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1. INTRODUCTION
Goldberg and Manolios have studied "Tests as Proofs" (TAP) for

propositional logic. We look at TAP for more expressive logics.
We consider predicate logic claims in prenex normal form where

all quantifiers are first. We want the test cases to encode the Skolem
functions behind the existential quantifiers. From the test cases it
should be easy to derive the general algorithms behind the Skolem
functions.

Having the Skolem functions does not yet give a proof that the
claim holds. But if the Skolem functions are correct, we can suc-
cessfully defend the claim against any opponent in the quantifier
game.

http://en.wikipedia.org/wiki/Game_semantics

In other words, we have a successful defense strategy.
What are the tests? They are the objects exchanged in the quanti-

fier game. Every predicate logic claim has an associated refutation
protocol. The refutation protocol describes the exchange of objects
between proponent and opponent during the quantifier game.

Why interesting: from input-output examples to algorithms, prob-
lem solving heuristics? learning from examples problem: examples
may be noisy in the sense that they are not systematic?

summarize skolem functions with a few examples?
TAP builds on the idea that several successful refutations of a

claim might lead quickly to a proof that the claim is false. We
require that the refutations be “high quality”. For example, the pro-
ponent claims: CNF S is satisfiable, i.e. there exists an assignment
that satisfies all clauses.

For report: TAP
TAP builds on the idea that a “few” successful defenses of a

claim might lead to a proof that the claim is true. We require
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that the defenses be “high quality”. For example, the proponent
claims: CNF S is unsatisfiable, i.e., for all assignments at least
one clause is unsatisfied. The opponent constructs a few assign-
ments (called tests) but none will satisfy CNF S, i.e., the proponent
(without doing anything) defends her claim. The opponent con-
structs “high quality” assignments, i.e. assignments that test “all
important corner cases”. After a small number of such defenses,
we can conclude that S is unsatisfiable. The same idea works on
claims with both existential and universal quantifier if we employ
the idea of Skolem functions. For example, the proponent claims:
∀x ∈ X∃y ∈ Y : p(x, y) for some Boolean predicate p. To defend
this claim, the proponent must find a y ∈ Y for any x ∈ X that
the opponent gives her. A small number of such defenses (tests)
might lead to a proof and a Skolem function that maps x to y so
that p(x, y) is true.

TAP is an idea that applies not only to hardware but also to soft-
ware verification and synthesis. Prof. Manolios’ exciting goal is to
make testing complete while keeping the number of tests reason-
ably small (this work is in collaboration with Eugene Goldberg).
For the propositional case, the TAP vision is realized by treating a
test set as an encoding of a formal proof rather than a sample of a
search space. It was shown that short resolution proofs for Boolean
formulas translate into a small number of tests (k resolution steps
require at most 2 · k test cases). This requires high quality tests
that encode mandatory fragments of a proof. The TAP methodol-
ogy runs a small number of tests on a silicon circuit to prove the
implementation correct. Of course, one question is on how many
practical circuits this is possible because resolution proofs tend to
be exponentially long. But Prof. Manolios’ TAP investigation is
very promising to bridge testing and formal verification.

successful defense = unsuccessful refutation
proponent successfully defends = opponent unsucccessfully re-

futes

1.1 Generalized Binary Search
BDT(k,q,n) is the set of binary decision trees with n leaves 0..n-

1, depth q and each path from root to leaf has at most k left branches.
Consider the GBS problem: MR(k,q)<=n: given positive inte-

gers k and q and n, k<q, and k<n find a binary decision tree b in
BDT(k,q,n).

Here the predicate logic claim is: MR(k,q)<=n = ForAll (k,q) in
(k,q) Exists binary search tree s in BDT(k,q,n).

The refutation protocol for MR(k,q)=n requires that the propo-
nent of the claim provides a decision tree s in BDT(k,q,n). s pro-
vides a proof for claim MR(k,q)<=n.

But we search for a general treatment of the MR(k,q)<=n) claims
so that we can decide these questions: (1) MR(k,q)=<n) (2) !MR(k,q)<=n)
(3) Given k,q find n=mr(k,q) so that MR(k,q)<=n) and !MR(k,q)<=(n+1)

Giving a solution for MR(k0,q0)<=n0 (assuming it is true) re-
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veals information about other (k0,q0,n0).
Is there a way to solve the pairs (k,q) in such a way that the gen-

eral construction emerges? The solutions should have an inductive
structure that can be generalized into an inductive scheme. When
this happens we say that the tests provide a solution to the general
problem.

Other example:
ForAll x in X Exists y in Y: p(x,y) Opponent provides x, Propo-

nent provides y(x)
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