Design and Secure Evaluation of Side-Choosing Games

RUIYANG XU, Northeastern University
KARL LIEBERHERR, Northeastern University

We present an important, general class of new games, called side-choosing games (SCGs), for “gamifying”
problem solving in formal sciences using plausibility checking. Applications of SCGs include (1) peer-grading
in teaching (2) studying the evolution of knowledge in formal science communities (3) organizing algorithm
competitions. We view SCGs as a new and general model for formulating formal problems that need to
be solved using human computation and our interest in this paper is on how to evaluate a set of SCGs
about the same problem fairly and effectively. We observe that a specific kind of collusion, where players
lie about their strength and sacrifice themselves, could bias the evaluation of SCGs dramatically. Following
the idea of Social Choice Theory in the sense of Arrow, we take an axiomatic approach to guarantee that a
specific kind of collusion is impossible. We prove the Collusion-Resistance Theorem and related results as a
general principle for designing collusion-resistant evaluations for SCGs. The Collusion-Resistance Theorem
is surprising: it tells us to be indifferent to wins but to count certain kinds of losses for scoring players
and ranking them. If collusion is not an issue, we offer a family of useful ranking functions which are not
collusion-resistant.
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1. INTRODUCTION

A side-choosing game (SCG) H = (G, GS, Q,p,, py) is based on an extensive form two-
player, zero-sum game G with perfect information and without ties, i.e., there is always
a winner and a loser!. G is a zero-sum, win/lose game between two players, white and
black. GS is a game state of GG (i.e., a node of the game tree of G). () is a proposition on
the game state G'S of the form: white has a winning strategy (white moves first).

The players p,, p, of H have their preferred, static side (white = Proponent or black
= Opponent), depending on whether they believe Q or !Q to be true. The players are
free to choose their static side before the game. But during the game the players must
have opposite dynamic sides which we implement by making (per game) at most one
of them the devil’s advocate (or forced). Fig. 1 illustrates the difference between static
and dynamic assignments. The dynamic assignment is made by a trusted third party
fairly. The details of this assignment are not important to this paper as we focus on
evaluating the game results abstracting from this assignment.

1 Extensive form games are widely used to model multi-agent sequential decision making. They are repre-
sented by game trees.
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Fig. 1. Side choices: static/dynamic

The side-choosing game (G, GS, Q,p,,py) produces a game result row consisting of
(1) the winner (p,, or p,) (2) the loser (p, or p,) and (3) at most one forced player (p,
or p, or 0, if none was forced). A set of game results produced by multiple binary SCGs
is called an SCG-Table which we often interpret as a labeled multi-graph (see Table I
and the corresponding graph in Fig. 3 and for more graphs Fig. 6 and 7).

1.1. Examples

Consider the chess position G'S in Fig. 2 as a side-choosing game?. The game G is
chess, modified so that winning for white means to mate the black king in 2 moves.
The proposition @) says that white starts in G.S and wins. We have two players, Alice
and Bob, who study G and GS and make their side choices. Alice believes she can
win as white (she "sees” the mate in two) and therefore her side choice is white. Bob
does not see the mate in two and therefore he wants to be black. The game is played
and Alice wins (how is left as an exercise to the reader; there is only one optimal
move for white.). The game result is given by the row= (winner="Alice”, loser="Bob”,
forced=0). If white plays b3 and black f3 then white mates with Qb2. White wins but
only because black made a mistake. The correct move for black is c4 (not £3) and white
cannot mate in the next move. This example gives the wrong impression that playing
one perfect game reveals the winning strategy (solution). But this is not the case most
of the time.

Next we consider a large family of examples of side-choosing games: the family con-
sists of semantic games [Kulas and Hintikka 1983] with side choice added. The game
G is defined by an interpreted logical sentence between white (proponent, existential
quantifier) and black (opponent, universal quantifier). The outermost quantifier of the
sentence determines who moves first. For white, the game is about making the sen-
tence true by assigning values to variables. Black tries to prevent this. Side-choosing
games exist for many different logics such as first-order predicate logic, higher-order
logics and independence-friendly logic. A first important subfamily are claims in for-
mal sciences with side choice added to the semantic games of the claims (example:
section 6.1.1). A second important subfamily are claims related to algorithm speci-
fications for algorithm competitions (a la TopCoder, see topcoder.com or Kaggle, see
kaggle.com). See section 6.1.2 for an example.

1.2. Motivation

Why is the concept of SCG useful? A game state GS of an extensive form game G is a
model of a claim. Claims and problem solving are ubiquitous in human and automated
reasoning. Any formal claim can be brought to the extensive game form. The idea

2Taken from the collection: SEVENTY-FIVE CHESS PROBLEMS by John Thursby, Trinity Coll., Cam-
bridge, 1883.
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Fig. 2. An SCG example: white mates in two

behind the translation is to express the claim as an interpreted predicate logic sentence
as mentioned above. An SCG (the playing of the game) can be viewed as a plausibility
check of a claim. When I argue that a claim is true but then I cannot defend it using a
plausibility check, there must be something wrong with my argument. We show how to
aggregate multiple such plausibility checks in a robust manner so that players cannot
collude against other players [Abdelmeged 2014].

Besides plausibility checking of claims there is a second different motivation behind
SCG: ranking the players, given a table of game results. We want to find the most mer-
itorious players in a robust fashion so that collusion between players cannot prevent
the most meritorious players to be recognized. For example, in an online competition,
several sybils® might enter and help others to win thereby preventing the strong play-
ers to win. We want to prevent that a player lies about its strength and “sacrifices”
himself by intentionally losing. This might rank undeserving players highly and will
destroy the purpose of SCGs. For an explicit example of collusion, see section 5.9.

Finding the most meritorious player is an interesting problem because there can be
a lot of noise in a game result table. For example, a player may correctly choose the
white side but then not have the necessary skills to defend the correct side. Or a game
state GS may be considered a winning state for white until a new player joins who
knows how to win as black. To bring order into this complex situation, we propose an
axiomatic approach.

2. CONTRIBUTIONS

The contributions of this paper are (1) a new concept called SCG for gamifying prob-
lem solving using plausibility checking of claims, (2) a set of high-level axioms defining
desirable properties of ranking functions and their interpretation in the context of a
4 argument scoring function (3) a new proof technique, called monotonicity constraint
reduction, for reducing predicate logic sentences (representing axioms) to monotonic-
ity constraints where the reasoning is simpler, (4) The Collusion-Resistance Theorem
and related properties as an application of the monotonicity constraint reduction. The
Collusion-Resistance Theorem suggests an efficient static implementation of the ax-
ioms (a ranking function based on the monotonicity constraints) avoiding any kind of
dynamic checking. (5) We make a contribution to the secure design of problem-solving
systems where a kind of security (collusion resistance) is built-in by design.

3In a Sybil attack the attacker subverts the reputation system of a peer-to-peer network by creating a
large number of pseudonymous identities, using them to gain a disproportionately large influence. See en.
wikipedia.org/wiki/Sybil_attack
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We have been working on SCGs for a few years which resulted in a dissertation
[Abdelmeged 2014]. We have gradually simplified our model to its core®. Initially we
had strengthening of claims as a primitive and we had a claim language with all kinds
of bells and whistles. We reduced our claim language first to interpreted predicate logic
sentences and then to game positions in extensive form games. A four page summary of
some of Abdelmeged’s dissertation’s results, but with simpler concepts and simplified
proofs, are published [Abdelmeged et al. 2016] as a AAAI 2016 workshop paper. But
there is no journal or conference paper published on the topic. Our work has been
steadily improved based on feedback from conference submissions and presentations
(including Harvard, ETH Zurich, Technical University Darmstadt). Our most recent
discovery, now included in this paper, was the observation that our three axioms were
not independent in the context of our scoring function. Now our starting point are only
two axioms: NNEW and CR.

The rest of the paper is organized as follows. Section 3 describes pertinent related
work. Section 4 introduces the main concepts, including an interpretation in terms of
graphs. It introduces the axioms NNEW and CR. Section 5 provides a correspondence
between our axioms and monotonicity constraints which provides the basis for many of
our proofs. It introduces our main formal result, the Collusion-Resistance Theorem and
several ramifications of it. It also introduces an equilibrium concept for SCGs. Section
6 discusses the broad applications of SCGs and section 7 mentions future work.

3. RELATED WORK

Our concept of a side-choosing game is very broad but has not been formally studied
before. We were influenced by semantic games which have a long history in logic [Ku-
las and Hintikka 1983]. Falsifiability as promoted by Karl Popper [Popper 2002] and
many others was another strong influence. A claim is falsifiable if there is an argu-
ment which proves the claim to be false. We use a weaker form of falsifiability which
we call plausibility checking. A claim C for which player p, is a proponent is plausi-
bility checkable by a player p, if there is an argument involving p, and p, that brings
p, into a contradiction with respect to C. The argument is an interactive “debate” (p,
winning a game against p,) but it does not prove that the claim is false, in general.

In [Rubinstein 1980], Rubinstein provides an axiomatic treatment of tournament
ranking functions that bears some resemblance to ours. Rubinstein’s treatment was
developed in a primitive framework where “beating functions” are restricted to com-
plete, asymmetric relations. Rubinstein showed that the points system, in which only
the winner is rewarded with a single point is completely characterized by the following
three natural axioms:

— anonymity which means that the ranks are independent of the names of players,

— positive responsiveness to the winning relation which means that changing the re-
sults of a player p from a loss to a win, guarantees that p would have a better rank
than all other players that used to have the same rank as p, and

— Independence of Irrelevant Matches (IIM) which means that the relative ranking of
two players is independent of those matches in which neither is involved.

Our CR axiom is at least as strong as Rubinstein’s IIM.

Our work also falls into the field of axiomatic approaches to measures on graphs, an
area active since the 1980s and inspired by earlier Social Choice theory [Gupte and
Eliassi-Rad 2012; Rubinstein 1980]. Graphs are mapped to rankings of nodes or edges
while axioms constrain the space of those mappings. The measures which satisfy all

4A history of the simplifications is here
http://www.ccs.neu.edu/home/lieber/evergreen/specker/publications/scg-publs.html



axioms are of interest. [Rubinstein 1980] is one of the first papers in this space. We
compress edge information of the graph into a total ordering (ranking) of the graph
nodes under the control of axioms that give us desirable properties. Starting from a list
of axioms, which such a ranking must satisfy, we characterize functions that satisfy all
the axioms (see section 5.6). We then show that there is a range of ranking functions
that satisfy this characterization (see section 5.7).

[Simpson 2014] provides a comprehensive overview of techniques to “Combined Deci-
sion Making with Multiple Agents”.Our work differs by working with multiple arguing
or debating agents who have to defend their decisions. The concept of collusion is not
mentioned in [Simpson 2014] while it is central to our analysis of SCGs.

While information and quality elicitation has been studied thoroughly for crowd-
sourcing mechanism designs, ranging from analyzing incentive design strategies for
different platforms like Kaggle and MTurk [Easley and Ghosh 2015] to reasonable
ranking of user-generated content (UCG) on Amazon or Quora [Ghosh 2012], there
is less literature that addresses crowdsourcing designs which are based on the SCG
mechanism. We think this new game offers for many use-cases useful benefits com-
pared to “traditional” online crowdsourcing mechanisms, which justifies further stud-
ies and analysis.

This paper is based on Ahmed Abdelmeged’s dissertation [Abdelmeged 2014]. The
dissertation is based on semantic games to which side-choice was added, and does not
explicitly define side-choosing games. However, the proof of the Collusion-Resistance
Theorem does not rely on the details of semantic games. Therefore, we introduced side-
choosing games in this paper to have an appropriate context for formulating and prov-
ing the Collusion-Resistance Theorem. The proofs in this paper have been simplified
through the systematic use of monotonicity constraints.

4. MAIN THEORY

Our ranking approach prevents sybil attacks. In an online competition, several sybils
might enter and help others to win thereby preventing the strong players to win. In the
presence of collusion-resistance sybils have no effect on overpowering perfect players.

A plausibility check of a claim GS of a side-choosing game H = (G,GS, Q, ps, py) 18
a game of G starting from GS. If the game achieves the proposition @ affirmed by p.,
the plausibility check is successful for p, and otherwise it fails.

4.1. Graph Interpretation

Our theory can be visualized in terms of directed, labeled multi-graphs. The nodes are
players and the labeled edges are game results. An edge points from winner to loser.
The labels on the edges indicate who is forced. We call those graphs SCG-graphs. Our
axiomatic approach to evaluation is based on counting different edge kinds incident
with a node. It is based on local counts and ignores the structure of the SCG-graph. In
Fig. 3 we give the graph of game results in Table I. In the future we plan to study such
graphs using more holistic techniques that take paths in the graphs into account.

Let P be the set of all players. Legal(P) is the set of legal game results for P. For
example, if P = {1,2}, then Table I gives the table of all possible game results for 2
players. Legal(P) contains n - (n — 1) - 3 rows where n is the number of players in P.
Fig. 3 gives the same information as a labeled multi-graph. 0 is used to indicate that
no one was forced. In the graph notation, if no one is forced, no * is used on the edge.

R(P) is the multiset (or bag) of possible game results for P allowing for repetition
in the game results: R(P) is a pair (Legal(P), m), where m is the multiplicity function
m : Legal(P) — N>1.



Table . Legal(P) for a two

players set
winner | loser | forced
1 2 1
1 2 2
1 2 0
2 1 1
2 1 2
2 1 0

: * : : * : : :
: * : : * : : :
Fig. 3. Graph interpretation of Table I

(* = forced)

In the following r denotes a single edge in an SCG-graph (a game result). For our
theory we define a few basic predicates: Vp, € P,Vr € R(P)

participant(p;,T) < p, is a participant in the game r (1)
win(py, r) < p, won the game r (2)

loss(ps, ) < p. lost the game r 3)

forced(py,r) < p. is forced to choose a side in the game r (4)
control(pg,r) < participant(pg,r) A = forced(pg,T) (5)
fault(py,r) < loss(pg, ) A —forced(py, ) (6)

4.2. High-Level Ranking Axioms

We define a pre-order <7 on the set of players P, called the weakly better relation,
VT C R(P). We want the ranking relation to satisfy the following axioms defined in
terms of table extensions. We formulate the axioms dynamically in terms of game
events. In principle, the axioms could be enforced dynamically each time a game re-
sult is produced but this would be very expensive (involving all pairs of players). We
will propose an efficient technique to enforce the axioms through clever design of the
ranking mechanism, requiring no dynamic checking at all.

— NNEW (Non Negative Effect for Winning): Winning cannot lower your rank:
Vpz,py € P,VT C R(P),
Vr e {r|r € R(P) A win(ps,r)}
(pe =T py = p, <" p, 1 (D

— NPEL (Non Negative Effect for Losing): Losing cannot increase your rank:
Vpz,py € P,YT C R(P),

Vr e {r|r e R(P) A loss(py,T)}
[pz = py = po =T p, ] (8)



— CR (Collusion Resistance): Games you don’t control don’t lower your rank.

Ypa,py € P,YT C R(P),
¥r € {r|r € R(P) A ~control(ps. )}
[pe <" py = pe <" py] (9)

This axiom allows that games you don’t control might improve your rank. Indeed,
this flexibility is needed for interesting ranking functions. If we don’t allow this flexi-
bility, there are no interesting ranking functions in the class we study. For an explicit
example of collusion and a ranking function which is not CR, see section 5.9.

It is beneficial to split the CR axiom into two more basic properties both for un-
derstanding CR and for proving implications of the ranking axioms. The Harmless
Non-Participation property protects the players against the negative effects of non-
participation. The Harmless Devil’s Advocate property protects the forced players
against disadvantages.

— Harmless Non-Participation: Games you don’t participate in don’t lower your
rank.

Vpe,py € P,VT C R(P),
Vr € {r|r € R(P) A —participate(py,r)}
[Pz =T py = po <" py ] (10)
— Harmless Devil’s Advocate: Games where you are forced don’t lower your rank.
Vpz,py € P,YT C R(P),
Vr e {r|re R(P) A forced(ps,r)}
[p.'c jT Py = Dz jTU{T} py] (11)
Fig. 5 summarizes the monotonicity constraints for the two new axioms.
4.3. Scoring Functions
Next we define natural scoring functions which we will use for ranking.

wfp, (T') = the win count of p, in T in a forced position
wuy, (T') = the win count of p, in T in an unforced position

lfp, (T') = the loss count of p, in T in a forced position
lu,, (T') = the loss count of p, in T in an unforced position

It’s obvious that given table 7/ = T U {r} and X € {wf,wu,lf,lu} the following transi-
tional relations hold:

X, (T') = X, (T)+1 if X happens in {r}
" X (D) otherwise

4.4. Ranking Axioms With Scoring Functions

Now we define the weakly better relation using a scoring function U : N x N x N x
N — R. Lower U means better player. We define a pre-order <7, below in (12). For
convenience, we drop the subscript and refer to it simply as <. We want to assign
to each player a score solely based on the players’ demonstration of ability. We use



the above four counting functions, based on wins and losses and whether a player was
forced, to calculate a player’s score. We formally define the ranking relation as,

pr.py € PYT C R(P)[ps < py &

Ulw fp, (T), wup, (T), w fp, (T), luy, (T)) <
Ulw fp, (T), wuy, (T), wuyp, (T), lup, (T)) ] (12)

A Venn diagram of the modified axioms (using U) is in Fig. 4. From now on, when
we refer to an axiom, we mean the instantiation of the axiom for the above 4 argu-
ment scoring function U. For simplicity, we refer to the instantiated axiom Y still as Y’
although the axioms are different.

4.5. Discussion of Axioms

The axioms are formulated for general ranking functions however we focus on the spe-
cial case where a “natural” four argument scoring function U is used (see 12). Using
this restriction has surprising implications on the axioms. It even changes the implica-
tions relationships between the axioms. Consider the axiom CR which is formulated in
terms of participation. Clearly, CR does not imply NPEL because NPEL does not even
refer to participation. However, if we assume that ranking is done with the natural
four-argument scoring function, CR now implies NPEL (see Fig. 4). There are many
other scoring functions that could be used that are refinements of the U above.

4.6. Properties of Evaluation
Our approach to evaluating SCG-tables satisfies two properties.

4.6.1. Universal Domain. From equation 12, it is clear that for every logically possible
game result table 7', we have a valid preorder. This implies that our ranking relation
satisfies the Universal Domain property.

4.6.2. Anonymity. From equation 12 it is clear that the scoring function ignores the
identity of the player in calculating the score. Hence, the ranking relation <7 is unaf-
fected by changing labels and therefore anonymous.

4.7. Monotonicity of U

We score a player solely based on the player’s wins and losses and whether forced or
unforced. One interesting property of the parameters of U for a particular player is that
when we add a new game to the existing game result table T, at most one parameter
increments. This allows us to define the following notations:

U 1,: U is monotonically non-decreasing on parameter x
U |;: U is monotonically non-increasing on parameter x
U 1l.: U is indifferent on the parameter x
The axioms NNEW and CR imply that U must be either argument-wise monotonically
non-decreasing or non-increasing. If U would fluctuate on one of the arguments one
of the axioms NNEW or CR would not hold (see Fig. 4). The monotonicity constraints

are a tool to implement the axioms efficiently. Our plan is to combine the monotonicity
constraints of the axioms and to find ranking functions which satisfy all of them.

5. TRANSLATING AXIOMS INTO MONOTONICITY CONSTRAINTS

We use the following reduction technique, called monotonicity constraint reduction, to
prove properties of ranking relations: We map the predicate logic statements corre-
sponding to the axioms into the space of monotonicity constraints of the scoring func-
tion U. We combine the monotonicity constraints and map the result back to predicate



logic statements about the ranking relations. We show that this reduction is correct.
Recognizing that functional monotonicities are hidden behind the properties has sim-
plified our proofs. Compare with [Abdelmeged 2014]. In this section, we reformulate
the axioms as equivalent monotonicity constraints.

5.1. Collusion-Resistance (CR)
Given 7" = T'U {r}, where —control(p.,r), we reformulate CR as follows:

Uwfp, (T), wup, (T),1fp, (T), lup, (T)) <
Uwfp, (T), wup, (T),Lfp,(T),lup, (T))
=
U(wfp, (T"), wup, (T'), Ly, (T'), lup, (T)) <
Uwfp, (T, wup, (T"),1fp,(T"), lu,, (T'))  (13)
Considering the definition of "not in control”, we split CR into two separate cases:
Harmless Non-participation and Harmless Devil’s Advocate.

5.2. Harmless Non-Participation

PROPOSITION 5.1. The axiom Harmless Non-Participation, instantiated with the
4-argument scoring function U, is equivalent to the following monotonicity constraints:

U wa7 U Twua U Tlfa U Tlu .
PROOF. We start with game results where p, did not participate. Then p, may have
won or lost in a forced or unforced position against some third player p..

Let us consider the row {r} where p, wins over p. in a forced position, given
T" =T U{r} and since:
U(wfpa‘ (T,)7 wupm (T/)7 lfpz (T/)’ lupar (T/)) =
U(wfil)x (T)a Wup,, (T)a lf;l)x (T)a lul)r (T))

Uwfy, (T'), wup, (T'), Lfp, (T"), luy, (T")) =
Uwfp, (T) + 1, wup, (T),1fp,(T), luy, (T))
from 10 we have:
Uwfp, (T), wup, (T), Lfp, (T), lup, (T)) <
Uwfp,(T) + 1 wup, (T),1fp, (T), lup, (T))  (14)
From equations 12 and 14, we get the monotonicity constraint,
UTws (15)
Similarly, let us consider the case {r} where p, wins over p, in an unforced position,
given T" = T U {r} we have:
Uwfp, (T), wup, (T) +1,1fp,(T), luy, (T))  (16)
From equations 12 and 16, we get the monotonicity constraint,

U Twu (17)



Using a similar argument, for the case where p, loses over p, in a forced position, we
have

Uiy (18)
Also, for the case where p, loses over p. in an unforced position, we have

O

5.3. Harmless Devil’'s Advocate

PROPOSITION 5.2. The axiom Harmless Devil’s Advocate, instantiated with the 4-
argument scoring function U, is equivalent to the following monotonicity constraints:

Ulip, U dwy -

PROOF. We consider game results where p,, is forced. First, we consider game re-
sults {r} where p, was forced and lost against some third player p,, given 7" = T U {r}
and since:

U(wfp, (T"), wiy, (T'), Lfp, (T"), lu, (T")) =
Ulw fp, (T), wup, (T), L, (T) + 1, bup, (T))

Ulwfp, (T'), wup, (T'), Ufp, (T"), luy, (T")) =
U(wfpy (T)7 Wup,, (T)> lny (T)7 lu,’Dy (T))
from 11 we have:
Ulw fp, (T), wup, (T),Ufp, (T) + 1, lup, (1)) <
U(wfp, (T), wup, (T), U fp, (T), luy, (T))  (20)
From equations 12 and 20, we get the monotonicity constraint,
U liy (21)

Then, we consider the case where p, was forced and won against some third player p..
And similar to the analysis above, we shall have:

U Luy (22)
O

Remark 5.3. An observation of completeness shows that Harmless Devil’s Advocate
still holds when p, plays exactly against p,. This is because of:

U(wfp, (T), wup, (T) +1,1fp, (T),lup, (T)) (23)
and

U(w fp, (1), wup, (T),fp, (1), luy, (T) +1)  (24)
Now, CR can be summarized in terms of monotonicity constraints as,

U Tl/wf ANU Twu AU /erf NU Tlu (25)



Fig. 4. Relations among NNEW, NPEL, CR. Their monotonicity constraints cover entire oval.

HarmlessDevilsAdvocate
Lwf
If

HarmlessNonParticipation
Twi
Twu
TIf
tlu

Fig. 5. CR split into two parts

5.4. Non Negative Effect of Winning (NNEW)

PROPOSITION 5.4. The axiom NNEW, instantiated with the 4-argument scoring
function U, is equivalent to the following monotonicity constraints:

UJ/wf7U¢wu .

PROOF. Let us consider a game result {r} where p, won against a third player p..
p. could have won either in a forced or unforced position. First, considering the case
where p, wins over p, in a forced position, we have,

Uwfp, (T) + Lwuy, (T), Lfp, (T), lup, (T)) <

U(wfpy (T)a wup,, (T)7 lfpy (T)a lupy (T)) (26)

From equations 12 and 26, we get the monotonicity constraint,

U Lus @7
Similarly, for the case where p, wins over p. in an unforced position, we have
U lwu (28)

Summarizing the monotonicity constraints, we have,



5.5. Non Positive Effect of Losing (NPEL)
PROPOSITION 5.5. The axiom NPEL, instantiated with the 4-argument scoring
function U, is equivalent to the following monotonicity constraints:
Uldip, Ul -

PROOF. Let us consider a game result {r} where p, lost against a third player p..
First, considering the case where p, loses over p, in a forced position, we have,

Uwfp, (T), wup, (T), Lfp, (T), lup, (T)) <
Uwfp, (T), wup, (T),1fp, (T) + 1, lup, (T))  (30)
From equations 12 and 30, we get the monotonicity constraint, U 1;¢. Similarly, for the

case where p, loses over p, in an unforced position, we have U 1;,. Summarizing the
monotonicity constraints, we have,

UTlf AU T 31)
[}

5.6. Local Fault Based (LFB)
As we want the ranking relation to satisfy both properties NNEW and CR, from equa-
tions 25 and 29, we get the monotonicity constraints,

U tws AU Twa AU Ty AU T (32)

This tells us that the scoring function should be monotonically non-decreasing on
faults and indifferent on other parameters. We call the ranking relation that uses a
scoring function that satisfies equation 32 as Local Fault Based (LFB). The mono-
tonicity constraints in equation 32 can be easily reformulated in predicate logic.

— LFB: Games in which you don’t make faults don’t lower your rank.

Vpa,py € PYT C R(P),
Vr e {r|re R(P) A =fault(ps,7)}

[pe <5 py < pe <57 py] (33)

— Collusion-Resistance Theorem We just proved for the instantiation of the axioms
for the 4 argument scoring function U in 12:

(NNEW A CR) = LFB

The following proper subset relationships can be shown using the same proof tech-
niques (see Fig. 4):

CR C NPEL,LFB c (NNEW n NPEL),LFB c CR

The Collusion-Resistance Theorem tells us that collusion-resistant ranking functions
have a simple form based on fault counting. There is an infinite family of such func-
tions that can be used in the design of techno-social systems with guaranteed collu-
sion resistance (see section 5.7).

5.7. A Family of Collusion-Resistant Rankings

When designing a techno-social system for solving precisely formulated problems there
are many concerns to be addressed. Besides just using simple fault-counting, there are
other weighted fault counting functions of interest. In the graph representation of an



SCG-table T', we consider two kinds of edges: o edges going into p, are edges where
no one was forced. 5 edges going into p, are edges where the winner was forced. In
both cases p, made a fault but we are counting the two kinds of edges differently. o (3)
edges have weight o > 0 (8 > 0), respectively. The resulting scoring function U has the
property that a high o (compared to 3) encourages non-forced players to win. Other
families of collusion-resistant rankings can be defined by considering finer-grained
properties of game results.

5.8. A Simple Property of Fault Counting

We consider the ranking we get from the scoring function U which counts faults in a
table T' (lu,, (T')). A quasi-perfect player p, is a player with zero fault counts (lu,, (T) =
0). (A perfect player is a player which always mikes the correct side choice and correctly
defends that choice. Therefore a perfect player is quasi-perfect but the converse does
not necessarily hold because a quasi-perfect player may choose the wrong side of a
claim and still successfully defend it because of weakness in the opponents.) A top-
ranked player is a player for which there exists no stronger player in the ranking. We
have the simple but desirable meritocracy property: for all SCG-Tables quasi-perfect
implies top-ranked under fault-counting. This easily generalizes to: When a ranking
is LFB then for all SCG-tables, quasi-perfect players are top ranked. Next we give an
explicit counterexample for win counting.

5.9. Counterexamples for Win Counting

We assume that players can recognize each other and use that knowledge to alter
their play. This assumption is satisfied in most applications even when the players are
implemented in software.

Under win counting, quasi-perfect players are not necessarily top-ranked. Win
counting is defined by

U(pz; T) = =(wfp, (T) + wuy, (T)) (34)

The corresponding ranking function is NNEW and NPEL but — CR. Fig. 6 gives the
smallest counterexample (both in terms of number of players and number of game
results).

We set z = 3. Player 2 is top ranked with the 3 wins and 1 fault. But, player 1,
the quasi perfect player with no faults is not top ranked. The reason is that there
is collusion: player 3 helped player 2 accumulate wins which helped to overrule the
quasi-perfect player.

5.9.1. All Perfect with Liars. How many colluding players are needed to prevent a quasi-
perfect player from winning under win counting? We show with an example that 2 out
of n are enough provided the 2 players play enough games.

We have n — 2 perfect players and a total of n players. The tournament is basically a
full round-robin tournament where the non-forced player always wins, except for the
pair of colluding players. One player (the liar) helps the other player to accumulate
wins. The helping games have multiplicity 2. Fig. 7 shows the graph of game results
for n = 3 with players numbered 1,2,3. Player 1 is perfect, 3 is the liar (lying about its
strength) and 2 is being helped. Players 2 and 3 collude: player 3 (the liar) helps player
2 win points. Although player 3 is also perfect, it lies about its strength when it plays
against player 2. Table II shows the game statistics: For z > 2 only fault-counting is
collusion-resistant and player 1 is top-ranked.
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Fig. 6. Simplest Counterexample: Players 2 and 3 collude
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5.10. Equilibria

Let @ be a subset of a set of players P. @) is in an equilibrium if games between players
in @ are fault-free. This means that players in P agree on a construction for defending
the claim. They always win when they are not forced and they always lose when they
are forced. There might be several islands of agreement represented by disjoint subsets
of P. Let Q1 and Q- be two disjoint subsets of P, each being in an equilibrium (see Fig.
8). What happens when a player in Q); plays against a player in QQ»? If the construction
used in Qs is of “higher quality,” the player in (Q; will win when not forced. The quality
of construction used by a player p, might increase over time. p, might have an insight
which leads to a better solution shaking up an equilibrium. There will be again games
leading to faults until the island of player p, has learned about the new construction.
This is a model of how knowledge in a formal science community might evolve.

5.11. Independence of axioms

The two axioms NNEW and CR are independent as demonstrated by two examples
of ranking functions. We choose any of the axioms and show that there is a ranking
function that satisfies that axiom but not the other. A ranking function that is (1)
NNEW and not CR is win counting; (2) CR and not NNEW is win counting for unforced
players. The reader can confirm this by checking with Fig. 4.

6. SCG APPLICATIONS

After the introductory examples in section 1.1 and the theory, we outline now the
breadth of applicability of SCGs. We motivate the importance of SCGs by describing
applications, users and owners (also known as principals). Recall that there are two
separate classes of applications: (1) verifying the correctness of a claim and (2) assess-
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Fig. 8. Equilibrium of two disjoint subsets of P

ing the merit of players. (2) is used to achieve (1). Two interesting claims are described
here: 6.1.1 and 6.1.2.

— SCG Applications.

— Formal Sciences Formal sciences are disciplines concerned with formal systems,
such as logic, mathematics, statistics, theoretical computer science, information
theory, game theory, systems theory, and decision theory. A claim is defined us-
ing an interpreted predicate logic sentence. This is not an exercise in logic as the
quantifiers are only used to define the tasks that the users must perform. The sen-
tence is interpreted in a structure which might be defined by a complex program
encoding the functionality best executed by computers.

— Formal Claims based on Simulation Environments Robotics and biological
sciences, etc. fall into this category. The structure in which the claim is interpreted
is the simulation environment.

— SCG Users. Users are problem solvers or learners and they operate directly or indi-

rectly. In direct mode, the users perform the moves themselves, maybe using soft-
ware. In indirect mode, the users produce software that plays the SCG on their
behalf. There is a simple SCG-interface that the software has to follow. Of course,
indirect users must have software development skills.
The indirect mode is of central interest to us because it is a novel approach to develop
software for computational problems using a group of people. The quality control of
the software is automated by running an online or offline tournament to determine
the top-ranked software. The claim under consideration determines what quality
means. Note that the SCG-interface implies that testing is an integral part of the
solution.

Users of SCGs include:

— Students in high schools and universities. They must understand the concept
of a claim. Focus is on dissemination of knowledge through peer teaching and peer
evaluation.

— Researchers. Focus is on creation of new knowledge and its peer evaluation. Re-
searchers propose claim variations.

— Citizen Scientists. They might find innovative constructions that are imperfect.
Experts might benefit from those ideas and correct them.

— SCG Owners.

Owners define claims. Some users also play the role of owners. Owners don’t need

expertise how to solve the problems.

Owners include: (1) Teachers and Professors. (2) Research Directors, Heads of Re-

search Programs, Organizations like NSF, DARPA, ONR etc. (3) Program Chairs of

conferences and Journal Editors. (4) Companies who need a specific computational
problem solved for which no off-the-shelve solution is available. (5) Companies who



are looking for employees with skills in a specific domain. E.g., Facebook organized a
competition on kaggle.com and the winner got a Facebook job.

6.1. Applications of Side-Choosing Games to Existing Systems

Our study of side-choosing games is motivated by their potential to organize problem-

solving competitions and by their successful use in CS education at Northeastern

University. We believe SCGs are a foundation for platforms like TopCoder or Kaggle

or for scientific human-computation tools like Foldit [Cooper et al. 2010].

— Education in Formal Sciences. Our favorite way of summarizing learning ob-
jectives for a formal science domain is to say that learners must demonstrate the
skill of judging claims in the domain, choosing their side on the claim and then
defending their side choice through game play against other students. The result-
ing peer-teaching and peer-grading is very attractive. A claim is representing a
lab in which students learn and is chosen in such a way that solving the problem
requires skills that students should have.

— Using piazza.com. To post claims and to organize the playing of games related
to those claims we used piazza.com. This worked very well, especially when we
divided the Algorithms class into small groups of three students and kept the
games in those small groups. The undergraduate students solved challenging
problems like finding the worst-case input for the Gale-Shapley algorithm or
optimally solving a product stress testing problem (see 6.1.1).

— Using our own software. In software development classes we had the stu-
dents develop “avatars” to play the game and we did a full-round-robin tour-
nament evaluation of the avatars. The problem to be solved was a maximum
constraint satisfaction problem (see 6.1.2).

— Improving Evaluation in Problem-Solving Competitions for Computa-
tional Problems. A significant advantage of our approach is that the evaluation
of solutions is done by peers and not the competition organizer. This is relevant
to systems like topcoder.com and various competitions like SAT-solver competi-
tions. The competition organizer only acts in a role as referee. Instead of static
benchmarks, dynamic benchmarks are developed through game play.

The quality of the solutions produced depends on the skills of the players who

might not be motivated or not have the knowledge necessary to solve the problem.

To attract strong players either money or fame has to be given; a common theme

in human computation.

6.1.1. Gale-Shapley Lab. We present an example from our Algorithms class. The stu-
dents have studied the Gale-Shapley algorithm for producing a stable matching of
n women with n men given their preferences. To get a better understanding of how
the algorithm works (it is a loop), the students have to find for a given n a set of
preferences which create the most number ¢ of iterations of the algorithm. The claim
GSW = GaleShapleyWorstCaseClaim(n = 10,q = 30) says that for 10 women and
men there is a set of preferences generating 30 iterations of the outer loop of the
Gale-Shapley algorithm. And the claim is also that it is not possible to have more
iterations with other preferences. The predicate logic representation of GSW au-
tomatically produces the following game between a P(roponent) and O(pponent): P
produces an input i(n) of preferences for n women and men. The algorithm is run on
i(n) and produces ¢(n) iterations. If ¢(n) < 30, P has made a fault. If ¢(n) is too small,
O produces input ¢;(n) which is run and produces ¢, (n) iterations. If ¢;(n) > 30, P
has also made a fault. This is the essence of the semantic game behind the predicate
logic formula specifying the problem.



6.1.2. Approximate MaxCSP Lab. We present a simple example of an algorithm de-
velopment lab. We are interested in algorithms for approximately solving MaxCSP
instances with guaranteed performance. We are considering Boolean constraint sat-
isfaction problems of the following form: Each constraint is of the form R(z1,z2, x3)
which is true when exactly one of the three Boolean variables is true. Given a CSP
formula consisting of n variables we are interested in finding an assignment that sat-
isfies the fraction 7 of the constraints and we want to maximize 7. It turns out that
7r = 4/9. The SCG behind this problem has to deliver counterexamples (where the
fraction ¢ cannot be satisfied) if ¢ > 75 and to produce an assignment where the frac-
tion ¢ is satisfied, if ¢ < 7. Notice that in this context the algorithm designer needs
not only to provide an algorithm which satisfies the required fraction of constraints
but she also needs an algorithm that can produce "hard” inputs.

6.2. Incentive and Trust

There are two kinds of incentives in SCG: the incentive (1) to be top-ranked which
brings money or fame and (2) to get feedback during game play which builds skills
and provides opportunity for learning. Incentive (2) suggests productive applications
of SCGs in education.

Trust in the SCG approach is related to the belief that good work as a player (problem
solver) will get rewarded and that it is not possible to be top-ranked without doing
good work. There should be no sneaky ways to game the system. Trust can be broken
in at least two ways: (1) by defining games but not checking that all game rules are
perfectly followed and (2) by having tournaments and evaluations where you can
succeed without hard work. This paper is addressing point (2). Point (1) is addressed
by having reliable software to check the game rules related to the claims.

7. FUTURE WORK

The work in this paper abstracts away from who is proponent and who is opponent of
a claim in a game. When the proponent/opponent information is considered we have
a richer labeling structure on the edges of the SCG-graphs. Each edge gets a pair of
static and dynamic labels where the dynamic labels are determined by the static labels
plus the forcing information. Recall from the introduction that static labels provide the
side-choices {P(roponent), O(pponent)} and the dynamic labels provide the roles used
when the game is played. We call those graphs extended SCG-graphs.

A player is called consistent, if it always uses the same static side-choice across
all games. We plan to prove the following Collusion-Inconsistency Conjecture: For all
ranking functions R (which are not LFB) and for all extended SCG graphs where there
is a quasi-perfect player that is not top-ranked under R, there exists a player that
is not consistent. This conjecture would prove that non-collusion-resistance implies
inconsistency.

We call an SCG-graph consistent if it has a completion to an extended SCG-graph
where all players are consistent. The SCG-graph in Fig. 6 is inconsistent because of
the odd cycle and the fact that none of the players is forced. The SCG-graph in Fig. 7
is inconsistent too. We conjecture that the SCG-graph consistency problem is solvable
in polynomial time. Note that a mapping from nodes to { P(roponent), O(pponent)} that
is compatible with the SCG-graph, serves as a witness for SCG-graph consistency.
Compatibility of a node mapping is defined in terms of the forced labels: when the two
nodes incident with an edge have the same value under the map then exactly one of
the two nodes must be forced and if they have different values then none of the two
nodes must be forced.



We want to study SCGs with imperfect information and with random moves.
Independence-friendly logic and the corresponding semantic games are a good starting
point.

An interesting question is what can be said about the truth value of a claim given
an SCG-table of game results and information about the strength of the players.

Collusion is linked to trust in an SCG-Table T to find the best players. Collusion-
resistance eliminates some collusion but there is still other collusion possible. To ex-
plore the link between trust and collusion is interesting future work. Trust can be
improved by controlling the game scheduler to enforce Swiss-style scheduling, for ex-
ample.

8. CONCLUSION

We propose the concept of side-choosing Game (SCG) as a generalization of exten-
sive form games. SCGs are useful for organizing techno-social systems for problem
solving in Formal Sciences. Considering that a specific kind of collusion might com-
promise the truth, we modeled the ranking of players functionally via two axioms
or postulates: NNEW (Non-Negative Effect for Winning), and the crucial axiom CR
(Collusion-resistance, which says that games where one is not in control cannot lower
ones ranking, hence preventing gaming the game). We prove the Collusion-Resistance
Theorem which states that ranking has to be based on fault counting.

What comes next? Our plan is to deploy SCG-based applications on the web and
gather the benefits of collective intelligence. So far, we have already applied SCG-based
ideas and tools in designing courses at Northeastern University from algorithm and
software development courses to basic courses on spreadsheets and databases. And we
were planning to build a tool that can be used in MOOCs or algorithm competitions.
An implementation of a domain-specific language for human computation in formal
sciences is a challenge that requires several algorithms to be developed. Why not de-
velop those algorithms with SCG-based human computation effectively bootstrapping
the system based on user feedback. We view SCG as the programming language for
human computation to solve complex problems.

Another important area that needs further work is where players can propose new
claims. A modular approach to solving claims is needed. For example, a complex claim
Cimight be reducible to a simpler claim C5 so that a solution for C; implies a solution
for C;. We propose a formal study of claim relations which can themselves be captured
as claims and approached with side-choosing games.
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