
Design and Secure Evaluation of Side-Choosing Games

Ahmed Abdelmeged, Ruiyang Xu and Karl Lieberherr
CCIS/PRL

Northeastern University, Boston, MA 02115
email: lieber@ccs.neu.edu

Abstract

We present an important, general class of new games,
called side-choosing games (SCGs), for “gamifying”
problem solving in formal sciences. Applications of
SCGs include (1) peer-grading in teaching to (2) study-
ing the evolution of knowledge in formal sciences to
(3) organizing algorithm competitions. We view SCGs
as a new and general model for formulating formal
problems that need to be solved using human compu-
tation. Our interest in this paper is on how to evalu-
ate an SCG tournament fairly and effectively. We ob-
serve that a specific kind of collusion, where players lie
about their strength and sacrifice themselves, could bias
the evaluation of SCG tournaments dramatically. Fol-
lowing the idea of Social Choice Theory in the sense
of Arrow, we take an axiomatic approach to guaran-
tee that a specific kind of collusion is impossible. We
prove the Collusion-Resistance Theorem as a general
principle for designing collusion-resistant evaluations
for SCG tournaments. The Collusion-Resistance The-
orem is surprising: it tells us to be indifferent to wins
but to count certain kinds of losses for scoring players
and ranking them. If collusion is not an issue, we of-
fer a family of useful ranking functions which are not
collusion-resistant.

1 Introduction
A side-choosing game (SCG) H = 〈G,GS,Q, px, py〉 is
based on an extensive form two-player game G between
players px and py with perfect information and without ties,
i.e., there is always a winner and a loser1. G is a game be-
tween two players, white and black. GS is a game state of
G (i.e., a node of the game tree of G). Q is a proposition on
the game state GS of the form: white or black has a winning
strategy when white or black moves first.

The players px, py of an SCG have their preferred, static
side (white or black), depending on whether they believe
Q or !Q to be true. The players are free to choose their
static side before the game. But during the game the players
must have opposite ”run-time” sides which we implement

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Extensive form games are widely used to model multi-agent
sequential decision making. They are represented by game trees.

by making (per game) at most one of them the devil’s advo-
cate (or forced).

The side-choosing game 〈G,GS,Q, px, py〉 produces a
game result row consisting of (1) the winner (px or py) (2)
the loser (px or py) and (3) at most one forced player (px or
py or 0, if none was forced). A set of game results produced
by multiple binary SCGs is called an SCG-Table.

1.1 Examples
Consider the chess position GS in Fig. 1 as a side-choosing
game2. The game G is chess, modified so that winning for
white means to mate the black king in 2 moves. The propo-
sition Q says that white starts in GS and wins. We have two
players, Alice and Bob, who study G and GS and make their
side choices. Alice believes she can win as white (she ”sees”
the mate in two) and therefore her side choice is white. Bob
does not see the mate in two and therefore he wants to be
black. The game is played and Alice wins (how is left as an
exercise to the reader; there is only one optimal move for
white.). Game result row= (winner=”Alice”, loser=”Bob”,
forced=0). If white plays b3 and black f3 then white mates
with Qb2. White wins but only because black made a mis-
take. The correct move for black is c4 (not f3) and white
cannot mate in the next move. This example gives the wrong
impression that playing one perfect game reveals the win-
ning strategy (solution). But this is not the case most of the
time.

Next we consider a large family of examples of side-
choosing games: the family consists of semantic games (Ku-
las and Hintikka 1983) for claims with side choice added.
The game G is defined by an interpreted logical sentence
between white (proponent, existential quantifier) and black
(opponent, universal quantifier). The outermost quantifier
of the sentence determines who moves first. For white, the
game is about making the sentence true by assigning values
to variables. Black tries to prevent this. Side-choosing games
exist for many different logics such as first-order predicate
logic, higher-order logics and independence-friendly logic.
A first important subfamily are claims in formal sciences
with side choice added. A second important subfamily are
claims related to algorithm specifications for algorithm com-

2Taken from the collection: SEVENTY-FIVE CHESS PROB-
LEMS by John Thursby, Trinity Coll., Cambridge, 1883.

Figure 1: An SCG example: white mates in two

petitions (a la TopCoder, see topcoder.com or Kaggle, see
kaggle.com).

1.2 Motivation
Claims are ubiquitous in human reasoning. An SCG can be
viewed as a plausibility check of a claim. A game state GS
of an extensive form game G is a model of a claim. When I
argue that a claim is true but then I cannot defend it using a
plausibility check, there must be something wrong with my
argument. We are interested in how to aggregate multiple
such plausibility checks in a robust ranking manner, consid-
ering incentive and trust.

There are two kinds of incentives in SCG: the incentive
(1) to be top-ranked which brings money or fame and (2) to
get feedback during game play which builds skills and pro-
vides opportunity for learning. Incentive (2) suggests pro-
ductive applications of SCGs in education.

Trust in the SCG approach is related to the belief that
good work as a player will get rewarded and that it is not
possible to be top-ranked without doing good work. There
should be no sneaky ways to game the system: money or
fame must be well deserved. Trust can be broken in at least
two ways: (1) by defining games but not checking that all
game rules are perfectly followed and (2) by having tourna-
ments and evaluations where you can succeed without hard
work. Point (1) is addressed by having reliable software to
check the game rules related to the claims. This paper is ad-
dressing point (2). One important consideration in our rank-
ing approach is to prevent sybil attacks. In an online com-
petition, several sybils might enter and help others to win
thereby preventing the strong players to win. In the presence
of collusion-resistance, sybils have no effect on overpower-
ing perfect players.

This workshop paper is a very condensed version of the
main ideas in the dissertation (Abdelmeged 2014). (Ab-
delmeged, Xu, and Lieberherr 2015) gives a longer version
of the material described in this paper, including complete
proofs and more related work.

2 Main Theory
We discuss the ranking of players based on an SCG-table
T under the axioms ”winning cannot lower your rank” and
”losing cannot increase your rank” and ”games you don’t

control don’t affect your rank”. You are in control if you
participate and are not forced.

The axioms are formalized by expressing that adding a
row where player px satisfies a property, will keep the rank-
ing of px with respect to other players py invariant.

Let P be the set of all players. R(P) is the set of possible
game results for P (for formal definition see (Abdelmeged,
Xu, and Lieberherr 2015)). For our theory we define a few
basic predicates: ∀px ∈ P,∀r ∈ R(P)

participant(px, r)⇔ px is a participant in the game r

win(px, r)⇔ px won the game r

loss(px, r)⇔ px lost the game r

forced(px, r)⇔ px is forced to choose a side in the game r

control(px, r)⇔ participant(px, r) ∧ ¬forced(px, r)
fault(px, r)⇔ loss(px, r) ∧ ¬forced(px, r)

We also define counting functions for scoring players:

wfpx
(T) = the win count of px in T in a forced position

wupx(T) = the win count of px in T in an unforced position
lfpx

(T) = the loss count of px in T in a forced position
lupx

(T) = the loss count of px in T in an unforced position

It’s obvious that given table T ′ = T ∪ {r} and X ∈
{wf,wu, lf, lu} the following transitional relations hold:

Xpx
(T ′) =

{
Xpx

(T) + 1 if X happens in {r}
Xpx(T) otherwise

The equation above is critical to transform predicate logic
axioms into algebraic formulas presented later in this paper.

2.1 Ranking Axioms
We define a pre-order �T

U called the weakly better relation
∀T ⊆ G based on the scoring function U : N×N×N×N→
R. Lower U means better player. For convenience, we drop
the subscript and refer to it simply as �T .
We want to assign to each player a score solely based on
the players’ demonstration of ability. We use the above four
counting functions, based on wins and losses and whether a
player was forced, to calculate a player’s score. We formally
define the ranking relation as,

∀px, py ∈ P,∀T ⊆ R(P)[px �T py ⇔
U(wfpx(T), wupx(T), wfpx(T), lupx(T)) ≤

U(wfpy
(T), wupy

(T), wupy
(T), lupy

(T))] (1)

We want the ranking relation to have the following proper-
ties defined in terms of table extensions:
• NNEW: Winning cannot lower your rank:

∀px, py ∈ P,∀T ⊆ R(P),

∀r ∈ {r | r ∈ R(P) \ T ∧ win(px, r)}
[px �T py ⇒ px �T∪{r} py] (2)

• NPEL: Losing cannot increase your rank:

∀px, py ∈ P,∀T ⊆ R(P),

∀r ∈ {r | r ∈ R(P) \ T ∧ loss(py, r)}
[px �T py ⇒ px �T∪{r} py] (3)

• CR: Games you don’t control don’t lower your rank.

∀px, py ∈ P,∀T ⊆ R(P),

∀r ∈ {r | r ∈ R(P) \ T ∧ ¬control(px, r)}
[px �T py ⇒ px �T∪{r} py] (4)

2.2 Universal Domain
From equation 1, it is clear that for every logically possi-
ble game result table T , we have a valid preorder. This im-
plies that our ranking relation satisfies the Universal Domain
property.

2.3 Anonymity
From equation 1 it is clear that the scoring function ignores
the identity of the player in calculating the score. Hence, the
ranking relation �T is unaffected by changing labels and
therefore anonymous.

2.4 Monotonicity of U and Notations
As we score a player solely based on the player’s wins
and losses, NNEW and NPEL imply that the function U is
monotonic. One interesting property of the parameters of U
for a particular player is that when we add a new game to
the existing game result table T , at most one parameter in-
crements. This allows us to define the following notations:

U ↑x: U is monotonically non-decreasing on the parameter x
U ↓x: U is monotonically non-increasing on the parameter x

U ox : U is indifferent on the parameter x

3 Properties of Ranking Relations
In this section, we reformulate the axioms as equivalent
monotonicity constraints. It is easier to reason in the space
of monotonicity constraints than in the space of predicate
logic.

3.1 Collusion Resistance (CR)
Given T ′ = T ∪ {r}, we reformulate CR as follows:

U(wfpx(T), wupx(T), lfpx(T), lupx(T)) ≤
U(wfpy

(T), wupy
(T), lfPy

(T), lupy
(T))

⇒
U(wfpx(T

′), wupx(T
′), lfpx(T

′), lupx(T
′)) ≤

U(wfpy
(T ′), wupy

(T ′), lfPy
(T ′), lupy

(T ′)) (5)

Considering the definition of ”not in control”, there are 2
cases to treat:

I. Game results where px did not participate. Then py
may have won or lost in a forced or unforced position

against some third player pz .

Let us consider the row {r} where py wins over pz in
a forced position, given T ′ = T ∪ {r} we have,

U(wfpx
(T ′), wupx

(T ′), lfpx
(T ′), lupx

(T ′)) =

U(wfpx
(T), wupx

(T), lfpx
(T), lupx

(T))

U(wfpy
(T ′), wupy

(T ′), lfPy
(T ′), lupy

(T ′)) =

U(wfpy
(T) + 1, wupy

(T), lfPy
(T), lupy

(T))

From the CR constraint above, we have:

U(wfpx
(T), wupx

(T), lfpx
(T), lupx

(T)) ≤
U(wfpy

(T) + 1, wupy
(T), lfPy

(T), lupy
(T)) (6)

From equations 1 and 6, we get the monotonicity constraint,
U ↑wf (7)

Similarly, let us consider the case {r} where py wins over
pz in an unforced position, given T ′ = T ∪ {r} we have,

U(wfpx(T), wupx(T), lfpx(T), lupx(T)) ≤
U(wfpy

(T), wupy
(T) + 1, lfpy

(T), lupy
(T)) (8)

From equations 1 and 8, we get the monotonicity constraint,
U ↑wu (9)

Using a similar argument, for the case where py loses over
pz in a forced position, we have

U ↑lf (10)
Also, for the case where py loses over pz in an unforced
position, we have

U ↑lu (11)

II. Game results where px is forced. In this case we have the
following results:

U ↑wu ∧U ↑lu (12)
The full proof for (12) is in the technical report (Ab-
delmeged, Xu, and Lieberherr 2015). Now, CR can be sum-
marized in terms of monotonicity constraints as,

U owf ∧U ↑wu ∧U olf ∧U ↑lu (13)

3.2 Non Negative Effect of Winning (NNEW)
Let us consider a game result {r} where px won against
a third player pz . px could have won either in a forced or
unforced position.

First, considering the case where px wins over pz in a
forced position, we have,

U(wfpx(T) + 1, wupx(T), lfpx(T), lupx(T)) ≤
U(wfpy

(T), wupy
(T), lfpy

(T), lupy
(T)) (14)

From equations 1 and 14, we get the monotonicity con-
straint,

U ↓wf (15)
Similarly, for the case where px wins over pz in an unforced
position, we have

U ↓wu (16)
Summarizing the monotonicity constraints, we have,

U ↓wf ∧U ↓wu (17)

3.3 Non Positive Effect of Losing (NPEL)
Let us consider a game result {r} where py lost against a
third player pz .

First, considering the case where py loses over pz in a
forced position, we have,

U(wfpx(T), wupx(T), lfpx(T), lupx(T)) ≤
U(wfpy

(T), wupy
(T), lfpy

(T) + 1, lupy
(T)) (18)

From equations 1 and 18, we get the monotonicity con-
straint, U ↑lf . Similarly, for the case where py loses over
pz in an unforced position, we have U ↑lu. Summarizing the
monotonicity constraints, we have,

U ↑lf ∧U ↑lu (19)

3.4 Local Fault Based (LFB)
As we want the ranking relation to satisfy all the three prop-
erties NNEW, NPEL and CR, from equations 13, 17 and 19,
we get the monotonicity constraints,

U owf ∧U owu ∧U olf ∧U ↑lu (20)

This tells us that the scoring function should be monotoni-
cally non-decreasing on faults and indifferent on other pa-
rameters. We call the ranking relation that uses a scoring
function that satisfies equation 20 as Local Fault Based
(LFB). The monotonicity constraints in equation 20 can
be easily reformulated in predicate logic as follows. LFB:
Games in which you don’t make faults don’t affect your
rank.

∀px, py ∈ P,∀T ⊆ R(P),

∀r ∈ {r | r ∈ R(P) \ T ∧ ¬fault(px, r)}
[px �T py ⇔ px �T∪{r} py] (21)

3.5 Collusion-Resistance Theorem
We just proved the Collusion-Resistance Theorem:

(NNEW ∧ NPEL ∧ CR)⇔ LFB

This theorem tells us that collusion-resistant ranking func-
tions have a simple form based on fault counting. There is
an infinite family of such functions that can be used in the
design of techno-social systems with guaranteed collusion
resistance. The Collusion-Resistance Theorem is surprising:
One would expect that counting wins against non-forced
players would also be a good scoring function but it is not
collusion resistant.

4 Conclusion
We propose the concept of side-choosing Game (SCG) as a
model for plausibility checking of claims using a general-
ization of extensive form games. SCGs are useful for orga-
nizing techno-social systems for creating knowledge in For-
mal Sciences. Considering that a specific kind of collusion
might compromise the truth, we modeled the ranking of par-
ticipants functionally via three axioms or postulates: NNEW
(Non-Negative Effect for Winning), NPEL (Non-Positive

Effect for Losing) and the crucial axiom CR (Collusion-
resistance, which says that games where one is not in con-
trol cannot affect ones ranking, hence preventing gaming the
game). We prove the Collusion-Resistance Theorem which
states that ranking has to be based on fault counting.

What comes next? Our plan is to deploy SCG-based ap-
plications on the web and gather the benefits of collective in-
telligence. So far, we have already applied SCG-based ideas
and tools in designing courses at Northeastern University
from algorithm and software development courses to basic
courses on spreadsheets and databases. And we were plan-
ning to build a tool that can be used in MOOCs or algorithm
competitions. An implementation of a domain-specific lan-
guage for human computation in formal sciences is a chal-
lenge that requires several algorithms to be developed. Why
not develop those algorithms with SCG-based human com-
putation effectively bootstrapping the system based on user
feedback. We view SCG as the programming language for
human computation to solve complex problems.

Another important area that needs further work is where
participants can propose new claims. A modular approach
to solving claims is needed. For example, a complex claim
C1might be reducible to a simpler claim C2 so that a solu-
tion for C2 implies a solution for C1. We propose a formal
study of claim relations which can themselves be captured
as claims and approached with side-choosing games.

Collusion is linked to trust in a tournament to find the best
players. Collusion-resistance eliminates some collusion but
there is still other collusion possible. We will report on this
at the workshop.

Acknowledgments: This work was supported by the
Northeastern University Lieberherr Fund supported by
Pamela and Ian Holland and other alumni. We would like
to thank Thomas Wahl for his feedback.

References: For space reasons we give only a few refer-
ences. A complete set is in Ahmed Abdelmeged’s disserta-
tion (Abdelmeged 2014) on which this paper is based. How-
ever, side-choosing games are a contribution of this paper.
Abdelmeged used semantic games with side-choice to for-
mulate his results.

References
Abdelmeged, A.; Xu, R.; and Lieberherr, K. J. 2015. Design
and Secure Evaluation of Side-Choosing Games. Techni-
cal Report NU-CCIS-TR-Nov-28-2015, Northeastern Uni-
versity. http://www.ccs.neu.edu/home/lieber/papers/side-
choosing-games/wit-ec16-TR/secure-eval-WIT-EC-TR.pdf.
Abdelmeged, A. 2014. Organizing Computational Prob-
lem Solving Communities via Collusion-Resistant Semantic
Game Tournaments. Ph.D. Dissertation, Northeastern Uni-
versity, Boston, MA, USA. Advisor-Karl Lieberherr.
Kulas, J., and Hintikka, J. 1983. The Game of Language:
Studies in Game-Theoretical Semantics and Its Applica-
tions. Synthese Language Library. Springer.

