
X

Theory of Side-Choosing Games to Create and Disseminate
Knowledge in Formal Sciences

AHMED ABDELMEGED, Northeastern University
RUIYANG XU, Northeastern University
RAGHAVENDRA GALI, Northeastern University
KARL LIEBERHERR, Northeastern University

How do we create knowledge? We use the language of side-choosing games to instruct humans about which
knowledge needs to be created, i.e., which problem needs solving. The language of side-choosing games
becomes the domain-specific language for the human computation system for formal science.

What is unique about our approach to create knowledge? To support a claim, a game is played. Playing a
game only involves cleverly assigning values to variables and not knowledge about a formal proof system to
support the claim. The side-choosing game approach supports a low key approach to defending a claim and
is suitable for many skill levels. “Amateur Scientists” can help to gain insights into claims before they are
passed on to the expert scientists.

How do we disseminate knowledge? Indirectly through curiosity! If a player loses a game although they
predicted that they would win it, they become curious. They try to acquire the knowledge that the winning
player has. This is a form of abductive reasoning: figuring out why they lost.

What is our theory: We study how to map side-choosing game results into ranking relations between
players with guaranteed and desirable properties. We borrow ideas from social choice theory instead of
using heuristics. Our theory informs the design of socio-technical systems for problem solving and teaching.

Our main contributions are (1) the concept of a side-choosing game with an illustration of its usefulness,
(2) a representation theorem for an axiomatic treatment of ranking relations for side-choosing games, and
(3) a meritocracy theorem showing that quasi-perfect players will be top-ranked iff the critical property of
collusion-resistance holds. Version 1/26/2015.

Categories and Subject Descriptors: CCS Human-centered computing Collaborative and social computing
Collaborative and social computing theory, concepts and paradigms Collaborative content creation [xx]: yz;
CCS Theory of computation Logic Constructive mathematics [xx]: xy; CCS Theory of computation The-
ory and algorithms for application domains Algorithmic game theory and mechanism design Algorithmic
mechanism design [xx]: xy

General Terms: Theory

Additional Key Words and Phrases: Side-Choosing Games, Meritocracy

ACM Reference Format:
Ahmed Abdelmeged, Ruiyang Xu, Raghavendra Gali, Karl Lieberherr, 2015. Theory of Side-Choosing Games
to Create and Disseminate Knowledge in Formal Sciences. ACM X, X, Article X (February 2015), 20 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
In this theory paper we discuss and analyze the design space for a socio-technical sys-
tem called SCG (for Side-Choosing Game or Scientific Community Game) which man-

Author’s addresses: A. Abdelmeged, R. Xu, R. Gali and K. Lieberherr, College of Computer and Information
Science, Northeastern University; email: lieber@ccs.neu.edu
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 0000-0000/2015/02-ARTX $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

EC’15, June 15–19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.

X:2

ages the creation and dissemination of formal knowledge. Our motivations for design-
ing such a system are both economical benefit (social welfare created by goal-oriented
players who want to win) and a positive experience for the participating players.

Side-choosing games (SCGs) have the following advantages: (1) distributed evalua-
tion of players without a central authority. The players receive targeted, objective feed-
back from their peers. SCGs provide an educational system for checking the mastery
of skills. There is low overhead for the “administrator” who organizes a competition for
a given claim. (2) collusion resistance: It is impossible for players to collude and make
a skilled or even perfect player lose. (3) The overhead of learning SCGs is amortized
over a large number of applications. (4) Low entry barrier: Playing the dialog game
involves cleverly assigning values to variables. It does not require knowledge about a
proof system and the skill of providing formal proofs. Clever ideas are demonstrated
by practice: systematically defending the chosen side. (5) They are objective: the result
depends on how well the participants solve the computational problems underlying
the claim.

There are already SCG-like systems in place, e.g., the National Science Foundation,
TopCoder, SAT competitions or conferences and journals.

A side-choosing game is about a claim C which has an associated two-player, win-
lose game Game(C) between a proponent and an opponent of C such that a win of the
proponent is an indication that C is true and a win of the opponent is an indication
that C is false. Game(C) does not allow for draws. If a proponent of C consistently wins
against opponents, the proponent is said to have a winning strategy for C.

The first move in a side-choosing game is to choose a side for C: proponent or oppo-
nent. Player x(y) chooses side d(x)(d(y)) (d = design-time). The side-choosing move may
be simultaneous or sequential. For simplicity, we assume it is simultaneous. The side-
choosing game includes an agreement algorithm that maps x, y, d(x), d(y) into a set of
games to be played where the design-time choices have been mapped into run-time
choices r(x), r(y) so that r(x) 6= r(y). This requires that at most one of the players will
be forced because it might be that d(x) = d(y). A forced player is also called a devil’s
advocate especially when we think of a side-choosing game as a model for debates.

What is important to our theory is that for a claim C we get a table of game results
(winner = x, loser = y, d(x), d(y), r(x), r(y)) for the games played between x and y. We
simplify such a row to (winner = x, loser = y, forced = z), where z is either x, y or 0. We
assume that the Players are 1, 2, 3, If z = 0 none of the players is forced. The reason
why this simplification works is because the only parameters of the game results that
the ranking depends on is who the winner and loser is in a game and if the players’
design and run time side choices differ. It does not depend on the exact choice of sides.

1.1. Motivating Side-Choosing Games (SCGs)
SCG is a new concept that we introduce in this paper. Why is the concept important
and worthy of study? Many real-life situations can be modeled with side-choosing
games. Studying how to fairly evaluate tournaments of side-choosing games is very
important because collusion between the players could distort the outcome. Rather
than looking for collusion detection algorithms we design our system such that a dan-
gerous kind of collusion is impossible. We use an axiomatic approach to ranking the
players and postulate collusion-resistance as an axiom.

We motivate the importance of SCGs by describing applications, users and owners.

— SCG Applications
— Formal Sciences

Formal sciences are disciplines concerned with formal systems, such as logic,
mathematics, statistics, theoretical computer science, information theory, game

EC’15, June 15–19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.

X:3

theory, systems theory, and decision theory. A claim is defined using an interpreted
predicate logic sentence. This is not an exercise in logic as the quantifiers are only
used to define the tasks that the users must perform. The sentence is interpreted
in a structure which might be defined by a complex program.

— Formal Claims based on Simulation Environments
Robotics and biological sciences, etc. fall into this category. The structure in which
the claim is interpreted is the simulation environment.

— SCG Users
Users are problem solvers or learners and they operate directly or indirectly. In di-
rect mode, the users perform the moves themselves, maybe using software. In in-
direct mode, the users produce software that plays the SCG on their behalf. There
is a simple SCG-interface that the software has to follow. Of course, indirect users
must have software development skills.
The indirect mode is of central interest to us because it is a novel approach to develop
software for computational problems using a group of people. The quality control of
the software is automated by running an online or offline tournament to determine
the top-ranked software. The claim under consideration determines what quality
means. Note that the SCG-interface implies that testing is an integral part of the
solution.
Users of SCGs include:
— Students in high schools and universities.

They must understand the concept of a claim. Focus is on dissemination of knowl-
edge through peer teaching and peer evaluation.

— Researchers
Focus is on creation of new knowledge and its peer evaluation. Researchers pro-
pose claim variations.

— Citizen Scientists
They might find innovative constructions that are imperfect. Experts might bene-
fit from those ideas and correct them.

— SCG Owners
Owners define claims. Some users also play the role of owners. Owners don’t need
expertise how to solve the problems.
Owners include:
— Teachers and Professors.
— Research Directors, Heads of Research Programs, Organizations like NSF,

DARPA, ONR etc.
— Program Chairs of conferences and Journal Editors.
— Companies who need a specific computational problem solved for which no off-the-

shelve solution is available.
— Companies who are looking for employees with skills in a specific domain. E.g.,

Facebook organized a competition on kaggle.com and the winner got the Facebook
job.

1.2. Players and Game Results
Let P be the set of all the players involved in the competition. Each game result has
three columns corresponding to the winner, loser and the player forced to choose a side,
if any. To represent a table T of game results we use a unique identifier for each row,
called GRID. This guarantees that T will have no duplicates. Table I represents two
game results where 1 played against 2 and where 1 won although it was forced. The
game result tables can grow to any size as we allow the same players to play again. Of
course, the game history for gr1 and gr2 might be very different.
GR(P) is the set of the all possible game results without the unique identifier GRID.

EC’15, June 15–19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.

X:4

Table I. A Table T of game results

GRID Winner Loser Forced
gr1 1 2 1
gr2 1 2 1

GR(P) contains n · (n − 1) · 3 rows where n is the number of players in P . G(P) is the
set of all possible game results with unique identifiers.

1.3. Examples of Side-Choosing Games
The definition of a side-choosing game given above is abstract and only useful if we
can give several interesting concrete versions.

— Combinatorial Games We choose a combinatorial game [Demaine 2001] and a po-
sition pos. The claim is: the position pos is a winning position.

— Semantic Games We choose a logic which supports semantic games. I.e., each sen-
tence in the logic is mapped to a game between proponent and opponent so that the
claim is true iff the proponent has a winning strategy. The sentences are interpreted
in some structure. Most logics have semantic games. Some prominent examples are
first and higher-order logics and independence-friendly logic [Tulenheimo 2013].
Semantic games are a huge application domain for side-choosing games and we ar-
rived at side-choosing games through the study of semantic games [Kulas and Hin-
tikka 1983].
The connection between proofs and winning strategies is an active topic in logic
[Boyer and Sandu 2012]. One of the attractions of side-choosing games is that you
don’t need a proof for a claim to perform well in the side-choosing game for the claim.
Side-choosing games are more easily accessible than formal proofs.

1.4. Applications of Side-Choosing Games to Existing Systems
Our study of side-choosing games is motivated by their potential to organize problem-
solving competitions and by their successful use in education at Northeastern Uni-
versity. We believe SCGs are a foundation for platforms like TopCoder or Kaggle or
scientific human-computation tools like Fold-It [Cooper et al. 2010].

— Education in Formal Sciences Our favorite way of summarizing learning objec-
tives for a formal science domain is to say that learners must demonstrate the skill
of judging claims in the domain, choosing their side on the claim and then defend-
ing their side choice through game play against other students. The resulting peer-
teaching and peer-grading is very attractive. forced A claim is representing a lab in
which students learn and is chosen in such a way that solving the problem requires
skills that students should have.
Using piazza.com To post claims and to organize the playing of games related to
those claims we used piazza.com. This worked very well, especially when we divided
the Algorithms class in to small groups of three students and kept the games in those
small groups. The undergraduate students solved challenging problems like finding
the worst-case input for the Gale-Shapley algorithm or optimally solving a product
stress testing problem.
Using our own software In software development classes we had the students
develop “avatars” to play the game and we did a full-round-robin tournament evalu-
ation of the avatars. The problem to be solved was a maximum constraint satisfaction
problem.

— Improving Evaluation in Problem-Solving Competitions for Computational
Problems A significant advantage of our approach is that the evaluation of solu-
tions is done by peers and not the competition organizer. This is relevant to systems

EC’15, June 15–19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.

X:5

Fig. 1. Basic concepts

like topcoder.com and various competitions like SAT-solver competitions. The compe-
tition organizer only acts in a role as referee. Instead of static benchmarks, dynamic
benchmarks are developed through game play.
The quality of the solutions produced depends on the skills of the participants who
might not be motivated or not have the knowledge necessary to solve the problem. To
attract strong participants either money or fame has to be given; a common theme in
human computation.

1.5. Organization of the paper
In section 2 we start with a discussion of related work touching on philosophy of sci-
ence, social choice theory, logic, and heuristic rating methods. In section 3 we describe
our table model SCG-tables and related predicates and operations. Our table model is
the foundation for our theory. The central concepts of ranking and collusion-resistance
are introduced in section 4. Section 5 provides the link between ranking function prop-
erties and monotonicity constraints which are used to prove theorems. Our Represen-
tation Theorem is introduced and proved in section 6. Section 7 talks about ramifica-
tions of the representation theorem, including incentive compatibility and the shape of
“good” scoring functions. We discuss how parameters of those scoring functions can be
used to influence the behavior of the players. Section 8 rounds up the paper by intro-
ducing the concept of quasi-perfection which leads to quasi-equilibria. Our Meritocracy
Theorem connects quasi-perfection and being top-ranked.

The appendix contains the definition of side-choosing games and examples of claims.
Figure 1 contains the list of important concepts and their prerequisite dependencies.

2. RELATED WORK
Our concept of a side-choosing game is very broad but has not been formally studied
before. We were influenced by semantic games which have a long history in logic. Fal-
sifiability as promoted by Karl Popper and many others was another strong influence.
A claim is falsifiable if there is an argument which proves the claim to be false. We

EC’15, June 15–19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.

X:6

use a weaker form of falsifiability which we call personalized testability. A claim C for
which participant px is a proponent is personally testable by a participant py if there
is an argument that brings px into a contradiction with respect to C. The argument is
an interactive “debate” (py winning a game against px) but it does not prove that the
claim is false, in general.

[Kulas and Hintikka 1983] defines an important class of binary side-choosing games
called semantic games and relates it to the foundations of logic.

In [Rubinstein 1980], Rubinstein provides an axiomatic treatment of tournament
ranking functions that bears some resemblance to ours. Rubinstein’s treatment was
developed in a primitive framework where “beating functions” are restricted to com-
plete, asymmetric relations. Rubinstein showed that the points system, in which only
the winner is rewarded with a single point is completely characterized by the following
three natural axioms:

— anonymity which means that the ranks are independent of the names of participants,
— positive responsiveness to the winning relation which means that changing the re-

sults of a participant p from a loss to a win, guarantees that p would have a better
rank than all other participants that used to have the same rank as p, and

— Independence of Irrelevant Matches (IIM) which means that the relative ranking of
two participants is independent of those matches in which neither is involved.

Our LFB axiom is, in some sense, at least as strong as Rubinstein’s IIM because, ac-
cording to LFB, the relative rank of some participant px w.r.t. another participant py
cannot be worsened by games that px does not participate in nor can it be improved by
games that py does not participate in.

[Boyer and Sandu 2012] discusses the connection between winning strategies for
semantic games and proofs. A recursive winning strategy for a semantic game of a
sentence is a constructive proof of that sentence. They introduce the notion of CGTS-
truth (computable game-theoretical semantics truth): a sentence φ is CGTS-true on a
recursive model M exactly when there is a computable winning strategy for verifier in
the semantical game played with φ on M .

They focus on the special case of Peano Arithmetic (PA). They investigate the follow-
ing questions

— From proofs to winning strategies Do proofs in PA yield CGTS-truth?
— From winning strategies to proofs Can the CGTS-truth of a sentence be interpreted

as a proof?

Side-choosing games with backward moves are important in the study of those ques-
tions. The backward moves allow for many more winning strategies.

Rating methods can be used to rank tournament participants. There is a vast body
of literature on the topic of heuristic [Beasley 2006] rating methods aiming to estimate
the skill level of participants such as the Elo [Elo 1978] rating method. [Langville
and Meyer 2012] gives a recent comprehensive overview of rating methods used in
sports tournaments. Our work differs from this vast body of literature in two important
aspects. First, our axioms and ranking method are the first to be developed for an
extended framework that we developed specifically to capture some of the peculiarities
of side-choosing game tournaments such as forcing. Second, our work is the first to be
concerned with collusion resistance.

An early version of SCG, then called Scientific Community Game, was published in
[Lieberherr et al. 2010].

This paper is based on Ahmed Abdelmeged’s dissertation [Abdelmeged 2014]. The
dissertation is based on semantic games and does not explicitly define side-choosing
games. However, the proof of the representation theorem does not rely on a specific

EC’15, June 15–19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.

X:7

logic. Therefore, we introduced side-choosing games in this paper to have an appropri-
ate context for formulating and proving the representation theorem. The proofs in this
paper have been simplified through the systematic use of monotonicity constraints.

3. MODEL
During SCGs many confusing events can happen: true claims might be refuted and
false claims might be defended; the same player might be proponent in one game and
opponent in another game; a player might lie about her strength and intentionally
lose a game. In all this noise we would like to find order and look for quasi-perfect
players and quasi equilibria. A quasi-perfect player might not be perfect and a quasi
equilibrium might not be an equilibrium but none of the players can demonstrate this
fact through game play.

3.1. Basic Objects
Our theory is about mapping a set of game results T to ranking relations which reveal
the strongest players. Game results are represented by tables with four columns which
we call SCG-tables: GRID,winner, loser, forced. Each row is of the form (winner =
x, loser = y, forced = z), where z is either x, y ∈ P or 0. We assume that the set of
players P is 1, 2, 3, If none of the players is forced then z = 0. We assume that x 6= y.
GRID stands for game result identifier which is unique for each row.

3.2. Abstraction Barrier
The above rules that the game results must satisfy define an important abstraction
barrier for our theory. The tables which satisfy the above rules are called SCG-tables.
Our theory is about adding and deleting rows to the SCG-tables and how those rows
influence the rankings of players. To keep our paper self-contained we focus on SCGs
with perfect information but the same theory also applies to games with imperfect
information.

The output of the mapping of an SCG-table is a total preorder of the players. A
preorder is a binary relation that is reflexive and transitive. A preorder is total if no
pair of players is incomparable.

3.3. Basic Predicates and Operations
We use the following terminology: There is a design-time decision for
P(roponent)/O(pponent). This is the design time for the winning strategy to demon-
strate that the start position is winning or not. The side choice P says that the
start position is winning; O that it is not winning. There is a run-time decision for
P(roponent)/O(pponent). This is the decision used when the game executes and might
involve forcing at most one participant.

The side-choosing game SCG(G, x, y, dx, dy, rx, ry) is a game between x and y, where
x makes design-time choice dx and y makes design-time choice dy. The run-time
choices are rx and ry. x is forced if rx =!dx and ry = dy. y is forced if rx = dx and
ry =!dy. At most one player is forced. The claim is: in the start position of G the player
in the P role (d∗ = P) has a winning strategy. dx, dy, rx, ry have values in {P,O}. z has
values in {x, y}. !z = x if z = y. !z = y if z = x. !P = O, !O = P.

Next we define a few basic predicates.
∀px ∈ P,∀r ∈ G(P)

participant(px, r) = px is a participant in the game r
win(px, r) = px won the game r
loss(px, r) = px lost the game r

EC’15, June 15–19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.

X:8

forced(px, r) = px is forced to choose a side
¬control(px, r)⇔ ¬participant(px, r) ∨ (loss(px, r) ∧ forced(px, r))

fault(px, r)⇔ loss(px, r) ∧ ¬forced(px, r)

∀px ∈ P,∀T ⊆ G(P)

wfT (px) = the win count of px in T in a forced position

wuT (px) = the win count of px in T in an unforced position

lfT (px) = the loss count of px in T in a forced position

luT (px) = the loss count of px in T in an unforced position

npT (px) = the number of games in T where px was not a participant

The concept of a forced player cuts across our theory and influences the definition of
the concept of collusion-resistance.

4. RANKING
In this section, we discuss ranking the players based on an SCG-table T under the
axiom of collusion-resistance. When collusion-resistance does not hold, there are SCG-
tables T for which a meritorious player is not top-ranked. This will frustrate meritori-
ous players and therefore we enforce the axiom of collusion-resistance which is based
on the concept of control. A player is not in control in a game if she does not participate
or she loses while forced. Note that if a player is forced we cannot blame her when she
loses. Collusion-resistance is formalized by expressing that adding a row where player
px is not in control, will keep the ranking of px with respect to other players py in-
variant. It turns out that collusion-resistance is linked to the concept of fault: a player
makes a fault if she loses while not forced.

Our ranking approach prevents sybil attacks. In an online competition, several
sybils might enter and help others to win thereby preventing the strong players to
win. In the presence of collusion-resistance sybils have no effect on determining the
top-ranked players.

4.1. Ranking Relation
We define a preorder �TU called the weakly better relation ∀T ⊆ G based on the scoring
function U : N×N×N×N→ R. For convenience, we drop the subscript and refer to it
simply as �T .
We want to assign each player a score solely based on the players’ demonstration of
ability. We use 4 statistics, based on wins and losses and whether a player was forced,
to calculate a players’ score. We formally define the ranking relation as,

∀px, py ∈ P,∀T ⊆ G(P)[px �T py ⇔ U(wfT (px), wu
T (px), wf

T (px), lu
T (px)) ≤

U(wfT (py), wu
T (py), wu

T (py), lu
T (py))] (1)

We want the ranking relation to have the following properties defined in terms of table
extensions:

— NNEW: Winning cannot lower your rank:

∀px, py ∈ P,∀T ⊆ G(P),∀r ∈ {r | r ∈ G(P) \ T ∧ win(px, r)}[px �T py ⇒ px �T∪{r} py]

— NPEL: Losing cannot increase your rank:

∀px, py ∈ P,∀T ⊆ G(P),∀r ∈ {r | r ∈ G(P) \ T ∧ loss(py, r)}[px �T py ⇒ px �T∪{r} py]

EC’15, June 15–19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.

X:9

— CR: Games you don’t control don’t affect your rank:

∀px, py ∈ P,∀T ⊆ G(P),∀r ∈ {r | r ∈ G(P) \ T ∧
¬control(px, r)}[px �T py ⇒ px �T∪{r} py]

4.2. Universal Domain
From equation 1, it is clear that for every logically possible game result table T , we
have a valid preorder. This implies that our ranking relation satisfies the Universal
Domain property.

4.3. Anonymity
From equation 1 it is clear that the scoring function ignores the identity of the player in
calculating the score. Hence, the ranking relation �T is unaffected by changing labels
and therefore anonymous.

4.4. Monotonicity of U and Notation
At the heart, NNEW and NPEL are monotonicity conditions. As we score the player
solely based on the players’ wins and losses, NNEW and NPEL imply that the func-
tion U is monotonic. One interesting thing about the parameters of U for a particular
player is that when we add a new game to the existing game result table T , at most
one parameter increments. This allows us to use a notation that mimics the partial
differential operator. The notation will come handy to prove some interesting results.

∂xU ≥ 0 : U is monotonically non-decreasing on the parameter x
∂xU > 0 : U is monotonically increasing on the parameter x

∂xU ≤ 0 : U is monotonically non-increasing on the parameter x
∂xU < 0 : U is monotonically decreasing on the parameter x

∂xU = 0 : U is indifferent on the parameter x

5. PROPERTIES OF RANKING RELATIONS
In this section, we formulate properties in predicate logic and derive their equivalent
monotonicity constraints.

5.1. Collusion Resistance (CR)

CR: ∀px, py ∈ P,∀T ⊆ G(P),∀r ∈ {r | r ∈ G(P) \ T ∧ ¬control(px, r)}[px �T py
⇒ px �T∪{r} py]

Here we have 2 cases, game results where px did not participate and game results
where px lost when forced.For the first case, py may have won or lost in a forced or
unforced position against some third player pz.
Let us consider the case where py wins over pz in a forced position, we have,

U(wfT (px), wu
T (px), lf

T (px), lu
T (px)) ≤ U(wfT (py) + 1, wuT (py), lf

T (py), lu
T (py)) (2)

From equations 1 and 2, we get the monotonicity constraint,

∂wfU ≥ 0 (3)

Let us consider the case where py wins over pz in an unforced position, we have,

U(wfT (px), wu
T (px), lf

T (px), lu
T (px)) ≤ U(wfT (py), wu

T (py) + 1, lfT (py), lu
T (py)) (4)

EC’15, June 15–19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.

X:10

From equations 1 and 4, we get the monotonicity constraint,

∂wuU ≥ 0 (5)

Let us consider the case where py loses over pz in a forced position, we have,

U(wfT (px), wu
T (px), lf

T (px), lu
T (px)) ≤ U(wfT (py), wu

T (py), lf
T (py) + 1, luT (py)) (6)

From equations 1 and 6, we get the monotonicity constraint,

∂lfU ≥ 0 (7)

Let the consider the case where py loses over pz in an unforced position, we have,

U(wfT (px), wu
T (px), lf

T (px), lu
T (px)) ≤ U(wfT (py), wu

T (py), lf
T (py), lu

T (py) + 1) (8)

From equations 1 and 8, we get the monotonicity constraint,

∂luU ≥ 0 (9)

Now we consider game results where px was forced to lose against some third player
pz,

U(wfT (px), wu
T (px), lf

T (px)+1, luT (px)) ≤ U(wfT (py), wu
T (py), lf

T (py), lu
T (py)) (10)

From equations 1 and 10, we get the monotonicity constraint,

∂lfU ≤ 0 (11)

Now, CR can be summarized in terms of monotonicity constraints as,

∂wfU ≥ 0 ∧ ∂wuU ≥ 0 ∧ ∂lfU = 0 ∧ ∂luU ≥ 0 (12)

5.2. Non Negative Effect of Winning (NNEW)

NNEW: ∀px, py ∈ P,∀T ⊆ G(P),∀r ∈ {r | r ∈ G(P) \ T ∧
win(px, r)}[px �T py ⇒ px �T∪{r} py]

Let us consider a game result r where px won against a third player pz. px could have
won either in a forced or unforced position.
Let us consider the case where px wins over pz in a forced position, we have,

U(wfT (px)+1, wuT (px), lf
T (px), lu

T (px)) ≤ U(wfT (py), wu
T (py), lf

T (py), lu
T (py)) (13)

From equations 1 and 13, we get the monotonicity constraint,

∂wfU ≤ 0 (14)

Let us consider the case where px wins over pz in an unforced position, we have:

U(wfT (px), wu
T (px)+1, lfT (px), lu

T (px)) ≤ U(wfT (py), wu
T (py), lf

T (py), lu
T (py)) (15)

From equations 1 and 15, we get the monotonicity constraint,

∂wuU ≤ 0 (16)

Summarizing the monotonicity constraints, we have,

∂wfU ≤ 0 ∧ ∂wuU ≤ 0 (17)

EC’15, June 15–19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.

X:11

5.3. Non Positive Effect of Losing (NPEL)

NPEL: ∀px, py ∈ P,∀T ⊆ G(P),∀r ∈ {r | r ∈ G(P) \ T ∧
loss(py, r)}[px �T py ⇒ px �T∪{r} py]

Let us consider a game result r where py lost against a third player pz. py could have
lost either in a forced or unforced position.
Let us consider the case where py loses over pz in a forced position, we have,

U(wfT (px), wu
T (px), lf

T (px), lu
T (px)) ≤ U(wfT (py), wu

T (py), lf
T (py)+1, luT (py)) (18)

From equations 1 and 18, we get the monotonicity constraint,

∂lfU ≥ 0 (19)

Let us consider the case where py loses over pz in an unforced position, we have,

U(wfT (px), wu
T (px), lf

T (px), lu
T (px)) ≤ U(wfT (py), wu

T (py), lf
T (py), lu

T (py)+1) (20)

From equations 1 and 20, we get the monotonicity constraint,

∂luU ≥ 0 (21)

Summarizing the monotonicity constraints, we have,

∂lfU ≥ 0 ∧ ∂luU ≥ 0 (22)

5.4. Local Fault Based (LFB)
As we want the ranking relation to satisfy all the three properties NNEW, NPEL and
CR, from equations 12, 17 and 22, we get the monotonicity constraints,

∂wfU = 0 ∧ ∂wuU = 0 ∧ ∂lfU = 0 ∧ ∂luU ≥ 0 (23)

This tells us that the scoring function should be monotonically non-decreasing on
faults and indifferent on other parameters. We call the ranking relation that uses a
scoring function that satisfies equation 23 as Local Fault Based (LFB). The monotonic-
ity constraints in equation 23 can be easily reformulated in predicate logic.

LFB:∀px, py ∈ P,∀T ⊆ G(P),∀r ∈ {r | r ∈ G(P) \ T ∧
¬fault(px, r) ∧ ¬fault(py, r)}[px �T py ⇔ px �T∪{r} py]

5.5. Independence of Irrelevant Games (IIG)

IIG: ∀px, py ∈ P,∀T ⊆ G(P),∀r ∈ {r | r ∈ G(P) \ T ∧
¬participant(px, x) ∧ ¬participant(py, x)}[px �T py ⇔ px �T∪{r} py]

This property just means that relative ranking does not depend on the games where
neither px nor py has participated. From the definitions of CR, LFB and IIG, it is simple
to deduce that,

CR⇒ IIG (24)
LFB⇒ IIG (25)

But, the converse is not true.

EC’15, June 15–19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.

X:12

Fig. 2. Visual representation of relationships among the sets of scoring functions

6. REPRESENTATION THEOREM
In mathematics, a representation theorem is a theorem that states that every struc-
ture with certain properties is isomorphic to another structure. We show that every
ranking relation which is NNEW, NPEL and CR is LFB. Therefore there is a sim-
ple way to represent collusion-resistant ranking relations by doing a variant of fault
counting. Let us first summarize the properties using monotonicity constraints

6.1. Summary of Monotonicity Constraints

CR: ∂wfU ≥ 0 ∧ ∂wuU ≥ 0 ∧ ∂lfU = 0 ∧ ∂luU ≥ 0

LFB: ∂wfU = 0 ∧ ∂wuU = 0 ∧ ∂lfU = 0 ∧ ∂luU ≥ 0

NNEW: ∂wfU ≤ 0 ∧ ∂wuU ≤ 0

NPEL: ∂lfU ≥ 0 ∧ ∂luU ≥ 0

6.2. Representation Theorem : NNEW ∧ NPEL ⇒ (CR ⇔ LFB)

It is easy to derive the following relations from the monotonicity constraints summa-
rized above,

LFB⇒ NNEW (26)
LFB⇒ NPEL (27)

LFB⇒ CR (28)
NNEW ∧NPEL ∧ CR⇒ LFB (29)

From equations 28 and 29, we deduce that,
NNEW ∧NPEL⇒ (CR⇔ LFB) (30)

7. RAMIFICATIONS OF THE REPRESENTATION THEOREM
7.1. IIG and Representation theorem
We discuss if non participation as a parameter in the scoring function U would have
any effect on the monotonicity constraints we have derived so far. For that, we have to
derive the monotonicity constraint for IIG.
The number of games px has not participated in is defined as,

npT (px) = |T | − wfT (px)− wuT (px)− lfT (px)− luT (px) (31)
From equations 1 and 31, it is clear that we can calculate npT (px) from |T | and exist-
ing 4 parameters of U . To account for non participation, we can redefine the ranking

EC’15, June 15–19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.

X:13

relation using U : N× N× N× N× N→ R,

∀px, py ∈ P, T ⊆ G(P)[px �T py ⇔ U(wfT (px), wu
T (px), wf

T (px), lu
T (px), |T |) ≤

U(wfT (py), wu
T (py), wu

T (py), lu
T (py), |T |)] (32)

Now let us add a game result r where neither px nor py participate. From the definition
of IIG we have,

U(wfT (px), wu
T (px), lf

T (px), lu
T (px), |T |+ 1) ≤
U(wfT (py), wu

T (py), lf
T (py), lu

T (py), |T |+ 1) (33)

For equations 32 and 33 to hold together, we need that equations 34 and 35 to hold.
First, we focus on px and we need that,

U(wfT (px), wu
T (px), lf

T (px), lu
T (px), |T |+ 1) ≤

U(wfT (px), wu
T (px), lf

T (px), lu
T (px), |T |) (34)

Now, we focus on py and we need that,

U(wfT (py), wu
T (py), lf

T (py), lu
T (py), |T |+ 1) ≥

U(wfT (py), wu
T (py), lf

T (py), lu
T (py), |T |) (35)

This gives us the monotonicity constraints,

∂|T |U ≤ 0 ∧ ∂|T |U ≥ 0 (36)

This is the same as,

∂|T |U = 0 (37)

From equation 37, it is clear that the IIG is the same as the scoring function U being
indifferent to |T |.
From equations 24 and 25, it is clear that when CR holds, our initial formulation of
not choosing |T | as a parameter in U is reasonable. This means that we need not revise
the monotonicity constraints in section 6.1.

7.2. Incentive Compatibility and Disincentivizing Faults
In economics, when a person must rely on others to solve a problem there is the im-
portant constraint of incentive compatibility: we want to make sure that people are
motivated to behave in a manner consistent with the best solution. In our case, they
may be motivated but might not have the skills to find the best solution. Incentive-
compatibility in our case means that the best players are top-ranked. We will then
use the solution of a top-ranked player as the best solution. The concept of “best”
player is captured by quasi-perfection. These incentive-compatibility issues are cov-
ered in sections 8.2 and 8.4 where we prove the Meritocracy Theorem which implies
that collusion-resistance leads to incentive compatibility.

Next we deal with a property, called DIF (DisIncentivizing Faults), which means
that making a fault does not improve one’s rank.

DIF: ∀px, py ∈ P,∀T ⊆ G(P),∀r ∈ {r | r ∈ G(P) \ T ∧
fault(py, r)}[px �T py ⇒ px �T∪{r} py]

EC’15, June 15–19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.

X:14

This is equivalent to incentivising not making faults. Let us first consider the game
where py made a fault with a third player pz. In that case,

U(wfT (px), wu
T (px), lf

T (px), lu
T (px)) ≤

U(wfT (py), wu
T (py), lf

T (py), lu
T (py) + 1) (38)

From equations 1 and 38, we get the monotonicity constraint,

∂luU ≥ 0 (39)

Now, let us consider the game where py made a fault in a game with px. In this case,
there are 2 distinct possibilities. The first is px won the game and was forced, we have

U(wfT (px) + 1, wuT (px), lf
T (px), lu

T (px)) ≤
U(wfT (py), wu

T (py), lf
T (py), lu

T (py) + 1) (40)

From equations 38 and 40, we get the monotonicity constraint,

∂wfU ≤ 0 (41)

Let us consider the case where px won in an unforced position.

U(wfT (px), wu
T (px) + 1, lfT (px), lu

T (px)) ≤ U(wfT (py), wu
T (py), lf

T (py), lu
T (py) + 1)

(42)
From equations 38 and 42, we get the monotonicity constraint,

∂wuU ≤ 0 (43)

Summarizing the monotonicity constraints for DIF, we have,

∂wfU ≤ 0 ∧ ∂wuU ≤ 0 ∧ ∂luU ≥ 0 (44)

From equations 23 and 44, we have that,

LFB⇒ DIF (45)

This confirms formally what we expect intuitively: LFB disincentivizes making faults.
From equations 17 and 44, we have that,

DIF⇒ NNEW (46)

7.3. Example Scoring functions that are LFB
The representation theorem motivates us to explore the set of scoring functions that
are LFB. Here, we list a set of 3 representative examples. It is useful to have families
of LFB ranking functions to choose an appropriate member for a given competition.

7.3.1. Everyone get the same score. The simplest example of a LFB scoring function is
where every player gets the same score.

U(wfT (px), wu
T (px), lf

T (px), lu
T (px)) = 0 (47)

It is easy to see that this scoring function satisfies the following monotonicity con-
straints,

∂wfU = 0 ∧ ∂wuU = 0 ∧ ∂lfU = 0 ∧ ∂luU = 0 (48)

From equations 23 and 48, it is clear that this scoring function is LFB.

EC’15, June 15–19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.

X:15

Table II. A modified Table T of game results for 3 players with
an additional column for the opponent

GRID Winner Loser Forced Opponent
gr1 1 2 2 1
gr2 1 3 0 1

7.3.2. Regular fault counting. Another example would be to count faults.

U(wfT (px), wu
T (px), lf

T (px), lu
T (px)) = luT (px) (49)

This scoring function satisfies the following monotonicity constraints,

∂wfU = 0 ∧ ∂wuU = 0 ∧ ∂lfU = 0 ∧ ∂luU > 0 (50)

From equations 23 and 50, it is clear that this scoring function is LFB.

7.3.3. Weighted fault counting. Now, we explore a more general version of fault counting.
We consider positive weight assignment to fault classes where:

— The winner is a forced opponent, weakness in proponent (α fault): Weight = α.
— The winner is a forced proponent, weakness in opponent (β fault): Weight = β.
— The winner is a non-forced opponent, weakness in proponent (γ fault): Weight = γ
— The winner is a non-forced proponent, weakness in opponent (δ fault): Weight = δ

At this juncture, we need to define a few functions,

∀px ∈ P,∀T ⊆ G(P)[luTα(px) = the number of α faults of px in T]

∀px ∈ P,∀T ⊆ G(P)[luTβ (px) = the number of β faults of px in T]

∀px ∈ P,∀T ⊆ G(P)[luTγ (px) = the number of γ faults of px in T]

∀px ∈ P,∀T ⊆ G(P)[luTδ (px) = the number of δ faults of px in T]

In the case of weighted fault counting, the table T is inadequate as we won’t be able
to decipher the exact type of fault. Another way to put it would be to say that the
simplified game result is inherently lossy. To overcome this, we need to add another
column in the game result table that lists the opponent O (see Table II). Now, for
convenience, we redefine the scoring function as,

U(luTα(px), lu
T
β (px), lu

T
γ (px), lu

T
δ (px)) = α·luTα(px)+β·luTβ (px)+γ·luTγ (px)+δ·luTδ (px) (51)

From equation 51, ∀α, β, γ, δ ∈ R+

∂luαU > 0 ∧ ∂luβ
U > 0 ∧ ∂luγU > 0 ∧ ∂luδ

U > 0 (52)

But,

luT (px) = luTα(px) + luTβ (px) + luTγ (px) + luTδ (px) (53)

From equations 52 and 53, it is clear that,

∂luαU > 0 ∧ ∂luβ
U > 0 ∧ ∂luγU > 0 ∧ ∂luδ

U > 0⇒ ∂luU > 0 (54)

From equation 54, it is clear that weighted fault counting is LFB. Now, we look at what
tuning each of those weights imply.

— A high α encourages forced opponents to try to win. Tests agreement on proponent.
— A high β encourages forced proponents to try to win. Tests agreement on opponent.
— A high γ encourages non-forced opponents to try to win. Tests non-agreement or

agreement on opponent.
— A high δ encourages non-forced proponents to try to win. Tests non-agreement or

agreement on proponent.

EC’15, June 15–19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.

X:16

All four might lead to a better quasi equilibrium (see sections 8 and 8.3).

8. TOP RANKING AND MERITOCRACY
In this section we show a desirable implication of collusion-resistance. We introduce
the concept of quasi-perfect player and show that quasi-perfect players are top-ranked
iff the ranking relation is collusion-resistant. The quasi-perfect players are the players
which have the minimum number of faults among all players. A quasi-perfect player
may defend false claims and refute true claims and make “wrong” side choices. This
differs from a perfect player who always makes the correct side-choices and success-
fully defends her choice.

To talk about top ranking, we need to first define the strictly better relation≺T . With
U : N× N× N× N→ R,

∀px, py ∈ P,∀T ⊆ G(P)[px ≺T py ⇔
U(wfT (px), wu

T (px), wf
T (px), lu

T (px)) <

U(wfT (py), wu
T (py), wu

T (py), lu
T (py))] (55)

8.1. Top Ranking
A player px in a set of players P is said to be top-ranked TRT (px) in a set of game
results T , if there is no player that is strictly better than px. More precisely,

TRT (px) = ∀py ∈ P : ¬(py ≺T px) (56)

8.2. Quasi Perfection
A quasi-perfect player for a set of players is a player who makes the least number of
faults within the set of players. A perfect player always chooses the correct side and
always wins the defense and therefore is quasi-perfect. Such a player makes no faults.

8.3. Quasi-equilibrium
In economics, equilibrium implies a position of rest characterized by absence of change.
Assuming that the ranking relation is LFB, a table T is in quasi-equilibrium if there
are no faults happening which means all wins must be against forced players. This
implies that all players have chosen the same side and all forced players always lose
and all non-forced players always win. A quasi-equilibrium is temporary if there ex-
ists a strategy which creates a fault for one of the players in the quasi-equilibrium. A
quasi-equilibrium is stable if it is not temporary and is simply called an equilibrium.
The games for a claim might go through several quasi-equilibria until the equilibrium
is reached. When all players are perfect they produce an equilibrium. Quasi-equilibria
are partially ordered. eq1 is better than eq2 if there is a strategy which creates a fault
for a player in eq2 but not in eq1. Moving from one quasi-equilibrium to the next re-
quires insight.

Simple claims have only one quasi-equilibrium while complex claims involving opti-
mization might have several quasi-equilibria. Each equilibrium corresponds to a local
optimum.

8.4. Meritocracy Theorem
— CR is necessary: If the ranking relation is not collusion-resistant (CR) but

NNEW∧NPEL, there exists a set of games where a quasi-perfect player is not top-
ranked.

— CR is sufficient: NNEW∧NPEL∧CR imply that all quasi-perfect players are top-
ranked.

EC’15, June 15–19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.

X:17

Table III. A Table T of game results for 3
players

GRID Winner Loser Forced
gr1 1 2 2
gr2 1 3 0
gr3 1 2 2
gr4 2 1 0
gr5 2 3 2
gr6 2 3 0
gr7 3 1 0
gr8 1 3 1

Let us prove the first part of the theorem. First, we write down the monotonicity con-
straints for ¬CR and NNEW∧NPEL. We have,

¬CR: ∂wfU < 0 ∨ ∂wuU < 0 ∨ ∂lfU > 0 ∨ ∂lfU < 0 ∨ ∂luU < 0 (57)
NNEW ∧NPEL: ∂wfU ≤ 0 ∧ ∂wuU ≤ 0 ∧ ∂luU ≥ 0 ∧ ∂lfU ≥ 0 (58)

The equations 57 and 58 give us a clue into exploring a scoring function for our ranking
relation that is ¬CR, but NNEW∧NPEL. One proposal for such a scoring function is,

U(wfT (px), wu
T (px), lf

T (px), lu
T (px)) = −(wfT (px) + wuT (px)) (59)

To motivate the necessity of CR to hold for quasi perfect players to be top ranked, we
consider an example. With the scoring function as specified by equation 59 (which is
basically counting the total number of wins for a particular player), consider the table
III of game results. Here, player 1 is top ranked with the 4 wins and 2 faults. But,
player 2, the quasi perfect player with no faults is not top ranked.

8.4.1. Proof of the Meritocracy Theorem. We need that a quasi perfect player should be
top ranked. Say, px made k faults and other players made at least k faults. We need to
explore the monotonicity conditions for pX to be top ranked. This requires that,
If luT (px) ≤ luT (py),∀py ∈ P \ {px}, we need that,

U(wfT (px), wu
T (px), lf

T (px), lu
T (px)) ≤ U(wfT (py), wu

T (py), lf
T (py), lu

T (py)) (60)

As equation 60 should be true for any choice of the other 3 parameters of U , except
for the constraint on faults, we can conclude that the only monotonicity constraint
is that the scoring function should be non-decreasing on faults. So, the monotonicity
constraint for quasi-perfect players to be top ranked is,

∂wfU = 0 ∧ ∂wuU = 0 ∧ ∂lfU = 0 ∧ ∂luU ≥ 0 (61)

From equations 23 and 61, it is clear that,

Quasi Perfect player being Top Ranked⇔ LFB (62)

From equations 30 (The Representation Theorem) and 62, when NNEW∧NPEL holds,
we have,

Quasi Perfect player being Top Ranked⇔ LFB⇔ CR (63)

From equation 63, we can see that ¬CR implies that Quasi Perfect player might not be
top ranked.

8.4.2. An Important Observation. A small observation we need to make is that
NNEW∧NPEL impose monotonicity on the scoring function U : N×N×N×N→ R. This
justifies our approach of expressing ¬CR in terms of monotonicity constraints. This is

EC’15, June 15–19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.

X:18

important as CR has a universal quantifier (see section 5.1), making ¬CR have an ex-
istential quantifier. So, a possible choice for a ¬CR scoring function is a non monotonic
one, but such a function would not guarantee NNEW∧NPEL.

9. CONCLUSIONS
In this paper we laid the foundations for organizing socio-technical systems for cre-
ating knowledge in Formal Sciences. The foundations are based on a new concept,
called a side-choosing game (SCG), and a theory about mapping game results to player
rankings in the presence of collusion-resistance (CR). CR is a crucial concept which
says that games where you are not in control cannot affect your ranking. Our results
show that in the presence of two non-controversial axioms, CR is equivalent to being
local-fault-based (LFB). Therefore, if ”natural” scoring functions are used, like count-
ing wins or counting wins against non-forced players, there is the danger of collusion
which compromises truth. Collusion-resistance prevents gaming the game in a strong
sense.

What comes next? Our plan is to put SCG-based applications on the web and reap
the benefits of collective intelligence. So far we used SCG-based ideas and tools in de-
signing courses at Northeastern University. We would like to build a tool that can be
used in MOOCs and for algorithm competitions. The implementation of our domain-
specific language for human computation for formal sciences requires several algo-
rithms to be developed. Should those algorithms be challenging, we use human com-
putation with side-choosing games to develop them!

An important area that needs further work is that participants can propose new
claims. We want a modular approach to solving claims. For example, a complex claim
C1 might be reducible to a “simpler” claim C2 so that a solution for C2 implies a solution
for C1. We propose a formal study of claim relations which can themselves be captured
as claims and approached with side-choosing games.

ACKNOWLEDGMENTS

We would like to thank the audiences at the following universities for their valuable feedback. The last au-
thor has given talks in the summer of 2014 at (in chronological order) University of Erlangen-Nuernberg,
Technical University of Darmstadt, ETH Zurich and Harvard University. We thank Reshef Meir for suggest-
ing a flaw in our old definition of quasi-perfect.

We would like to thank Ian and Pam Holland and several Karl Lieberherr’s students for their support
of the Karl Lieberherr Fund at Northeastern University which has supported Ahmed Abdelmeged for the
summer 2013 and Ruiyang Xu for the summer 2014.

We thank Novartis, Switzerland for their support of the early years of this research.

REFERENCES

ABDELMEGED, A. 2014. Organizing computational problem solving communities via
collusion-resistant semantic game tournaments. Ph.D. thesis, Boston, MA, USA.
Advisor-Karl Lieberherr.

BEASLEY, J. 2006. The Mathematics of Games. Dover books on mathematics. Dover
Publications, Incorporated.

BOYER, J. AND SANDU, G. 2012. Between proof and truth. Synthese 187, 3, 821–832.
COOPER, S., TREUILLE, A., BARBERO, J., LEAVER-FAY, A., TUITE, K., KHATIB, F.,

SNYDER, A. C., BEENEN, M., SALESIN, D., BAKER, D., AND POPOVIĆ, Z. 2010.
The challenge of designing scientific discovery games. In Proceedings of the Fifth
International Conference on the Foundations of Digital Games. FDG ’10. ACM, New
York, NY, USA, 40–47.

EC’15, June 15–19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.

X:19

DEMAINE, E. D. 2001. Playing games with algorithms: Algorithmic combinatorial
game theory. In MFCS, J. Sgall, A. Pultr, and P. Kolman, Eds. Lecture Notes in
Computer Science Series, vol. 2136. Springer, 18–32.

ELO, A. 1978. The rating of chessplayers, past and present. Arco Pub.
KULAS, J. AND HINTIKKA, J. 1983. The Game of Language: Studies in Game-

Theoretical Semantics and Its Applications. Synthese Language Library. Springer.
LANGVILLE, A. AND MEYER, C. 2012. Who’s #1?: The Science of Rating and Ranking.

Princeton University Press.
LIEBERHERR, K. J., ABDELMEGED, A., AND CHADWICK, B. 2010. The Specker Chal-

lenge Game for Education and Innovation in Constructive Domains. In Keynote pa-
per at Bionetics 2010, Cambridge, MA, and CCIS Technical Report NU-CCIS-2010-
19. http://www.ccs.neu.edu/home/lieber/evergreen/specker/paper/bionetics-2010.pdf.

RUBINSTEIN, A. 1980. Ranking the participants in a tournament. SIAM Journal on
Applied Mathematics 38, 1, pp. 108–111.

TULENHEIMO, T. 2013. Independence friendly logic. In The Stanford Encyclopedia of
Philosophy Fall 2013 Ed., E. N. Zalta, Ed.

APPENDIX
A. FORMAL DEFINITION OF SCG
A side-choosing game is a triple (G,SC,AA), where G is a two-person, draw-free, com-
binatorial game, SC is a side-choice configuration and AA is an agreement algorithm.
G,SC and AA are defined separately. The important component is the combinatorial
game G; SC and AA offer variation possibilities to define the side-choosing games. We
will use simple instances of SC and AA for our side-choosing games.

A.1. Definition: Combinatorial Game
(1) There are two players. The game is sequential (turn-based) and Perfect-

Information. There are no chance moves or hidden information. (But players may
hide their winning strategies.)

(2) There is a finite set of possible positions of the game. There is a distinguished start
position.

(3) The rules of the game specify, for both players and each position, which moves to
other positions are legal moves.

(4) The game ends when a position is reached from which no moves are possible. A
predicate on the final position determines who has won. There is an absolute win-
ner: the first player to fulfill the winning condition. No ties or draws.

(5) The game ends in a finite number of moves.

A.2. Side-Choice Configuration Definition
The side choices are made by the players but the Side-choice Configuration (SC) de-
fines the sequencing of the design-time decisions. We have two players, x and y, who
make a choice dx and dy for the start position of the combinatorial game G. dx, dy are
elements of {P,O}. If x chooses dx = P then x claims to win the combinatorial game
G from the game’s start position. If x chooses dx = O then x claims to prevent y from
winning G from its start position. The players make the side choices but SC specifies
the configuration. Examples for SC :

— simultaneous
The two players make side choice independently. This is our preferred side-choice
configuration.

— sequential

EC’15, June 15–19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.

X:20

With probability q for x to be the first player. Or we can choose other context-
sensitive mechanisms to select the first player.

A.3. Agreement Algorithm Definition
The agreement algorithm maps two players x, y with their design-time side choices
dx, dy, where dx = dy, into a set of plays between the two players with, for each play,
run-time side choices rx, ry such that at most one player is forced.

— Example Agreement algorithm CAA (Competitive Agreement Algorithm):
Randomly choose z, one of the players x, y and force z.
— Play SCG(G, x, y, dz, d!z, !dz, d!z); z is forced
— Play SCG(G, x, y, dz, d!z, dz, !d!z); !z is forced
Motivation for CAA: For some claims it is a disadvantage to have to move first be-
cause you give away a secret. Therefore, we choose the forced player randomly to
balance the potential disadvantage. We play two games to give each player a chance
to test the other. This is our preferred agreement algorithm.

— Alternative Example for Agreement Algorithm
CAA-1/2 only plays one game choosing the forced player randomly. CAA-1/2 (Com-
petitive Agreement Algorithm 1/2): Randomly choose z, one of the players x, y and
force z.
— Play SCG(G, x, y, dz, d!z, !dz, d!z); z is forced

A.4. Example Claims
We provide three example claims to illustrate how side-choosing games work.

A.4.1. Product Stress Testing. Received February 2015; revised Month Year; accepted Month Year

EC’15, June 15–19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.

