
Design and Secure Evaluation of Side-Choosing Games

RUIYANG XU, Northeastern University
KARL LIEBERHERR, Northeastern University

We present an important, general class of new games, called side-choosing games (SCGs), for “gamifying”
problem solving in formal sciences using plausibility checking. Applications of SCGs include (1) peer-grading
in teaching (2) studying the evolution of knowledge in formal science communities and (3) organizing algo-
rithm competitions. We view SCGs as a new and general model for formulating formal problems that need
to be solved using human computation and our interest in this paper is on how to evaluate a set of SCG re-
sults fairly and effectively. We observe that a specific kind of plot, where players lie about their strength and
sacrifice themselves to help one of their friends, could bias the evaluation of SCGs dramatically. Following
the idea of Social Choice Theory in the sense of Arrow, we take an axiomatic approach to guarantee that a
specific kind of plot is impossible. We prove the Plot-Resistance Theorem and related results as a general
principle for designing plot-resistant evaluations for SCGs. The Plot-Resistance Theorem is surprising: it
tells us to be indifferent to wins but to count certain kinds of losses for scoring players and ranking them. If
plotting is not an issue, we offer a family of useful ranking functions which are not plot-resistant.

1. INTRODUCTION
A side-choosing game (SCG) H = 〈G,GS,Q, px, py〉 is based on an extensive form two-
player, zero-sum gameGwith perfect information and without ties, i.e., there is always
a winner and a loser1. G is a zero-sum, win/lose game between two players, white and
black. GS is a game state of G (i.e., a node of the game tree of G). Q is a proposition on
the game state GS of the form: white has a winning strategy (white moves first).

The players px, py of H have their preferred, static side (white = Proponent or black
= Opponent), depending on whether they believe Q or !Q to be true. The players are
free to choose their static side before the game. But during the game the players must
have opposite dynamic sides which we implement by making (per game) at most one
of them the devil’s advocate (or forced). Fig. 1 illustrates the difference between static
and dynamic assignments. The dynamic assignment is made by a trusted third party
fairly. The details of this assignment are not important to this paper as we focus on
evaluating the game results abstracting from this assignment.

The side-choosing game 〈G,GS,Q, px, py〉 produces a game result row consisting of
(1) the winner (px or py) (2) the loser (px or py) and (3) at most one forced player (px
or py or 0, if none was forced). A set of game results produced by multiple binary SCGs
is called an SCG-Table which we often interpret as a labeled multi-graph (see Table I
and the corresponding graph in Fig. 3 and for more graphs Fig. 6 and 7).

1 Extensive form games are widely used to model multi-agent sequential decision making. They are repre-
sented by game trees.

Author’s addresses: R. Xu and K. Lieberherr, College of Computer and Information Science, Northeastern
University; email: lieber@ccs.neu.edu
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the owner/author(s). Copyright is held by the au-
thor/owner(s).
EC’16, July 24–28, 2016, Maastricht, The Netherlands. ACM 978-1-4503-3936-0/16/07.
http://dx.doi.org/10.1145/XXXXXXX.XXXXXXX

Fig. 1. Side choices: static/dynamic

1.1. Examples
Consider the chess position GS in Fig. 2 as a side-choosing game2. The game G is
chess, modified so that winning for white means to mate the black king in 2 moves.
The propositionQ says that white, starting inGS, has a winning strategy. We have two
players, Alice and Bob, who study G and GS and make their side choices. Alice believes
she can win as white (she ”sees” the mate in two) and therefore her side choice is white.
Bob does not see the mate in two and therefore he wants to be black. The game is
played and Alice wins (how is left as an exercise to the reader; there is only one optimal
move for white.). The game result is given by the row= (winner=”Alice”, loser=”Bob”,
forced=0). If white plays b3 and black f3 then white mates with Qb2. White wins but
only because black made a mistake. The correct move for black is c4 (not f3) and white
cannot mate in the next move. This example gives the wrong impression that playing
one perfect game reveals the winning strategy (solution). But this is not the case most
of the time.

Next we consider a large family of examples of side-choosing games: the family con-
sists of semantic games [Kulas and Hintikka 1983] with side choice added. Semantic
games resemble stylized, highly formalized, Socratic dialogs. The game G is defined
by an interpreted logical sentence between white (proponent, existential quantifier)
and black (opponent, universal quantifier). The outermost quantifier of the sentence
determines who moves first. For white, the game is about making the sentence true
by assigning values to variables. Black tries to prevent this. Side-choosing games ex-
ist for many different logics such as first-order predicate logic, higher-order logics and
independence-friendly logic. A first important subfamily are claims in formal sciences
with side choice added to the semantic games of the claims (example: section 6.1.1).
A second important subfamily are claims related to algorithm specifications for algo-
rithm competitions (a la TopCoder, see topcoder.com or Kaggle, see kaggle.com). See
section 6.1.2 for an example.

1.2. Motivation
Why is the concept of SCG useful? A game state GS of an extensive form game G is a
model of a claim. Claims and problem solving are ubiquitous in human and automated
reasoning. Any formal claim can be brought to the extensive game form. The idea
behind the translation is to express the claim as an interpreted predicate logic sentence
as mentioned above. An SCG (the playing of the game) can be viewed as a plausibility
check of a claim. When I argue that a claim is true but then I cannot defend it using a
plausibility check, there must be something wrong with my argument. We show how to

2Taken from the collection: SEVENTY-FIVE CHESS PROBLEMS by John Thursby, Trinity Coll., Cam-
bridge, 1883.

Fig. 2. An SCG example: white mates in two

aggregate multiple such plausibility checks in a robust manner so that players cannot
plot against other players [Abdelmeged 2014].

Besides plausibility checking of claims there is a second different motivation behind
SCG: ranking the players, given a table of game results. We want to find the most mer-
itorious players in a robust fashion so that a plot among players cannot prevent the
most meritorious players to be recognized. For example, in an online competition, sev-
eral sybils3 might enter and help others to win thereby preventing the strong players
to win. We want to prevent that a player lies about its strength and “sacrifices” himself
by intentionally losing. This might rank undeserving players highly and will destroy
the purpose of SCGs. For an explicit example of a plot, see section 5.9.

Finding the most meritorious player is an interesting problem because there can be
a lot of noise in a game result table. For example, a player may correctly choose the
white side but then not have the necessary skills to defend the correct side. Or a game
state GS may be considered a winning state for white until a new player joins who
knows how to win as black. To bring order into this complex situation, we propose an
axiomatic approach.

2. CONTRIBUTIONS
The contributions of this paper are (1) a new concept called SCG for gamifying prob-
lem solving using plausibility checking of claims, (2) a set of high-level axioms defining
desirable properties of ranking functions and their interpretation in the context of a
4 argument scoring function (3) a new proof technique, called monotonicity constraint
reduction, for reducing predicate logic sentences (representing axioms) to monotonic-
ity constraints where the reasoning is simpler, (4) The Plot-Resistance Theorem and
related properties as an application of the monotonicity constraint reduction. The
Plot-Resistance Theorem suggests an efficient static implementation of the axioms (a
ranking function based on the monotonicity constraints) avoiding any kind of dynamic
checking. (5) We make a contribution to the secure design of problem-solving systems
where a kind of security (plot resistance) is built-in by design.

We have been working on SCGs for a few years which resulted in a dissertation
[Abdelmeged 2014]. We have gradually simplified our model to its core4. A four page
summary of some of Abdelmeged’s dissertation’s results, but with simpler concepts and

3In a Sybil attack the attacker subverts the reputation system of a peer-to-peer network by creating a
large number of pseudonymous identities, using them to gain a disproportionately large influence. See en.
wikipedia.org/wiki/Sybil attack
4A history of the simplifications is here
http://www.ccs.neu.edu/home/lieber/evergreen/specker/publications/scg-publs.html

en.wikipedia.org/wiki/Sybil_attack
en.wikipedia.org/wiki/Sybil_attack

simplified proofs, are published [Abdelmeged et al. 2016] as a AAAI 2016 workshop
paper.

The rest of the paper is organized as follows. Section 3 describes pertinent related
work. Section 4 introduces the main concepts, including an interpretation in terms of
graphs. It introduces the axioms No Harm When Winning (NHW) and No Harm When
Not in Control (NHNC). Section 5 provides a correspondence between our axioms and
monotonicity constraints which provides the basis for many of our proofs. It introduces
our main formal result, the Plot-Resistance Theorem and several ramifications of it. It
also introduces an equilibrium concept for SCGs. Section 6 discusses the broad appli-
cations of SCGs and section 7 mentions future work.

3. RELATED WORK
Our concept of a side-choosing game is very broad but has not been formally studied
before. We were influenced by semantic games which have a long history in logic [Ku-
las and Hintikka 1983]. Falsifiability as promoted by Karl Popper [Popper 2002] and
many others was another strong influence. A claim is falsifiable if there is an argu-
ment which proves the claim to be false. We use a weaker form of falsifiability which
we call plausibility checking. A claim C for which player px is a proponent is plausi-
bility checkable by a player py if there is an argument involving px and py that brings
px into a contradiction with respect to C. The argument is an interactive “debate” (py
winning a game against px) but it does not prove that the claim is false, in general.

In [Rubinstein 1980], Rubinstein provides an axiomatic treatment of tournament
ranking functions that bears some resemblance to ours. Rubinstein’s treatment was
developed in a primitive framework where “beating functions” are restricted to com-
plete, asymmetric relations. Rubinstein showed that the points system, in which only
the winner is rewarded with a single point is completely characterized by the following
three natural axioms:

— anonymity which means that the ranks are independent of the names of players,
— positive responsiveness to the winning relation which means that changing the re-

sults of a player p from a loss to a win, guarantees that p would have a better rank
than all other players that used to have the same rank as p, and

— Independence of Irrelevant Matches (IIM) which means that the relative ranking of
two players is independent of those matches in which neither is involved.

Our NHNC axiom is at least as strong as Rubinstein’s IIM.
Our work also falls into the field of axiomatic approaches to measures on graphs, an

area active since the 1980s and inspired by earlier Social Choice theory [Gupte and
Eliassi-Rad 2012; Rubinstein 1980]. Graphs are mapped to rankings of nodes or edges
while axioms constrain the space of those mappings. The measures which satisfy all
axioms are of interest. [Rubinstein 1980] is one of the first papers in this space. We
compress edge information of the graph into a total ordering (ranking) of the graph
nodes under the control of axioms that give us desirable properties. Starting from a list
of axioms, which such a ranking must satisfy, we characterize functions that satisfy all
the axioms (see section 5.6). We then show that there is a range of ranking functions
that satisfy this characterization (see section 5.7).

[Simpson 2014] provides a comprehensive overview of techniques to “Combined De-
cision Making with Multiple Agents”.Our work differs by working with multiple argu-
ing or debating agents who have to defend their decisions. The concept of plot is not
mentioned in [Simpson 2014] while it is central to our analysis of SCGs.

While information and quality elicitation has been studied thoroughly for crowd-
sourcing mechanism designs, ranging from analyzing incentive design strategies for
different platforms like Kaggle and MTurk [Easley and Ghosh 2015] to reasonable

Table I. Legal(P) for a two
players set

winner loser forced
1 2 1
1 2 2
1 2 0
2 1 1
2 1 2
2 1 0

Fig. 3. Graph interpretation of Table I
(* = forced)

ranking of user-generated content (UCG) on Amazon or Quora [Ghosh 2012], there
is less literature that addresses crowdsourcing designs which are based on the SCG
mechanism. We think this new game offers for many use-cases useful benefits com-
pared to “traditional” online crowdsourcing mechanisms, which justifies further stud-
ies and analysis.

This paper is based on Ahmed Abdelmeged’s dissertation [Abdelmeged 2014]. The
dissertation is based on semantic games to which side-choice was added, and does
not explicitly define side-choosing games. However, the proof of the Plot-Resistance
Plot-Resistance Theorem does not rely on the details of semantic games. Therefore,
we introduced side-choosing games in this paper to have an appropriate context for
formulating and proving the Plot-Resistance Theorem. The proofs in this paper have
been simplified through the systematic use of monotonicity constraints.

4. PRELIMINARIES
A plausibility check of a claim GS of a side-choosing game H = 〈G,GS,Q, px, py〉 is a
game of G starting from GS. If the game achieves the proposition Q affirmed by px, the
plausibility check is successful for px and and px wins, otherwise py wins.

4.1. Graph Interpretation
Our theory can be visualized in terms of directed, labeled multi-graphs. The nodes are
players and the labeled edges are game results. An edge points from winner to loser.
The labels on the edges indicate who is forced. We call those graphs SCG-graphs. Our
axiomatic approach to evaluation is based on counting different edge kinds incident
with a node. It is based on local counts and ignores the structure of the SCG-graph. In
Fig. 3 we give the graph of game results in Table I. In the future we plan to study such
graphs using more holistic techniques that take paths in the graphs into account.

Let P be the set of all players. Legal(P) is the set of legal game results for P . For
example, if P = {1, 2}, then Table I gives the table of all possible game results for 2
players. Legal(P) contains n · (n − 1) · 3 rows where n is the number of players in P .
Fig. 3 gives the same information as a labeled multi-graph. 0 is used to indicate that
no one was forced. In the graph notation, if no one is forced, no * is used on the edge.
R(P) is the multiset (or bag) of possible game results for P allowing for repetition

in the game results: R(P) is a pair (Legal(P),m), where m is the multiplicity function
m : Legal(P)→ N≥1.

In the following r denotes a single edge in an SCG-graph (a game result). For our
theory we define a few basic predicates: ∀px ∈ P,∀r ∈ Legal(P)

participant(px, r)⇔ px is a participant in the game r (1)
win(px, r)⇔ px won the game r (2)
loss(px, r)⇔ px lost the game r (3)

forced(px, r)⇔ px is forced to choose a side in the game r (4)
control(px, r)⇔ participant(px, r) ∧ ¬forced(px, r) (5)

fault(px, r)⇔ loss(px, r) ∧ ¬forced(px, r) (6)

4.2. High-Level Ranking Axioms
We define a pre-order �T on the set of players P , called the weakly better relation,
∀T ⊆ R(P). We want the ranking relation to satisfy the following axioms defined in
terms of table extensions. We formulate the axioms dynamically in terms of game
events. In principle, the axioms could be enforced dynamically each time a game re-
sult is produced but this would be very expensive (involving all pairs of players). We
will propose an efficient technique to enforce the axioms through clever design of the
ranking mechanism, requiring no dynamic checking at all.

— NHW (No Harm When Winning): Winning cannot lower your rank:

∀px, py ∈ P,∀T ⊆ R(P),
∀r ∈ {r | r ∈ Legal(P) ∧ win(px, r)}

[px �T py ⇒ px �T∪{r} py] (7)

— NBL (No Benefit When Losing): Losing cannot increase your rank:

∀px, py ∈ P,∀T ⊆ R(P),
∀r ∈ {r | r ∈ Legal(P) ∧ loss(py, r)}

[px �T py ⇒ px �T∪{r} py] (8)

— NHNC (No Harm When Not In Control): Games you don’t control don’t lower
your rank.

∀px, py ∈ P,∀T ⊆ R(P),
∀r ∈ {r | r ∈ Legal(P) ∧ ¬control(px, r)}

[px �T py ⇒ px �T∪{r} py] (9)

This axiom allows that games you don’t control might improve your rank. Indeed,
this flexibility is needed for interesting ranking functions. If we don’t allow this flexi-
bility, there are no interesting ranking functions in the class we study. For an explicit
example of plot and a ranking function which is not NHNC, see section 5.9.

It is beneficial to split the NHNC axiom into two more basic properties both for un-
derstanding NHNC and for proving implications of the ranking axioms. The No Harm
When Not Participating property protects the players against the negative effects of
non-participation. The No Harm When Forced property protects the forced players
against disadvantages.

— No Harm When Not Participating: Games you don’t participate in don’t lower
your rank.

∀px, py ∈ P,∀T ⊆ R(P),
∀r ∈ {r | r ∈ Legal(P) ∧ ¬participate(px, r)}

[px �T py ⇒ px �T∪{r} py] (10)
— No Harm When Forced: Games where you are forced don’t lower your rank.

∀px, py ∈ P,∀T ⊆ R(P),
∀r ∈ {r | r ∈ Legal(P) ∧ forced(px, r)}

[px �T py ⇒ px �T∪{r} py] (11)
Fig. 5 summarizes the monotonicity constraints for the two new axioms.

4.3. Scoring Functions
Next we define natural scoring functions which we will use for ranking.

wfpx
(T) = the win count of px in T in a forced position

wupx(T) = the win count of px in T in an unforced position
lfpx

(T) = the loss count of px in T in a forced position
lupx

(T) = the loss count of px in T in an unforced position

It’s obvious that given table T ′ = T ∪ {r} and X ∈ {wf,wu, lf, lu} the following transi-
tional relations hold:

Xpx
(T ′) =

{
Xpx

(T) + 1 if X happens in {r}
Xpx(T) otherwise

4.4. Ranking Axioms With Scoring Functions
Now we define the weakly better relation using a scoring function U : N × N × N ×
N → R. Lower U means better player. We define a pre-order �T

U below in (12). For
convenience, we drop the subscript and refer to it simply as �T . We want to assign
to each player a score solely based on the players’ demonstration of ability. We use
the above four counting functions, based on wins and losses and whether a player was
forced, to calculate a player’s score. We formally define the ranking relation as,

∀px, py ∈ P,∀T ⊆ R(P)[px �T py ⇔
U(wfpx

(T), wupx
(T), wfpx

(T), lupx
(T)) ≤

U(wfpy
(T), wupy

(T), wupy
(T), lupy

(T))] (12)
A Venn diagram of the modified axioms (using U) is in Fig. 4. From now on, when
we refer to an axiom, we mean the instantiation of the axiom for the above 4 argu-
ment scoring function U . For simplicity, we refer to the instantiated axiom Y still as Y
although the axioms are different.

4.5. Discussion of Axioms
The axioms are formulated for general ranking functions however we focus on the spe-
cial case where a “natural” four argument scoring function U is used (see 12). Using
this restriction has surprising implications on the axioms. It even changes the impli-
cations relationships between the axioms. Consider the axiom NHNC which is formu-
lated in terms of participation. Clearly, NHNC does not imply NBL because NBL does

not even refer to participation. However, if we assume that ranking is done with the
natural four-argument scoring function, NHNC now implies NBL (see Fig. 4). There
are many other scoring functions that could be used that are refinements of the U
above.

4.6. Properties of Evaluation
Our approach to evaluating SCG-tables satisfies two properties.

4.6.1. Universal Domain. From equation 12, it is clear that for every logically possible
game result table T , we have a valid preorder. This implies that our ranking relation
satisfies the Universal Domain property.

4.6.2. Anonymity. From equation 12 it is clear that the scoring function ignores the
identity of the player in calculating the score. Hence, the ranking relation �T is unaf-
fected by changing labels and therefore anonymous.

4.7. Monotonicity of U
We score a player solely based on the player’s wins and losses and whether forced or
unforced. One interesting property of the parameters of U for a particular player is that
when we add a new game to the existing game result table T , at most one parameter
increments. This allows us to define the following notations:

U ↑x: U is monotonically non-decreasing on parameter x
U ↓x: U is monotonically non-increasing on parameter x

U ↑↓x: U is indifferent on the parameter x

The axioms NHW and NHNC imply that U must be either argument-wise monotoni-
cally non-decreasing or non-increasing. If U would fluctuate on one of the arguments,
one of the axioms NHW or NHNC would not hold (see Fig. 4). The monotonicity con-
straints are a tool to implement the axioms efficiently. Our plan is to combine the
monotonicity constraints of the axioms and to find ranking functions which satisfy all
of them.

5. MAIN THEORY
We use the following reduction technique, called monotonicity constraint reduction, to
prove properties of ranking relations: We map the predicate logic statements corre-
sponding to the axioms into the space of monotonicity constraints of the scoring func-
tion U . We combine the monotonicity constraints and map the result back to predicate
logic statements about the ranking relations. We show that this reduction is correct.
Recognizing that functional monotonicities are hidden behind the properties has sim-
plified our proofs. Compare with [Abdelmeged 2014]. In this section, we reformulate
the axioms as equivalent monotonicity constraints.

5.1. No Harm When Not In Control (NHNC)
Given T ′ = T ∪ {r}, where ¬control(px, r), we reformulate NHNC as follows:

U(wfpx
(T), wupx

(T), lfpx
(T), lupx

(T)) ≤
U(wfpy

(T), wupy
(T), lfPy

(T), lupy
(T))

⇒
U(wfpx

(T ′), wupx
(T ′), lfpx

(T ′), lupx
(T ′)) ≤

U(wfpy
(T ′), wupy

(T ′), lfPy
(T ′), lupy

(T ′)) (13)

Considering the definition of ”not in control”, we split NHNC into two separate cases:
No Harm When Not Participating (NHNP) and No Harm When Forced (NHF).

5.2. No Harm When Not Participating (NHNP)
PROPOSITION 5.1. The axiom NHNP, instantiated with the 4-argument scoring

function U , is equivalent to the following monotonicity constraints:

U ↑wf ∧U ↑wu ∧U ↑lf ∧U ↑lu .

PROOF. We start with game results where px did not participate. Then py may have
won or lost in a forced or unforced position against some third player pz.

Let us consider the row {r} where py wins over pz in a forced position, given
T ′ = T ∪ {r} and since:

U(wfpx
(T ′), wupx

(T ′), lfpx
(T ′), lupx

(T ′)) =

U(wfpx
(T), wupx

(T), lfpx
(T), lupx

(T))

U(wfpy
(T ′), wupy

(T ′), lfPy
(T ′), lupy

(T ′)) =

U(wfpy (T) + 1, wupy (T), lfPy (T), lupy (T))

from 10 we have:

U(wfpx(T), wupx(T), lfpx(T), lupx(T)) ≤
U(wfpy (T) + 1, wupy (T), lfPy (T), lupy (T)) (14)

From equations 12 and 14, we get the monotonicity constraint,

U ↑wf (15)

Similarly, let us consider the case {r} where py wins over pz in an unforced position,
given T ′ = T ∪ {r} we have:

U(wfpx
(T), wupx

(T), lfpx
(T), lupx

(T)) ≤
U(wfpy (T), wupy (T) + 1, lfpy (T), lupy (T)) (16)

From equations 12 and 16, we get the monotonicity constraint,

U ↑wu (17)

Using a similar argument, for the case where py loses over pz in a forced position, we
have

U ↑lf (18)

Also, for the case where py loses over pz in an unforced position, we have

U ↑lu (19)

5.3. No Harm When Forced (NHF)
PROPOSITION 5.2. The axiom NHF, instantiated with the 4-argument scoring func-

tion U , is equivalent to the following monotonicity constraints:

U ↓lf ∧U ↓wf .

PROOF. We consider game results where px is forced. First, we consider game re-
sults {r} where px was forced and lost against some third player pz, given T ′ = T ∪ {r}
and since:

U(wfpx(T
′), wupx(T

′), lfpx(T
′), lupx(T

′)) =

U(wfpx
(T), wupx

(T), lfpx
(T) + 1, lupx

(T))

U(wfpy
(T ′), wupy

(T ′), lfPy
(T ′), lupy

(T ′)) =

U(wfpy (T), wupy (T), lfPy (T), lupy (T))

from 11 we have:

U(wfpx(T), wupx(T), lfpx(T) + 1, lupx(T)) ≤
U(wfpy

(T), wupy
(T), lfpy

(T), lupy
(T)) (20)

From equations 12 and 20, we get the monotonicity constraint,

U ↓lf (21)

Then, we consider the case where px was forced and won against some third player pz.
And similar to the analysis above, we shall have:

U ↓wf (22)

Remark 5.3. An observation of completeness shows that No Harm When Forced
still holds when px plays exactly against py. This is because of:

U ↑↓lf ∧ U ↑wu⇒ (wfpx(T), wupx(T), lfpx(T) + 1, lupx(T)) ≤
U(wfpy

(T), wupy
(T) + 1, lfpy

(T), lupy
(T)) (23)

and

U ↑↓wf ∧ U ↑lu⇒ U(wfpx
(T) + 1, wupx

(T), lfpx
(T), lupx

(T)) ≤
U(wfpy

(T), wupy
(T), lfpy

(T), lupy
(T) + 1) (24)

Now, NHNC can be summarized in terms of monotonicity constraints as,

U ↑↓wf ∧U ↑wu ∧U ↑↓lf ∧U ↑lu (25)

5.4. No Harm When Winning (NHW)
PROPOSITION 5.4. The axiom NHW, instantiated with the 4-argument scoring func-

tion U , is equivalent to the following monotonicity constraints:

U ↓wf ∧U ↓wu .

PROOF. Let us consider a game result {r} where px won against a third player pz.
px could have won either in a forced or unforced position. First, considering the case
where px wins over pz in a forced position, we have,

U(wfpx
(T) + 1, wupx

(T), lfpx
(T), lupx

(T)) ≤
U(wfpy

(T), wupy
(T), lfpy

(T), lupy
(T)) (26)

From equations 12 and 26, we get the monotonicity constraint,

U ↓wf (27)

Fig. 4. Relations among NHW, NBL, NHNC. Their monotonicity constraints cover entire oval.

Fig. 5. NHNC split into two parts

Similarly, for the case where px wins over pz in an unforced position, we have
U ↓wu (28)

Summarizing the monotonicity constraints, we have,
U ↓wf ∧U ↓wu (29)

5.5. Non Positive Effect of Losing (NBL)
PROPOSITION 5.5. The axiom NBL, instantiated with the 4-argument scoring func-

tion U , is equivalent to the following monotonicity constraints:
U ↓lf ∧U ↓lu .

PROOF. Let us consider a game result {r} where py lost against a third player pz.
First, considering the case where py loses over pz in a forced position, we have,

U(wfpx
(T), wupx

(T), lfpx
(T), lupx

(T)) ≤
U(wfpy (T), wupy (T), lfpy (T) + 1, lupy (T)) (30)

From equations 12 and 30, we get the monotonicity constraint, U ↑lf . Similarly, for the
case where py loses over pz in an unforced position, we have U ↑lu. Summarizing the
monotonicity constraints, we have,

U ↑lf ∧U ↑lu (31)

5.6. Local Fault Based (LFB)
As we want the ranking relation to satisfy both properties NHW and NHNC, from
equations 25 and 29, we get the monotonicity constraints,

U ↑↓wf ∧U ↑↓wu ∧U ↑↓lf ∧U ↑lu (32)

This tells us that the scoring function should be monotonically non-decreasing on
faults and indifferent on other parameters. We call the ranking relation that uses a
scoring function that satisfies equation 32 as Local Fault Based (LFB). The mono-
tonicity constraints in equation 32 can be easily reformulated in predicate logic.

— LFB: The definition of LFB is in the context of the 4-argument scoring function U .
Games in which you don’t make faults don’t lower your rank.

∀px, py ∈ P,∀T ⊆ R(P),
∀r ∈ {r | r ∈ Legal(P) ∧ ¬fault(px, r)}

[px �T
U py ⇔ px �T∪{r}

U py] (33)

— Plot-Resistance Theorem We just proved for the instantiation of the axioms for
the 4 argument scoring function U in 12:

(NHW ∧ NHNC) = LFB

The following proper subset relationships can be shown using the same proof tech-
niques (see Fig. 4):

NHNC ⊂ NBL,LFB ⊂ (NHW ∩ NBL),LFB ⊂ NHNC

The Plot-Resistance Theorem tells us that plot-resistant ranking functions have a
simple form based on fault counting. There is an infinite family of such functions that
can be used in the design of techno-social systems with guaranteed plot resistance
(see section 5.7).

5.7. A Family of Plot-Resistant Rankings
When designing a techno-social system for solving precisely formulated problems there
are many concerns to be addressed. Besides just using simple fault-counting, there are
other weighted fault counting functions of interest. In the graph representation of an
SCG-table T , we consider two kinds of edges: α edges going into px are edges where
no one was forced. β edges going into px are edges where the winner was forced. In
both cases px made a fault but we are counting the two kinds of edges differently. α
(β) edges have weight α > 0 (β > 0), respectively. The resulting scoring function U
has the property that a high α (compared to β) encourages non-forced players to win.
Other families of plot-resistant rankings can be defined by considering finer-grained
properties of game results.

5.8. A Simple Property of Fault Counting
We consider the ranking we get from the scoring function U which counts faults in a ta-
ble T (lupx

(T)). A quasi-perfect player px is a player with zero fault counts (lupx
(T) = 0).

(A perfect player is a player which always makes the correct side choice and correctly
defends that choice. Therefore a perfect player is quasi-perfect but the converse does
not necessarily hold because a quasi-perfect player may choose the wrong side of a
claim and still successfully defend it because of weakness in the opponents.) A top-
ranked player is a player for which there exists no stronger player in the ranking. We
have the simple but desirable meritocracy property: for all SCG-Tables quasi-perfect

Fig. 6. Simplest Counterexample: Players 2 and 3 plot

implies top-ranked under fault-counting. This easily generalizes to: When a ranking
is LFB then for all SCG-tables, quasi-perfect players are top ranked. Next we give an
explicit counterexample for win counting.

5.9. Counterexamples for Win Counting
We assume that players can recognize each other and use that knowledge to alter
their play. This assumption is satisfied in most applications even when the players are
implemented in software.

Under win counting, quasi-perfect players are not necessarily top-ranked. Win
counting is defined by

U(px, T) = −(wfpx
(T) + wupx

(T)) (34)

The corresponding ranking function is NHW and NBL but ¬ NHNC. Fig. 6 gives the
smallest counterexample (both in terms of number of players and number of game
results).

We set z = 3. Player 2 is top ranked with 3 wins and 1 fault. But, player 1, the quasi
perfect player with no faults is not top ranked. The reason is that there is plot: player
3 helped player 2 accumulate wins which helped to overrule the quasi-perfect player.

5.9.1. All Perfect with Liars. How many plotting players are needed to prevent a quasi-
perfect player from winning under win counting? We show with an example that 2 out
of n are enough provided the 2 players play enough games.

We have n − 2 perfect players and a total of n players. The tournament is basically
a full round-robin tournament where the non-forced player always wins, except for
the pair of plotting players. One player (the liar) helps the other player to accumulate
wins. The helping games have multiplicity z. Fig. 7 shows the graph of game results
for n = 3 with players numbered 1,2,3. Player 1 is perfect, 3 is the liar (lying about its
strength) and 2 is being helped. Players 2 and 3 plot: player 3 (the liar) helps player
2 win points. Although player 3 is also perfect, it lies about its strength when it plays
against player 2. Table II shows the game statistics: For z ≥ 2 only fault-counting is
plot-resistant and player 1 is top-ranked.

5.10. Equilibria
Equilibria in SCG are emergent states resulting from player interactions. In an equi-
librium the plausibility checks signal agreement between the players. Let Q be a sub-
set of a set of players P . Q is in an equilibrium if games between players in Q are
fault-free. This means that players in P agree on a construction for defending the
claim. They always win when they are not forced and they always lose when they are
forced. There might be several islands of agreement represented by disjoint subsets of
P . Let Q1 and Q2 be two disjoint subsets of P , each being in an equilibrium (see Fig.

Fig. 7. Player 3 lies about its strength

Fig. 8. Equilibrium of two disjoint subsets of P

8). What happens when a player in Q1 plays against a player in Q2? If the construction
used in Q2 is of “higher quality,” the player in Q2 will win when not forced. The quality
of construction used by a player px might increase over time. px might have an insight
which leads to a better solution shaking up an equilibrium. There will be again games
leading to faults until the island of player px has learned about the new construction.
This is a model of how knowledge in a formal science community might evolve.

5.11. Independence of axioms
The two axioms NHW and NHNC are independent as demonstrated by two examples
of ranking functions. We choose any of the axioms and show that there is a ranking
function that satisfies that axiom but not the other. A ranking function that is (1) NHW
and not NHNC is win counting; (2) NHNC and not NHW is win counting for unforced
players. The reader can confirm this by checking with Fig. 4.

6. SCG APPLICATIONS
After the introductory examples in section 1.1 and the theory, we outline now the
breadth of applicability of SCGs. We motivate the importance of SCGs by describing
applications, users and owners (also known as principals). Recall that there are two
separate classes of applications: (1) verifying the correctness of a claim and (2) assess-
ing the merit of players. (2) is used to achieve (1). Two interesting claims are described
here: 6.1.1 and 6.1.2.

— SCG Applications.
— Formal Sciences Formal sciences are disciplines concerned with formal systems,

such as logic, mathematics, statistics, theoretical computer science, information
theory, game theory, systems theory, and decision theory. A claim is defined us-
ing an interpreted predicate logic sentence. This is not an exercise in logic as the
quantifiers are only used to define the tasks that the users must perform. The sen-

tence is interpreted in a structure which might be defined by a complex program
encoding the functionality best executed by computers.

— Formal Claims based on Simulation Environments Robotics and biological
sciences, etc. fall into this category. The structure in which the claim is interpreted
is the simulation environment.

— SCG Users. Users are problem solvers or learners and they operate directly or indi-
rectly. In direct mode, the users perform the moves themselves, maybe using soft-
ware. In indirect mode, the users produce software that plays the SCG on their
behalf. There is a simple SCG-interface that the software has to follow. Of course,
indirect users must have software development skills.
The indirect mode is of central interest to us because it is a novel approach to develop
software for computational problems using a group of people. The quality control of
the software is automated by running an online or offline tournament to determine
the top-ranked software. The claim under consideration determines what quality
means. Note that the SCG-interface implies that testing is an integral part of the
solution.
Users of SCGs include:
— Students in high schools and universities. They must understand the concept

of a claim. Focus is on dissemination of knowledge through peer teaching and peer
evaluation.

— Researchers. Focus is on creation of new knowledge and its peer evaluation. Re-
searchers propose claim variations and new claims.

— Citizen Scientists. They might find innovative constructions that are imperfect.
Experts might benefit from those ideas and correct them.

— SCG Owners.
Owners define claims. Some users also play the role of owners. Owners don’t need
expertise how to solve the problems.
Owners include: (1) Teachers and Professors. (2) Research Directors, Heads of Re-
search Programs, Organizations like NSF, DARPA, ONR etc. (3) Program Chairs of
conferences and Journal Editors. (4) Companies who need a specific computational
problem solved for which no off-the-shelve solution is available. (5) Companies who
are looking for employees with skills in a specific domain. E.g., Facebook organized a
competition on kaggle.com and the winner got a Facebook job.

6.1. Applications of Side-Choosing Games to Existing Systems
Our study of side-choosing games is motivated by their potential to organize problem-
solving competitions and by their successful use in CS education at Northeastern
University. We believe SCGs are a foundation for platforms like TopCoder or Kaggle
or for scientific human-computation tools like Foldit [Cooper et al. 2010].
— Education in Formal Sciences. Our favorite way of summarizing learning ob-

jectives for a formal science domain is to say that learners must demonstrate the
skill of judging claims in the domain, choosing their side on the claim and then
defending their side choice through game play against other students. The result-
ing peer-teaching and peer-grading is very attractive. A claim is representing a
lab in which students learn and is chosen in such a way that solving the problem
requires skills that students should have.
— Using piazza.com. To post claims and to organize the playing of games related

to those claims we used piazza.com. This worked very well, especially when we
divided the Algorithms class into small groups of three students and kept the
games in those small groups. The undergraduate students solved challenging
problems like finding the worst-case input for the Gale-Shapley algorithm (see
6.1.1) or optimally solving a product stress testing problem.

— Using our own software. In software development classes we had the stu-
dents develop “avatars” to play the game and we did a full-round-robin tour-
nament evaluation of the avatars. The problem to be solved was a maximum
constraint satisfaction problem (see 6.1.2).

— Improving Evaluation in Problem-Solving Competitions for Computa-
tional Problems. A significant advantage of our approach is that the evaluation
of solutions is done by peers and not the competition organizer. This is relevant
to systems like topcoder.com and various competitions like SAT-solver competi-
tions. The competition organizer only acts in a role as referee. Instead of static
benchmarks, dynamic benchmarks are developed through game play.
The quality of the solutions produced depends on the skills of the players who
might not be motivated or not have the knowledge necessary to solve the problem.
To attract strong players either money or fame has to be given; a common theme
in human computation.

6.1.1. Gale-Shapley Lab. We present an example from our Algorithms class. The stu-
dents have studied the Gale-Shapley algorithm for producing a stable matching of
n women with n men given their preferences. To get a better understanding of how
the algorithm works (it is a loop), the students have to find for a given n a set of
preferences which create the most number q of iterations of the algorithm. The claim
GSW = GaleShapleyWorstCaseClaim(n = 10, q = 30) says that for 10 women and
men there is a set of preferences generating 30 iterations of the outer loop of the
Gale-Shapley algorithm. And the claim is also that it is not possible to have more
iterations with other preferences. The predicate logic representation of GSW au-
tomatically produces the following game between a P(roponent) and O(pponent): P
produces an input i(n) of preferences for n women and men. The algorithm is run on
i(n) and produces q(n) iterations. If q(n) < 30, P has made a fault. If q(n) is too small,
O produces input i1(n) which is run and produces q1(n) iterations. If q1(n) > 30, P
has also made a fault. This is the essence of the semantic game behind the predicate
logic formula specifying the problem.

6.1.2. Approximate MaxCSP Lab. We present a simple example of an algorithm de-
velopment lab. We are interested in algorithms for approximately solving MaxCSP
instances with guaranteed performance. We are considering Boolean constraint sat-
isfaction problems of the following form: Each constraint is of the form R(x1, x2, x3)
which is true when exactly one of the three Boolean variables is true. Given a CSP
formula consisting of n variables we are interested in finding an assignment that sat-
isfies the fraction τR of the constraints and we want to maximize τR. It turns out that
τR = 4/9. The SCG behind this problem has to deliver counterexamples (where the
fraction t cannot be satisfied) if t > τR and to produce an assignment where the frac-
tion t is satisfied, if t ≤ τR. Notice that in this context the algorithm designer needs
not only to provide an algorithm which satisfies the required fraction of constraints
but she also needs an algorithm that can produce ”hard” inputs.

7. FUTURE WORK
The work in this paper abstracts away from who is proponent and who is opponent of
a claim in a game. When the proponent/opponent information is considered we have
a richer labeling structure on the edges of the SCG-graphs. Each edge gets a pair of
static and dynamic labels where the dynamic labels are determined by the static labels
plus the forcing information. Recall from the introduction that static labels provide the
side-choices {P (roponent), O(pponent)} and the dynamic labels provide the roles used
when the game is played. We call those graphs extended SCG-graphs.

A player is called consistent, if it always uses the same static side-choice across all
games. We plan to prove the following Plot-Inconsistency Conjecture: For all ranking
functions R (which are not LFB) and for all extended SCG graphs where there is a
quasi-perfect player that is not top-ranked under R, there exists a player that is not
consistent. This conjecture would prove that non-plot-resistance implies inconsistency.

We call an SCG-graph consistent if it has a completion to an extended SCG-graph
where all players are consistent. The SCG-graph in Fig. 6 is inconsistent because of
the odd cycle and the fact that none of the players is forced. The SCG-graph in Fig. 7
is inconsistent too. We conjecture that the SCG-graph consistency problem is solvable
in polynomial time. Note that a mapping from nodes to {P (roponent), O(pponent)} that
is compatible with the SCG-graph, serves as a witness for SCG-graph consistency.
Compatibility of a node mapping is defined in terms of the forced labels: when the two
nodes incident with an edge have the same value under the map then exactly one of
the two nodes must be forced and if they have different values then none of the two
nodes must be forced.

We want to study SCGs with imperfect information and with random moves.
Independence-friendly logic and the corresponding semantic games are a good starting
point.

An interesting question is what can be said about the truth value of a claim given
an SCG-table of game results and information about the strength of the players.

8. CONCLUSION
We propose the concept of Side-Choosing Game (SCG) as a generalization of extensive
form games. SCGs are useful for organizing techno-social systems for problem solving
in Formal Sciences. Considering that a specific kind of plot might compromise the
truth, we modeled the ranking of players functionally via two axioms or postulates:
NHW (No Harm When Winning), and the crucial axiom NHNC (No Harm When Not In
Control, which says that games where one is not in control cannot lower ones ranking,
hence preventing gaming the game). We prove the Plot-Resistance Theorem which
states that ranking has to be based on fault counting.

What comes next? Our plan is to deploy SCG-based applications on the web and
gather the benefits of collective intelligence. So far, we have already applied SCG-based
ideas and tools in designing courses at Northeastern University from algorithm and
software development courses to basic courses on spreadsheets and databases. And we
were planning to build a tool that can be used in MOOCs or algorithm competitions.
An implementation of a domain-specific language for human computation in formal
sciences is a challenge that requires several algorithms to be developed. Why not de-
velop those algorithms with SCG-based human computation effectively bootstrapping
the system based on user feedback. We view SCG as the programming language for
human computation to solve complex problems.

Another important area that needs further work is where players can propose new
claims. A modular approach to solving claims is needed. For example, a complex claim
C1might be reducible to a simpler claim C2 so that a solution for C2 implies a solution
for C1. We propose a formal study of claim relations which can themselves be captured
as claims and approached with side-choosing games.

Acknowledgments We would like to thank Reshef Meir, Ravi Sundaram and
Thomas Wahl for their influential feedback on earlier versions of the paper.

REFERENCES

Ahmed Abdelmeged. 2014. Organizing Computational Problem Solving Communities
via Collusion-Resistant Semantic Game Tournaments. Ph.D. Dissertation. North-

eastern University, Boston, MA, USA. Advisor-Karl Lieberherr.
Ahmed Abdelmeged, Ruiyang Xu, and Karl Lieberherr. 2016. Design and Secure Eval-

uation of Side-Choosing Games. In Proceedings of AAAI 2016 Workshop on Incentive
and Trust in E-Communities (WIT-EC’16).

Seth Cooper, Adrien Treuille, Janos Barbero, Andrew Leaver-Fay, Kathleen Tu-
ite, Firas Khatib, Alex Cho Snyder, Michael Beenen, David Salesin, David
Baker, and Zoran Popović. 2010. The challenge of designing scientific dis-
covery games. In Proceedings of the Fifth International Conference on the
Foundations of Digital Games (FDG ’10). ACM, New York, NY, USA, 40–47.
DOI:http://dx.doi.org/10.1145/1822348.1822354

David Easley and Arpita Ghosh. 2015. Behavioral mechanism design: optimal crowd-
sourcing contracts and prospect theory. In ACM SIGecom Exchanges (v.14 n.1). 89–
94.

Arpita Ghosh. 2012. Social computing and user-generated content: a game-theoretic
approach. In ACM SIGecom Exchanges (v.11 n.2). 16–21.

Mangesh Gupte and Tina Eliassi-Rad. 2012. Measuring tie strength in implicit social
networks. Proceedings of the 4th Annual ACM Web Science Conference (2012), pp.
109–118.

J. Kulas and J. Hintikka. 1983. The Game of Language: Studies in Game-
Theoretical Semantics and Its Applications. Springer. http://books.google.com/
books?id=6GphI2 3u-sC

Karl Raimund Popper. 2002. Conjectures and refutations: the growth of scientific
knowledge. Routledge.

Ariel Rubinstein. 1980. Ranking the Participants in a Tournament. SIAM J. Appl.
Math. 38, 1 (1980), pp. 108–111. http://www.jstor.org/stable/2100804

Edwin Simpson. 2014. Combined Decision Making with Multiple Agents. Ph.D. Dis-
sertation. University of Oxford.

http://dx.doi.org/10.1145/1822348.1822354
http://books.google.com/books?id=6GphI2_3u-sC
http://books.google.com/books?id=6GphI2_3u-sC
http://www.jstor.org/stable/2100804

	Introduction
	Examples
	Motivation

	Contributions
	Related Work
	Preliminaries
	Graph Interpretation
	High-Level Ranking Axioms
	Scoring Functions
	Ranking Axioms With Scoring Functions
	Discussion of Axioms
	Properties of Evaluation
	Universal Domain
	Anonymity

	Monotonicity of U

	Main Theory
	No Harm When Not In Control (NHNC)
	No Harm When Not Participating (NHNP)
	No Harm When Forced (NHF)
	No Harm When Winning (NHW)
	Non Positive Effect of Losing (NBL)
	Local Fault Based (LFB)
	A Family of Plot-Resistant Rankings
	A Simple Property of Fault Counting
	Counterexamples for Win Counting
	All Perfect with Liars

	Equilibria
	Independence of axioms

	SCG Applications
	Applications of Side-Choosing Games to Existing Systems
	Gale-Shapley Lab
	Approximate MaxCSP Lab

	Future Work
	Conclusion

