (source,target);3

foreach n ∈ tge.nodes do4

if not (n.equals (source)) and not (n.equals5

(target)) then
tg.add (n);6

end7

end8

foreach e ∈ tge.edges do9

if e.source.equals (source) and (e.target .equals10

(target)) then
tg.addEdge (source,target);11

else if e.source.equals (source) then12

tg.addEdge (source,e.target);13

else if e.target .equals (target) then14

tg.addEdge (e.source,target);15

else tg.addEdge (e.source,e.target);16

end17

4. Analysis
In this section we prove that the algorithm described in sec-
tion 3 produce traversal graphs that satisfy the characteri-
zation given in section 2. Theorem 1 states that the output of
constructTG satisfies condition 1 in the characterization.
Theorem 2 states that the output of constructTG satisfies
condition 2 in the characterization.

Lemma 1. Given a graph G, two nodes src and trgt in
G.nodes then constructTG(G, src, trgt) conforms-to G.

Proof. constructTG constructs a traversal graph from a
subset of the nodes and edges in G. Edges (nodes) are added
to the graph returned by constructTG only if there are
corresponding edges (nodes) in G.

Theorem 1. Given a graph G and a selector graph SG

defined over G.nodes then computeTG(G,SG) conforms-
to G.

Proof. computeTG starts with the strategy graph and re-
place every edge in it with a traversal graph that is con-
structed using constructTG. Therefore, every edge in the

traversal graph returned by computeTG has a correspond-
ing edge in G. Hence, the theorem follows.

Lemma 2. Given a graph G, two nodes src and trgt in
G.nodes , let tge be constructTG(G, src, trgt), letM be
tge.map, thenM (tge) contains all paths in G from src to
trgt.

Proof. Suppose that P is a path in G from src to trgt and
M (tge) does not contain P .

let G1 be a subgraph of G that contains all nodes that
are reachable from src in G and can reach trgt in G. By
construction,M (tge) = G1.

G1 contain all the nodes and edges that could be on any
path from src to trgt. Therefore, G1 must contain P . But,
by assumption, G1 does not contain P .

Theorem 2. Given a graph G and a selector graph SG

defined over G.nodes let tg be computeTG(G,SG), letM
be tg.map, thenM (tg.paths) = EXPG(SG .paths).

Proof. Suppose that P is in G and in EXPG(SG .stpaths)
and P is not inM (tg.stpaths).

Since P ∈ EXPG(SG .stpaths), P can be broken into a
sequence of subpaths P1, . . . , Pk such that:
∀i ∈ [1, k) : Pi.target = Pi+1.source.
Q = P1.source, . . . , Pk.source, Pk.target in SG .stpaths.

Since Q is in SG .stpaths, Q.nodes ⊆ SG .nodes and
Q.edges ⊆ SG .edges . Therefore, Q.nodes ⊆M (tg.nodes)
and every edge in Q.edges is replaced with a traversal graph
tge that, according to lemma 2, contains all paths from
e.source to e.target . This is done at computeTG lines 4, 5.
Since the final traversal graph tg with all original traversal
strategy edges replaced. We have that M (tg) contains all
Pi’s. Therefore, M (tg) contains P . But, this contradicts
our assumption thatM (tg) does not contain P . Hence the
theorem follows.

5. Transforming Class Graphs to General
Graphs

Our algorithm works on general graphs and stgraphs, how-
ever the graph representation of an OO program in AP,
called a class graph, is not a general graph but a specializa-
tion that encodes inheritance and subtyping. In this section
we present a transformation from class graphs to general
graphs. Stgraphs are defined on the result of our transfor-
mation and not on the class graph directly. We discuss this
issue in section 6.

5.1 Class Graphs
A class graph in AP represents the structure of an OO pro-
gram that contains two kinds of nodes, concrete and ab-
stract, and two kinds of edges, inheritance and containment.

We formally define class graphs as a labeled graph G =
(V,E,L) where

• L is a fixed, finite set of labels that correspond the an
OO program’s field names and includes the symbol �,
denoting an inheritance edge.

• V is the set of class names defined in an OO program.
The node set can be further partitioned into Vc the set of
concrete classes and Va the set of abstract classes.

• E is the set of edges one for each field in a class, labeled
with the field name, and one for each inheritance rela-
tionship between two classes labeled with the symbol �.
The edge set can be further partitioned into two E� the
set of inheritance edges and Ec the set of containment
edges.

The definition of edges and paths is extend to accommo-
date labels in the usual way, e.g., n1

l→ n2 is written as
(n1, l, n2) and a paths n1

l1→ n2 · · ·nk−1
lk→ nk is written

as n1l1n2 · · ·nk−1lknk where (ni, li, ni+1) ∈ G.edges . A
class n1 that inherits from n2 is represented as n1

l→ n2.
We define superclass as a relation between any two nodes n1

and n2 for which there exists a path p = p0 · · · pn (possibly
empty) such that (pi, �, pi+1) ∈ G.edges .

For the purposes of this presentation we model Java-like
languages with the following properties:

• for a node n each outgoing edge has a distinct name
(except edges with the label �),
• E� is acyclic,

• for any node n and any two nodes na and nb that are
superclasses of n then either na is a superclass of nb or
nb is a superclass of na

5.2 Class Graph Transformation
The transformation takes as input a class graph with the
following restrictions:

• for each edge n1
l→ n2 such that l = � then n2 is

abstract, and,

• for all edges n1
l→ n2 such that l 6= � then n1 is concrete.

Given any class graph G we first use the simplification
algorithm from (?) to transform it into a class graph G′

that satisfies the preceding restrictions. The simplification
algorithm guarantees that any object graph O that is an
instance of G is also an instance of G′.

More formally using the definitions from (?) an object
graph O = (V ′, E′, L′) is a labeled directed graph where
nodes are objects and L′ ⊆ L. An object graph O is an
instance of a class graph C = (V,E,L) under a function
Class : V ′ → V , if the following conditions hold

• for all objects o′ ∈ V ′, Class(o′) ∈ Vc

• for each object o′ the set of outgoing edges is exactly the
set of all outgoing containment edges (including inher-
ited edges) of Class(o′)

• for each o1
l→ o2 ∈ E′, Class(o1) has an edge n1

l→ n2

such that n1 is superclass of o1 and n2 is a superclass of
o2.

The second transformation replaces each labeled edge
with a new node holding the same name as the label on the
replaced edge and connected to the source and target nodes
of the replaced edge. In the case of subclass edges the new
node name is a concatenation of the superclass name the
symbol � and the subclass name, i.e., u

�→ v creates a the
new node �vu. Given C = (V,E,L) we create a new class
graph C ′ = (V ′, E′) as follows

• initialize V ′ to V and E′ to ∅
• for each ni

li→ ni+1

if li 6= �, then V ′ = V ′ ∪ {ni, ni+1, li} and E′ =
E′ ∪ {(ni, li), (li, ni+1)}
else V ′ = V ′ ∪ {ni, ni+1, �ni+1

ni } and E′ = E′ ∪
{(ni, �ni+1

ni), (�ni+1
ni , ni+1)}

We can partition V ′ into the set of original nodes in C,
V and the set of newly created nodes that represent the
original edge labels VL . The resulting graph is a bipartite
graph on which we can use two colors to distinguish the
original graph nodes (white) and the nodes that represent
labels in the original class graph (black). A path p′ in C’
that starts and ends with a white node, consists of alternating
colored nodes and the path can be mapped to a path p in
C by considering pairs of three consecutive nodes starting
from the p′’s start node, i.e., white,black,white. Each triple
represents an edge in p.

6. Conclusions and Future Work
In this paper we presented the first characterization for
traversal graphs. We also presented a new algorithm for
computing travresal graphs as well as two transformations
of a restricted yet useful subset of class graphs to and from
general graphs.

Acknowledgments
This work is supported in part by Grantham Mayo Van
Otterloo, LLC.

	Introduction
	Paper Organization

	Characterization of Traversal Graphs
	Traversal Graph Construction
	Analysis
	Transforming Class Graphs to General Graphs
	Class Graphs
	Class Graph Transformation

	Conclusions and Future Work

