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We solve the problem of collusion in massive online tournaments (of formal scientific communities) which,
surprisingly, has a simple yet rather counterintuitive solution. The solution requires that we collect the
participants’ side-choices of whether they want to be proponent or opponent of a given claim, leading to the
concept of a forced player or a devil’s advocate. In the presence of side-choice and forced players, we have suc-
ceeded in finding a broad class of collusion-resistant and incentive-compatible mechanisms for tournaments.
We model the ranking of participants using three axioms NNEW (Non-Negative Effect for Winning), NPEL
(Non-Positive Effect for Losing) and the crucial axiom called collusion-resistance (CR). We prove that any
ranking function satisfying the three axioms must be based on a special kind of loss, called a fault. Those
faults provide an elegant implementation of CR. We are used to building meritocracy based on winning.
But in the world of side-choosing games, surprisingly, the standard approach does not work in general for
any tournament. There is a simple alternative and we have two theorems to prove it: The Representation
Theorem and the Meritocracy Theorem. Version 2/9/2015.

1. INTRODUCTION
How do we create knowledge? We use the language of side-choosing games to instruct
humans about which knowledge needs to be created, i.e., which problem needs solving.
The language of side-choosing games becomes the domain-specific language for the
human computation system for formal sciences.

What is unique about our approach to create knowledge? To support a claim, a game
is played. Playing a game only involves cleverly assigning values to variables and not
knowledge about a formal proof system to support the claim. The side-choosing games
support a low key approach to defending a claim and are suitable for many skill levels.

We study how to map side-choosing game results into ranking relations between
players with guaranteed and desirable properties. We borrow ideas from social choice
theory instead of using heuristics. Our theory informs the design of socio-technical
systems for problem solving and teaching.

A strong player is concerned about being over-ruled by colluding players. Therefore,
strong players would like that only games in which they are in control affect their
rankings. This is an informal definition of the collusion problem.

Our main contributions are (1) a simple solution of the collusion problem (2) the con-
cept of a side-choosing game with an illustration of its usefulness, (3) a representation
theorem for an axiomatic treatment of ranking relations for side-choosing games, and
(4) a meritocracy theorem showing that our mechanism is incentive-compatible, i.e.,
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quasi-perfect players will be top-ranked iff the critical property of collusion-resistance
holds.

In this theory paper we discuss and analyze the design space for a socio-technical
system called SCG (for Side-Choosing Game or Scientific Community Game) which
manages the creation and dissemination of formal knowledge. Our motivations for
designing such a system are both economical benefit (social welfare created in the
form of practical solutions by goal-oriented players who want to win) and a positive
experience for the participating players.

Side-choosing games (SCGs) have the following advantages: (1) distributed evalua-
tion of players without a central authority. The players receive targeted, objective feed-
back from their peers. SCGs provide an educational system for checking the mastery
of skills. There is low overhead for the “administrator” who organizes a competition
for a given claim. (2) collusion resistance: It is impossible for players to collude and
make a skilled or even perfect player lose without justification. (3) The overhead of
learning SCGs is amortized over a large number of applications. (4) Low entry barrier:
Playing the dialog game involves cleverly assigning values to variables. It does not re-
quire knowledge about a proof system and the skill of providing formal proofs. Clever
ideas are demonstrated by practice: systematically defending the chosen side. (5) They
are objective: the result depends on how well the participants solve the computational
problems underlying the claim.

There are already SCG-like systems in place, e.g., TopCoder, Kaggle, SAT competi-
tions or conferences and journals about formal sciences.

A side-choosing game is about a claim C which has an associated two-player, win-
lose game Game(C) between a proponent and an opponent of C such that a win of the
proponent is an indication that C is true and a win of the opponent is an indication
that C is false. Game(C) does not allow for draws. If a proponent of C consistently wins
against opponents, the proponent is said to have a winning strategy for C.

The first move in a side-choosing game is to choose a side for C: proponent or oppo-
nent. Player x(y) chooses side d(x)(d(y)) (d = design-time for winning strategy). The
side-choosing move may be simultaneous or sequential. For simplicity, we assume it
is simultaneous. The side-choosing game includes an agreement algorithm that maps
x, y, d(x), d(y) into a set of games to be played where the design-time choices have been
mapped into run-time choices r(x), r(y) so that r(x) 6= r(y). Run-time refers to the time
when the game is played. This requires that at most one of the players will be forced
because it might be that d(x) = d(y). A forced player is also called a devil’s advocate
especially when we think of a side-choosing game as a model for debates.

What is important to our theory is that for a claim C we get a table of game results
(winner = x, loser = y, d(x), d(y), r(x), r(y)) for the games played between x and y. We
simplify such a row to (winner = x, loser = y, forced = z), where z is either x, y or 0. We
assume that the Players are 1, 2, 3, .... If z = 0 none of the players is forced. The reason
why this simplification works is because the only parameters of the game results that
the ranking depends on is who the winner and loser is in a game and if the players’
design and run time side choices differ. It does not depend on the exact choice of sides.

1.1. Motivating Side-Choosing Games (SCGs)
SCG is a new concept that we introduce in this paper. Why is the concept important
and worthy of study? Many real-life situations can be modeled with side-choosing
games. Studying how to fairly evaluate tournaments of side-choosing games is very
important because collusion between the players could distort the outcome. Rather
than looking for collusion detection algorithms we design our system such that a dan-
gerous kind of collusion is impossible. We use an axiomatic approach to ranking the
players and postulate collusion-resistance as an axiom.
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Table I. A Table T of game results

GRID Winner Loser Forced
gr1 1 2 1
gr2 1 2 1

We motivate the importance of SCGs by describing applications, users and owners.

— SCG Applications.
— Formal Sciences Formal sciences are disciplines concerned with formal systems,

such as logic, mathematics, statistics, theoretical computer science, information
theory, game theory, systems theory, and decision theory. A claim is defined us-
ing an interpreted predicate logic sentence. This is not an exercise in logic as the
quantifiers are only used to define the tasks that the users must perform. The sen-
tence is interpreted in a structure which might be defined by a complex program
encoding the functionality best executed by computers.

— Formal Claims based on Simulation Environments Robotics and biological
sciences, etc. fall into this category. The structure in which the claim is interpreted
is the simulation environment.

— SCG Users. Users are problem solvers or learners and they operate directly or indi-
rectly. In direct mode, the users perform the moves themselves, maybe using soft-
ware. In indirect mode, the users produce software that plays the SCG on their
behalf. There is a simple SCG-interface that the software has to follow. Of course,
indirect users must have software development skills.
The indirect mode is of central interest to us because it is a novel approach to develop
software for computational problems using a group of people. The quality control of
the software is automated by running an online or offline tournament to determine
the top-ranked software. The claim under consideration determines what quality
means. Note that the SCG-interface implies that testing is an integral part of the
solution.
Users of SCGs include:
— Students in high schools and universities. They must understand the concept

of a claim. Focus is on dissemination of knowledge through peer teaching and peer
evaluation.

— Researchers. Focus is on creation of new knowledge and its peer evaluation. Re-
searchers propose claim variations.

— Citizen Scientists. They might find innovative constructions that are imperfect.
Experts might benefit from those ideas and correct them.

— SCG Owners.
Owners define claims. Some users also play the role of owners. Owners don’t need
expertise how to solve the problems.
Owners include: (1) Teachers and Professors. (2) Research Directors, Heads of Re-
search Programs, Organizations like NSF, DARPA, ONR etc. (3) Program Chairs of
conferences and Journal Editors. (4) Companies who need a specific computational
problem solved for which no off-the-shelve solution is available. (5) Companies who
are looking for employees with skills in a specific domain. E.g., Facebook organized a
competition on kaggle.com and the winner got a Facebook job.

1.2. Players and Game Results
Let P be the set of all the players involved in the competition. Each game result has
three columns corresponding to the winner, loser and the player forced to choose a side,
if any. To represent a table T of game results we use a unique identifier for each row,
called GRID (Game Result ID). This guarantees that T will have no duplicates. Table
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I represents two game results where 1 played against 2 and where 1 won although it
was forced. The game result tables can grow to any size as we allow the same players
to play again. Of course, the game history for gr1 and gr2 might be very different.
GR(P ) is the set of the all possible game results without the unique identifier GRID.
GR(P ) contains n · (n − 1) · 3 rows where n is the number of players in P . G(P ) is the
set of all possible game results with unique identifiers.

1.3. Examples of Side-Choosing Games
The definition of a side-choosing game given above is abstract and only useful if we
can give several interesting concrete versions.

— Combinatorial Games We choose a combinatorial game [Demaine 2001] and a po-
sition pos. The claim is: the position pos is a winning position.

— Semantic Games We choose a logic which supports semantic games. I.e., each sen-
tence in the logic is mapped to a game between proponent and opponent so that the
claim is true iff the proponent has a winning strategy. The sentences are interpreted
in some structure. Most logics have semantic games. Some prominent examples are
first and higher-order logics and independence-friendly logic [Tulenheimo 2013].
Semantic games are a huge application domain for side-choosing games and we ar-
rived at side-choosing games through the study of semantic games, also called “out-
door” games by Hintikka because of their simplicity [Kulas and Hintikka 1983].
The connection between proofs and winning strategies is an active topic in logic
[Boyer and Sandu 2012]. One of the attractions of side-choosing games is that you
don’t need a proof for a claim to perform well in the side-choosing game for the claim.
We provide examples of semantic-game-based claims online1.

1.4. Applications of Side-Choosing Games to Existing Systems
Our study of side-choosing games is motivated by their potential to organize problem-
solving competitions and by their successful use in CS education at Northeastern Uni-
versity. We believe SCGs are a foundation for platforms like TopCoder or Kaggle or for
scientific human-computation tools like Foldit [Cooper et al. 2010].

— Education in Formal Sciences. Our favorite way of summarizing learning objec-
tives for a formal science domain is to say that learners must demonstrate the skill
of judging claims in the domain, choosing their side on the claim and then defend-
ing their side choice through game play against other students. The resulting peer-
teaching and peer-grading is very attractive. A claim is representing a lab in which
students learn and is chosen in such a way that solving the problem requires skills
that students should have.
— Using piazza.com. To post claims and to organize the playing of games related

to those claims we used piazza.com. This worked very well, especially when we di-
vided the Algorithms class into small groups of three students and kept the games
in those small groups. The undergraduate students solved challenging problems
like finding the worst-case input for the Gale-Shapley algorithm or optimally solv-
ing a product stress testing problem.

— Using our own software. In software development classes we had the students
develop “avatars” to play the game and we did a full-round-robin tournament eval-
uation of the avatars. The problem to be solved was a maximum constraint satis-
faction problem.

— Improving Evaluation in Problem-Solving Competitions for Computational
Problems. A significant advantage of our approach is that the evaluation of solu-

1http://www.ccs.neu.edu/home/lieber/Claims/
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Fig. 1. Basic concepts

tions is done by peers and not the competition organizer. This is relevant to systems
like topcoder.com and various competitions like SAT-solver competitions. The compe-
tition organizer only acts in a role as referee. Instead of static benchmarks, dynamic
benchmarks are developed through game play.
The quality of the solutions produced depends on the skills of the participants who
might not be motivated or not have the knowledge necessary to solve the problem. To
attract strong participants either money or fame has to be given; a common theme in
human computation.

1.5. Organization of the paper
In section 2 we start with a discussion of related work touching on philosophy of sci-
ence, social choice theory, logic, and heuristic rating methods. In section 3 we describe
our table model SCG-tables and related predicates and operations. Our table model is
the foundation for our theory. The central concepts of ranking and collusion-resistance
are introduced in section 4. Section 5 provides the link between ranking function prop-
erties and monotonicity constraints which are used to prove theorems. Our Represen-
tation Theorem is introduced and proved in section 6. Section 7 talks about ramifica-
tions of the representation theorem, including incentive compatibility and the shape
of “good” scoring functions. We discuss how parameters of those scoring functions can
be used to influence the behavior of the players. Section 8 rounds up the paper by
introducing the concept of quasi-perfection which leads to quasi-equilibria2. Our Mer-
itocracy Theorem connects quasi-perfection and being top-ranked.

The appendix contains the definition of side-choosing games and examples of claims.
Figure 1 contains the list of important concepts and their prerequisite dependencies.

2Our notion of equilibrium is non-standard. In a quasi-equilibrium players have a strong incentive to change
their behavior if they can push the others into faults!
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2. RELATED WORK
Our concept of a side-choosing game is very broad but has not been formally studied
before. We were influenced by semantic games which have a long history in logic. Fal-
sifiability as promoted by Karl Popper and many others was another strong influence.
A claim is falsifiable if there is an argument which proves the claim to be false. We
use a weaker form of falsifiability which we call personalized testability. A claim C for
which participant px is a proponent is personally testable by a participant py if there
is an argument that brings px into a contradiction with respect to C. The argument is
an interactive “debate” (py winning a game against px) but it does not prove that the
claim is false, in general.

[Kulas and Hintikka 1983] defines an important class of binary side-choosing games
called semantic games and relates it to the foundations of logic.

In [Rubinstein 1980], Rubinstein provides an axiomatic treatment of tournament
ranking functions that bears some resemblance to ours. Rubinstein’s treatment was
developed in a primitive framework where “beating functions” are restricted to com-
plete, asymmetric relations. Rubinstein showed that the points system, in which only
the winner is rewarded with a single point is completely characterized by the following
three natural axioms:

— anonymity which means that the ranks are independent of the names of participants,
— positive responsiveness to the winning relation which means that changing the re-

sults of a participant p from a loss to a win, guarantees that p would have a better
rank than all other participants that used to have the same rank as p, and

— Independence of Irrelevant Matches (IIM) which means that the relative ranking of
two participants is independent of those matches in which neither is involved.

Our LFB axiom is, in some sense, at least as strong as Rubinstein’s IIM because, ac-
cording to LFB, the relative rank of some participant px w.r.t. another participant py
cannot be worsened by games that px does not participate in nor can it be improved by
games that py does not participate in.

[Boyer and Sandu 2012] discusses the connection between winning strategies for
semantic games and proofs. A recursive winning strategy for a semantic game of a
sentence is a constructive proof of that sentence. They introduce the notion of CGTS-
truth (computable game-theoretical semantics truth): a sentence φ is CGTS-true on a
recursive model M exactly when there is a computable winning strategy for verifier in
the semantical game played with φ on M .

They focus on the special case of Peano Arithmetic (PA). They investigate the follow-
ing questions

— From proofs to winning strategies Do proofs in PA yield CGTS-truth?
— From winning strategies to proofs Can the CGTS-truth of a sentence be interpreted

as a proof?

Side-choosing games with backward moves are important in the study of those ques-
tions. The backward moves allow for many more winning strategies.

Rating methods can be used to rank tournament participants. There is a vast body
of literature on the topic of heuristic [Beasley 2006] rating methods aiming to estimate
the skill level of participants such as the Elo [Elo 1978] rating method. [Langville
and Meyer 2012] gives a recent comprehensive overview of rating methods used in
sports tournaments. Our work differs from this vast body of literature in two important
aspects. First, our axioms and ranking method are the first to be developed for an
extended framework that we developed specifically to capture some of the peculiarities
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of side-choosing game tournaments such as forcing. Second, our work is the first to be
concerned with collusion resistance.

An early version of SCG, then called Scientific Community Game, was published in
[Lieberherr et al. 2010].

[Simpson 2014] provides a comprehensive overview of techniques to “Combined De-
cision Making with Multiple Agents”.Our work differs by working with multiple argu-
ing or debating agents who have to defend their decisions. The concept collusion is not
mentioned in [Simpson 2014] while it is central to our analysis.

This paper is based on Ahmed Abdelmeged’s dissertation [Abdelmeged 2014]. The
dissertation is based on semantic games and does not explicitly define side-choosing
games. However, the proof of the representation theorem does not rely on a specific
logic. Therefore, we introduced side-choosing games in this paper to have an appropri-
ate context for formulating and proving the representation theorem. The proofs in this
paper have been simplified through the systematic use of monotonicity constraints.

3. MODEL
During SCGs many confusing events can happen: true claims might be refuted and
false claims might be defended; the same player might be proponent in one game and
opponent in another game; a player might lie about her strength and intentionally
lose a game. In all this noise we would like to find order and look for quasi-perfect
players and quasi-equilibria. A quasi-perfect player might not be perfect and a quasi-
equilibrium might not be an equilibrium but none of the players can demonstrate this
fact through game play.

3.1. Basic Objects
Our theory is about mapping a set of game results T to ranking relations which reveal
the strongest players. Game results are represented by tables with four columns which
we call SCG-tables: GRID,winner, loser, forced. Each row is of the form (winner =
x, loser = y, forced = z), where z is either x, y ∈ P or 0. We assume that the set of
players P is 1, 2, 3, .... If none of the players is forced then z = 0. We assume that x 6= y.
GRID stands for game result identifier which is unique for each row.

3.2. Abstraction Barrier
The above rules that the game results must satisfy define an important abstraction
barrier for our theory. Our theory is about adding and deleting rows to the SCG-tables
and how those rows influence the rankings of players. SCG-tables may be generated
by the SCGs defined in the appendix or by any other mechanism. That is the reason
why the formal definition of side-choosing games is in the appendix.

The output of the mapping of an SCG-table is a total preorder of the players. A
preorder is a binary relation that is reflexive and transitive. A preorder is total if no
pair of players is incomparable.

3.3. Basic Predicates and Operations
We use the following terminology: There is a design-time decision for
P(roponent)/O(pponent). This is the design time for the winning strategy to demon-
strate that the start position is winning or not. The side choice P says that the
start position is winning; O that it is not winning. There is a run-time decision for
P(roponent)/O(pponent). This is the decision used when the game executes and might
involve forcing at most one participant.

The side-choosing game SCG(G, x, y, dx, dy, rx, ry) is a game between x and y, where
x makes design-time choice dx and y makes design-time choice dy. The run-time
choices are rx and ry. x is forced if rx =!dx and ry = dy. y is forced if rx = dx and
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ry =!dy. At most one player is forced. The claim is: in the start position of G the player
in the P role (d∗ = P ) has a winning strategy. dx, dy, rx, ry have values in {P,O}. z has
values in {x, y}. !z = x if z = y. !z = y if z = x. !P = O, !O = P.

Next we define a few basic predicates.
∀px ∈ P,∀r ∈ G(P )

participant(px, r) = px is a participant in the game r
win(px, r) = px won the game r
loss(px, r) = px lost the game r

forced(px, r) = px is forced to choose a side
¬control(px, r)⇔ ¬participant(px, r) ∨ (loss(px, r) ∧ forced(px, r))

fault(px, r)⇔ loss(px, r) ∧ ¬forced(px, r)
∀px ∈ P,∀T ⊆ G(P )

wfT (px) = the win count of px in T in a forced position

wuT (px) = the win count of px in T in an unforced position

lfT (px) = the loss count of px in T in a forced position

luT (px) = the loss count of px in T in an unforced position

npT (px) = the number of games in T where px was not a participant

The concept of a forced player cuts across our theory and influences the definition of
the concept of collusion-resistance.

4. RANKING
We discuss ranking the players based on an SCG-table T under the axiom of collusion-
resistance. When collusion-resistance does not hold, there are SCG-tables T for which
a meritorious player is not top-ranked. This will frustrate meritorious players and
therefore we enforce the axiom of collusion-resistance which is based on the concept of
control. A player is not in control in a game if she does not participate or she loses while
forced. Note that if a player is forced we cannot blame her when she loses. Collusion-
resistance is formalized by expressing that adding a row where player px is not in
control, will keep the ranking of px with respect to other players py invariant. It turns
out that collusion-resistance is linked to the concept of fault: a player makes a fault if
she loses while not forced.

Our ranking approach prevents sybil attacks. In an online competition, several
sybils might enter and help others to win thereby preventing the strong players to
win. In the presence of collusion-resistance sybils have no effect on determining the
top-ranked players.

4.1. Ranking Relation
We define a preorder �TU called the weakly better relation ∀T ⊆ G based on the scoring
function U : N×N×N×N→ R. For convenience, we drop the subscript and refer to it
simply as �T .
We want to assign each player a score solely based on the players’ demonstration of
ability. We use 4 statistics, based on wins and losses and whether a player was forced,
to calculate a players’ score. We formally define the ranking relation as,

∀px, py ∈ P,∀T ⊆ G(P )[ px �T py ⇔ U(wfT (px), wu
T (px), wf

T (px), lu
T (px)) ≤

U(wfT (py), wu
T (py), wu

T (py), lu
T (py)) ] (1)
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We want the ranking relation to have the following properties defined in terms of table
extensions:

— NNEW: Winning cannot lower your rank:

∀px, py ∈ P,∀T ⊆ G(P ),∀r ∈ {r | r ∈ G(P ) \ T ∧ win(px, r)}[ px �T py ⇒ px �T∪{r} py ]

— NPEL: Losing cannot increase your rank:

∀px, py ∈ P,∀T ⊆ G(P ),∀r ∈ {r | r ∈ G(P ) \ T ∧ loss(py, r)}[ px �T py ⇒ px �T∪{r} py ]

— CR: Games you don’t control don’t affect your rank:

∀px, py ∈ P,∀T ⊆ G(P ),∀r ∈ {r | r ∈ G(P ) \ T ∧
¬control(px, r)}[ px �T py ⇒ px �T∪{r} py ]

4.2. Universal Domain
From equation 1, it is clear that for every logically possible game result table T , we
have a valid preorder. This implies that our ranking relation satisfies the Universal
Domain property.

4.3. Anonymity
From equation 1 it is clear that the scoring function ignores the identity of the player in
calculating the score. Hence, the ranking relation �T is unaffected by changing labels
and therefore anonymous.

4.4. Monotonicity of U and Notation
As we score a player solely based on the player’s wins and losses, NNEW and NPEL
imply that the function U is monotonic. One interesting property of the parameters
of U for a particular player is that when we add a new game to the existing game
result table T , at most one parameter increments. This allows us to use a notation
that mimics the partial differential operator which simplifies the proofs in the original
dissertation [Abdelmeged 2014].

∂xU ≥ 0 : U is monotonically non-decreasing on the parameter x
∂xU > 0 : U is monotonically increasing on the parameter x

∂xU ≤ 0 : U is monotonically non-increasing on the parameter x
∂xU < 0 : U is monotonically decreasing on the parameter x

∂xU = 0 : U is indifferent on the parameter x

5. PROPERTIES OF RANKING RELATIONS
In this section, we formulate properties in predicate logic and derive their equivalent
monotonicity constraints.

5.1. Collusion Resistance (CR)

CR: ∀px, py ∈ P,∀T ⊆ G(P ),∀r ∈ {r | r ∈ G(P ) \ T ∧ ¬control(px, r)}[ px �T py
⇒ px �T∪{r} py ]

Here we have 2 cases: game results where px did not participate and game results
where px lost when forced. For the first case, py may have won or lost in a forced or
unforced position against some third player pz.
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Let us consider the case where py wins over pz in a forced position, we have,

U(wfT (px), wu
T (px), lf

T (px), lu
T (px)) ≤ U(wfT (py) + 1, wuT (py), lf

T (py), lu
T (py)) (2)

From equations 1 and 2, we get the monotonicity constraint,

∂wfU ≥ 0 (3)

Let us consider the case where py wins over pz in an unforced position, we have,

U(wfT (px), wu
T (px), lf

T (px), lu
T (px)) ≤ U(wfT (py), wu

T (py) + 1, lfT (py), lu
T (py)) (4)

From equations 1 and 4, we get the monotonicity constraint,

∂wuU ≥ 0 (5)

Using a similar argument, for the case where py loses over pz in a forced position, we
have

∂lfU ≥ 0 (6)

For the case where py loses over pz in an unforced position, we have

∂luU ≥ 0 (7)

Now we consider game results where px was forced to lose against some third player
pz,

U(wfT (px), wu
T (px), lf

T (px) + 1, luT (px)) ≤ U(wfT (py), wu
T (py), lf

T (py), lu
T (py)) (8)

From equations 1 and 8, we get the monotonicity constraint,

∂lfU ≤ 0 (9)

Now, CR can be summarized in terms of monotonicity constraints as,

∂wfU ≥ 0 ∧ ∂wuU ≥ 0 ∧ ∂lfU = 0 ∧ ∂luU ≥ 0 (10)

5.2. Non Negative Effect of Winning (NNEW)

NNEW: ∀px, py ∈ P,∀T ⊆ G(P ),∀r ∈ {r | r ∈ G(P ) \ T ∧
win(px, r)}[ px �T py ⇒ px �T∪{r} py ]

Let us consider a game result r where px won against a third player pz. px could have
won either in a forced or unforced position.
Let us consider the case where px wins over pz in a forced position, we have,

U(wfT (px)+1, wuT (px), lf
T (px), lu

T (px)) ≤ U(wfT (py), wu
T (py), lf

T (py), lu
T (py)) (11)

From equations 1 and 11, we get the monotonicity constraint,

∂wfU ≤ 0 (12)

For the case where px wins over pz in an unforced position, we have

∂wuU ≤ 0 (13)

Summarizing the monotonicity constraints, we have,

∂wfU ≤ 0 ∧ ∂wuU ≤ 0 (14)
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5.3. Non Positive Effect of Losing (NPEL)

NPEL: ∀px, py ∈ P,∀T ⊆ G(P ),∀r ∈ {r | r ∈ G(P ) \ T ∧
loss(py, r)}[ px �T py ⇒ px �T∪{r} py ]

Let us consider a game result r where py lost against a third player pz. py could have
lost either in a forced or unforced position.
Let us consider the case where py loses over pz in a forced position, we have,

U(wfT (px), wu
T (px), lf

T (px), lu
T (px)) ≤ U(wfT (py), wu

T (py), lf
T (py)+1, luT (py)) (15)

From equations 1 and 15, we get the monotonicity constraint,

∂lfU ≥ 0 (16)

For the case where py loses over pz in an unforced position, we have

∂luU ≥ 0 (17)

Summarizing the monotonicity constraints, we have,

∂lfU ≥ 0 ∧ ∂luU ≥ 0 (18)

5.4. Local Fault Based (LFB)
As we want the ranking relation to satisfy all the three properties NNEW, NPEL and
CR, from equations 10, 14 and 18, we get the monotonicity constraints,

∂wfU = 0 ∧ ∂wuU = 0 ∧ ∂lfU = 0 ∧ ∂luU ≥ 0 (19)

This tells us that the scoring function should be monotonically non-decreasing on
faults and indifferent on other parameters. We call the ranking relation that uses a
scoring function that satisfies equation 19 as Local Fault Based (LFB). The monotonic-
ity constraints in equation 19 can be easily reformulated in predicate logic.

LFB: ∀px, py ∈ P,∀T ⊆ G(P ),∀r ∈ {r | r ∈ G(P ) \ T ∧
¬fault(px, r) ∧ ¬fault(py, r)}[ px �T py ⇔ px �T∪{r} py ]

5.5. Independence of Irrelevant Games (IIG)

IIG: ∀px, py ∈ P,∀T ⊆ G(P ),∀r ∈ {r | r ∈ G(P ) \ T ∧
¬participant(px, x) ∧ ¬participant(py, x)}[ px �T py ⇔ px �T∪{r} py ]

This property just means that relative ranking does not depend on the games where
neither px nor py has participated. From the definitions of CR, LFB and IIG, it is simple
to deduce that,

CR⇒ IIG (20)
LFB⇒ IIG (21)

But, both converses are not true.

6. REPRESENTATION THEOREM
In mathematics, a representation theorem is a theorem that states that every struc-
ture with certain properties is isomorphic to another structure. We show that every
ranking relation which is NNEW, NPEL and CR is LFB. Therefore there is a sim-
ple way to represent collusion-resistant ranking relations by doing a variant of fault
counting. See [Abdelmeged 2014] for an alternate proof.
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Fig. 2. Visual representation of relationships among the sets of ranking relations

6.1. Representation Theorem

NNEW ∧NPEL⇒ (CR⇔ LFB) (22)

Proof: It is easy to derive the following properties from the monotonicity constraints
given above (constraints 10, 14, 18, and 19)

LFB⇒ NNEW,LFB⇒ NPEL (23)
LFB⇒ CR,NNEW ∧NPEL ∧ CR⇒ LFB (24)

from which we deduce the Representation Theorem.

7. RAMIFICATIONS OF THE REPRESENTATION THEOREM
7.1. IIG and Representation theorem
We discuss if non participation as a parameter in the scoring function U would have
any effect on the monotonicity constraints we have derived so far. For that, we have to
derive the monotonicity constraint for IIG.
The number of games px has not participated in is defined as,

npT (px) = |T | − wfT (px)− wuT (px)− lfT (px)− luT (px) (25)

From equations 1 and 25, it is clear that we can calculate npT (px) from |T | and the ex-
isting 4 parameters of U . To account for non participation, we can redefine the ranking
relation using U : N× N× N× N× N→ R,

∀px, py ∈ P, T ⊆ G(P )[ px �T py ⇔ U(wfT (px), wu
T (px), wf

T (px), lu
T (px), |T |) ≤

U(wfT (py), wu
T (py), wu

T (py), lu
T (py), |T |) ] (26)

Now let us add a game result r where neither px nor py participate. From the definition
of IIG we have,

U(wfT (px), wu
T (px), lf

T (px), lu
T (px), |T |+ 1) ≤
U(wfT (py), wu

T (py), lf
T (py), lu

T (py), |T |+ 1) (27)

For equations 26 and 27 to hold together, we need that equations 28 and 29 hold. First,
we focus on px and we need that,

U(wfT (px), wu
T (px), lf

T (px), lu
T (px), |T |+ 1) ≤

U(wfT (px), wu
T (px), lf

T (px), lu
T (px), |T |) (28)
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Now, we focus on py and we need that,

U(wfT (py), wu
T (py), lf

T (py), lu
T (py), |T |+ 1) ≥

U(wfT (py), wu
T (py), lf

T (py), lu
T (py), |T |) (29)

This gives us the monotonicity constraints,

∂|T |U ≤ 0 ∧ ∂|T |U ≥ 0 (30)

This is the same as,

∂|T |U = 0 (31)

From equation 31, it is clear that the IIG is the same as the scoring function U being
indifferent to |T |.
From equations 20 and 21, it is clear that when CR holds, our initial formulation of
not choosing |T | as a parameter in U is reasonable. This means that we need not revise
the monotonicity constraints.

7.2. Incentive Compatibility and Disincentivizing Faults
In economics, when a person must rely on others to solve a problem there is the im-
portant constraint of incentive compatibility: we want to make sure that people are
motivated to behave in a manner consistent with the best solution. In our case, they
may be motivated but might not have the skills to find the best solution. Incentive-
compatibility in our case means that the best players are top-ranked. We will then
use the solution of a top-ranked player as the best solution. The concept of “best”
player is captured by quasi-perfection. These incentive-compatibility issues are cov-
ered in sections 8.2 and 8.4 where we prove the Meritocracy Theorem which implies
that collusion-resistance leads to incentive compatibility.

Next we deal with a property, called DIF (DisIncentivizing Faults), which means
that making a fault does not improve one’s rank.

DIF: ∀px, py ∈ P,∀T ⊆ G(P ),∀r ∈ {r | r ∈ G(P ) \ T ∧
fault(py, r)}[ px �T py ⇒ px �T∪{r} py ]

This is equivalent to incentivising not making faults. Let us first consider the game
where py made a fault with a third player pz. In that case,

U(wfT (px), wu
T (px), lf

T (px), lu
T (px)) ≤

U(wfT (py), wu
T (py), lf

T (py), lu
T (py) + 1) (32)

From equations 1 and 32, we get the monotonicity constraint,

∂luU ≥ 0 (33)

Now, let us consider the game where py made a fault in a game with px. In this case,
there are 2 distinct possibilities. The first is px won the game and was forced, we have

U(wfT (px) + 1, wuT (px), lf
T (px), lu

T (px)) ≤
U(wfT (py), wu

T (py), lf
T (py), lu

T (py) + 1) (34)

From equations 32 and 34, we get the monotonicity constraint,

∂wfU ≤ 0 (35)
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Table II. A modified Table T of game results for 3 players with
an additional column for the opponent

GRID Winner Loser Forced Opponent
gr1 1 2 2 1
gr2 1 3 0 1

Let us consider the case where px won in an unforced position.

U(wfT (px), wu
T (px) + 1, lfT (px), lu

T (px)) ≤ U(wfT (py), wu
T (py), lf

T (py), lu
T (py) + 1)

(36)
From equations 32 and 36, we get the monotonicity constraint,

∂wuU ≤ 0 (37)

Summarizing the monotonicity constraints for DIF, we have,

∂wfU ≤ 0 ∧ ∂wuU ≤ 0 ∧ ∂luU ≥ 0 (38)

From equations 19 and 38, we have that,

LFB⇒ DIF (39)

This confirms formally what we expect intuitively: LFB disincentivizes making faults.
From equations 14 and 38, we have that,

DIF⇒ NNEW (40)

7.3. Example Scoring functions that are LFB
The representation theorem motivates us to explore the set of scoring functions that
are LFB. Here, we list a set of 3 representative examples. It is useful to have families
of LFB ranking functions to choose an appropriate member for a given competition.

7.3.1. Everyone get the same score. The simplest example of a LFB scoring function is
where every player gets the same score.

U(wfT (px), wu
T (px), lf

T (px), lu
T (px)) = 0 (41)

It is easy to see that this scoring function satisfies the following monotonicity con-
straints,

∂wfU = 0 ∧ ∂wuU = 0 ∧ ∂lfU = 0 ∧ ∂luU = 0 (42)

From equations 19 and 42, it is clear that this scoring function is LFB.

7.3.2. Regular fault counting. Another example would be to count faults.

U(wfT (px), wu
T (px), lf

T (px), lu
T (px)) = luT (px) (43)

This scoring function satisfies the following monotonicity constraints,

∂wfU = 0 ∧ ∂wuU = 0 ∧ ∂lfU = 0 ∧ ∂luU > 0 (44)

From equations 19 and 44, it is clear that this scoring function is LFB.

7.3.3. Weighted fault counting. Now, we explore a more general version of fault counting.
We consider positive weight assignment to fault classes where the winner is a:

— forced opponent, weakness in proponent (α fault): Weight = α.
— forced proponent, weakness in opponent (β fault): Weight = β.
— non-forced opponent, weakness in proponent (γ fault): Weight = γ
— non-forced proponent, weakness in opponent (δ fault): Weight = δ
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At this juncture, we need to define a few functions,
∀px ∈ P,∀T ⊆ G(P )

luTα(px) = the number of α faults of px in T

luTβ (px) = the number of β faults of px in T

luTγ (px) = the number of γ faults of px in T

luTδ (px) = the number of δ faults of px in T

In the case of weighted fault counting, the table T is inadequate as we won’t be able
to decipher the exact type of fault. Another way to put it would be to say that the
simplified game result is inherently lossy. To overcome this, we need to add another
column in the game result table that lists the opponent O (see Table II). Now, for
convenience, we redefine the scoring function as,

U(luTα(px), lu
T
β (px), lu

T
γ (px), lu

T
δ (px)) = α·luTα(px)+β·luTβ (px)+γ·luTγ (px)+δ·luTδ (px) (45)

From equation 45, ∀α, β, γ, δ ∈ R+

∂luα
U > 0 ∧ ∂luβ

U > 0 ∧ ∂luγ
U > 0 ∧ ∂luδ

U > 0 (46)

But,

luT (px) = luTα(px) + luTβ (px) + luTγ (px) + luTδ (px) (47)

From equations 46 and 47, it is clear that,

∂luα
U > 0 ∧ ∂luβ

U > 0 ∧ ∂luγ
U > 0 ∧ ∂luδ

U > 0⇒ ∂luU > 0 (48)

From equation 48, it is clear that weighted fault counting is LFB. Now, we look at what
tuning each of those weights imply.

— A high α encourages forced opponents to try to win. Tests agreement on proponent.
— A high β encourages forced proponents to try to win. Tests agreement on opponent.
— A high γ encourages non-forced opponents to try to win. Tests non-agreement or

agreement on opponent.
— A high δ encourages non-forced proponents to try to win. Tests non-agreement or

agreement on proponent.

All four cases might lead to a better quasi-equilibrium (see sections 8 and 8.3).

8. TOP RANKING AND MERITOCRACY
In this section we show a desirable implication of collusion-resistance. We introduce
the concept of quasi-perfect player and show that quasi-perfect players are top-ranked
iff the ranking relation is collusion-resistant. The quasi-perfect players are the players
which have the minimum number of faults among all players. A quasi-perfect player
may defend false claims and refute true claims and make “wrong” side choices. This
differs from a perfect player who always makes the correct side-choices and success-
fully defends her choice.

To talk about top ranking, we need to first define the strictly better relation≺T . With
U : N× N× N× N→ R,

∀px, py ∈ P,∀T ⊆ G(P )[ px ≺T py ⇔
U(wfT (px), wu

T (px), wf
T (px), lu

T (px)) <

U(wfT (py), wu
T (py), wu

T (py), lu
T (py)) ] (49)
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8.1. Top Ranking
A player px in a set of players P is said to be top-ranked TRT (px) in a set of game
results T , if there is no player that is strictly better than px. More precisely,

TRT (px) = ∀py ∈ P | ¬(py ≺T px) (50)

8.2. Quasi Perfection
A quasi-perfect player for a set of players is a player who makes the least number of
faults within the set of players. A perfect player always chooses the correct side and
always wins the defense and therefore is quasi-perfect. Such a player makes no faults.

8.3. Quasi-equilibrium
In economics, an equilibrium implies a position of rest characterized by absence of
change. Assuming that the ranking relation is LFB, a table T is in quasi-equilibrium
if there are no faults happening which means all wins must be against forced players.
This implies that all players have chosen the same side and all forced players always
lose and all non-forced players always win. A quasi-equilibrium is temporary if there
exists a strategy which creates a fault for one of the players in the quasi-equilibrium.
A quasi-equilibrium is stable if it is not temporary and is simply called an equilibrium.
The games for a claim might go through several quasi-equilibria until the equilibrium
is reached. When all players are perfect they produce an equilibrium. Quasi-equilibria
are partially ordered. eq1 is better than eq2 if there is a strategy which creates a fault
for a player in eq2 but not in eq1. Moving from one quasi-equilibrium to the next re-
quires insight.

Simple claims have only one quasi-equilibrium while complex claims involving opti-
mization might have several quasi-equilibria. Each equilibrium corresponds to a local
optimum.

8.4. Meritocracy Theorem
— CR is necessary: If the ranking relation is not collusion-resistant (CR) but

NNEW∧NPEL, there exists a set of games where a quasi-perfect player is not top-
ranked.

— CR is sufficient: NNEW∧NPEL∧CR imply that all quasi-perfect players are top-
ranked.

Let us prove the first part of the theorem. First, we write down the monotonicity con-
straints for ¬CR and NNEW∧NPEL. We have,

¬CR: ∂wfU < 0 ∨ ∂wuU < 0 ∨ ∂lfU > 0 ∨ ∂lfU < 0 ∨ ∂luU < 0 (51)
NNEW ∧NPEL: ∂wfU ≤ 0 ∧ ∂wuU ≤ 0 ∧ ∂luU ≥ 0 ∧ ∂lfU ≥ 0 (52)

The equations 51 and 52 give us a clue into exploring a scoring function for our ranking
relation that is ¬CR, but NNEW∧NPEL. One proposal for such a scoring function is,

U(wfT (px), wu
T (px), lf

T (px), lu
T (px)) = −(wfT (px) + wuT (px)) (53)

To motivate the necessity of CR to hold for quasi perfect players to be top ranked, we
consider an example. With the scoring function as specified by equation 53 (which is
basically counting the total number of wins for a particular player), consider the table
III of game results. Here, player 1 is top ranked with the 4 wins and 2 faults. But,
player 2, the quasi perfect player with no faults is not top ranked.

8.4.1. Proof of the Meritocracy Theorem. We need that a quasi perfect player should be
top ranked. Say, px made k faults and other players made at least k faults. We need to
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Table III. A Table T of game results for 3
players

GRID Winner Loser Forced
gr1 1 2 2
gr2 1 3 0
gr3 1 2 2
gr4 2 1 0
gr5 2 3 2
gr6 2 3 0
gr7 3 1 0
gr8 1 3 1

explore the monotonicity conditions for px to be top ranked. This requires that,
if luT (px) ≤ luT (py),∀py ∈ P \ {px}, we need that,

U(wfT (px), wu
T (px), lf

T (px), lu
T (px)) ≤ U(wfT (py), wu

T (py), lf
T (py), lu

T (py)) (54)

As equation 54 should be true for any choice of the other 3 parameters of U , except
for the constraint on faults, we can conclude that the only monotonicity constraint
is that the scoring function should be non-decreasing on faults. So, the monotonicity
constraint for quasi-perfect players to be top ranked is,

∂wfU = 0 ∧ ∂wuU = 0 ∧ ∂lfU = 0 ∧ ∂luU ≥ 0 (55)

From equations 19 and 55, it is clear that,

Quasi Perfect player being Top Ranked⇔ LFB (56)

From equations 22 (The Representation Theorem) and 56, when NNEW∧NPEL holds,
we have,

Quasi Perfect player being Top Ranked⇔ LFB⇔ CR (57)

From equation 57, we can see that ¬CR implies that Quasi Perfect player might not be
top ranked. We notice that our proof is not constructive.

8.4.2. Observation. A small observation we need to make is that NNEW∧NPEL im-
pose monotonicity on the scoring function U : N × N × N × N → R. This justifies our
approach of expressing ¬CR in terms of monotonicity constraints. This is important
as CR has a universal quantifier (see section 5.1), making ¬CR have an existential
quantifier. So, a possible choice for a ¬CR scoring function is a non monotonic one, but
such a function would not guarantee NNEW∧NPEL.

9. CONCLUSIONS
In this paper we laid the foundations for organizing socio-technical systems for cre-
ating knowledge in Formal Sciences. The foundations are based on a new concept,
called a side-choosing game (SCG), and a theory about mapping game results to player
rankings in the presence of collusion-resistance (CR). CR is a crucial concept which
says that games where you are not in control cannot affect your ranking. Our results
show that in the presence of two non-controversial axioms, CR is equivalent to being
local-fault-based (LFB). Therefore, if ”natural” scoring functions are used, like count-
ing wins or counting wins against non-forced players, there is the danger of collusion
which compromises truth. Collusion-resistance prevents gaming the game in a strong
sense.

What comes next? Our plan is to put SCG-based applications on the web and reap
the benefits of collective intelligence. So far we used SCG-based ideas and tools in de-
signing courses at Northeastern University. We would like to build a tool that can be
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used in MOOCs and for algorithm competitions. The implementation of our domain-
specific language for human computation for formal sciences requires several algo-
rithms to be developed. Should those algorithms be challenging, we use human com-
putation with side-choosing games to develop them!

An important area that needs further work is that participants can propose new
claims. We want a modular approach to solving claims. For example, a complex claim
C1 might be reducible to a “simpler” claim C2 so that a solution for C2 implies a solution
for C1. We propose a formal study of claim relations which can themselves be captured
as claims and approached with side-choosing games.
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APPENDIX
A. FORMAL DEFINITION OF SCG
A side-choosing game is a triple (G,SC,AA), where G is a two-person, draw-free, com-
binatorial game, SC is a side-choice configuration and AA is an agreement algorithm.
G,SC and AA are defined separately. The important component is the combinatorial
game G; SC and AA offer variation possibilities to define the side-choosing games. We
will use simple instances of SC and AA for our side-choosing games.

A.1. Definition: Combinatorial Game
(1) There are two players. The game is sequential (turn-based) and Perfect-

Information. There are no chance moves or hidden information. (But players may
hide their winning strategies.)

(2) There is a finite set of possible positions of the game. There is a distinguished start
position.

(3) The rules of the game specify, for both players and each position, which moves to
other positions are legal moves.

(4) The game ends when a position is reached from which no moves are possible. A
predicate on the final position determines who has won. There is an absolute win-
ner: the first player to fulfill the winning condition. No ties or draws.

(5) The game ends in a finite number of moves.

A.2. Side-Choice Configuration Definition
The side choices are made by the players but the Side-choice Configuration (SC) de-
fines the sequencing of the design-time decisions. We have two players, x and y, who
make a choice dx and dy for the start position of the combinatorial game G. dx, dy are
elements of {P,O}. If x chooses dx = P then x claims to win the combinatorial game
G from the game’s start position. If x chooses dx = O then x claims to prevent y from
winning G from its start position. The players make the side choices but SC specifies
the configuration. Examples for SC :

— simultaneous
The two players make side choice independently. This is our preferred side-choice
configuration.

— sequential
With probability q for x to be the first player. Or we can choose other context-
sensitive mechanisms to select the first player.

A.3. Agreement Algorithm Definition
The agreement algorithm maps two players x, y with their design-time side choices
dx, dy, where dx = dy, into a set of plays between the two players with, for each play,
run-time side choices rx, ry such that at most one player is forced.

— Example Agreement algorithm CAA (Competitive Agreement Algorithm):
Randomly choose z, one of the players x, y and force z.
— Play SCG(G, x, y, dz, d!z, !dz, d!z); z is forced
— Play SCG(G, x, y, dz, d!z, dz, !d!z); !z is forced
Motivation for CAA: For some claims it is a disadvantage to have to move first be-
cause you give away a secret. Therefore, we choose the forced player randomly to
balance the potential disadvantage. We play two games to give each player a chance
to test the other. This is our preferred agreement algorithm.

— Alternative Example for Agreement Algorithm
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CAA-1/2 only plays one game choosing the forced player randomly. CAA-1/2 (Com-
petitive Agreement Algorithm 1/2): Randomly choose z, one of the players x, y and
force z.
— Play SCG(G, x, y, dz, d!z, !dz, d!z); z is forced

A.4. Example Claims
We provide three example claims to illustrate how side-choosing games work.We de-
fine the side-choosing games by considering the semantic game associated with an
interpreted logical formula.

A.4.1. Saddle Point. We present a maximization problem as a claim here. Consider the
function F described below,

F (θ ∈ [0, 1]) = ∀x ∈ [0, 1]∃y ∈ [0, 1] |xy + (1− x)(1− y2) ≥ θ
Now, we claim that,

∃θ ∈ [0, 1] |F (θ) ∧ (∀ε > 0 | ¬F (θ + ε))

This clearly is a claim that there exists a maximum θ beyond which F (θ) is false.

A.4.2. Distributing balls. Consider the problem of distributing m ∈ Z+ red and n ∈ Z+

green balls into two sacks. Let S1(r1, g1) and S2(r2, g2) such that r1 + r2 = m and
g1 + g2 = n represent the distribution of the given set of balls in the sacks. Given, that
picking one of the two sacks is equally likely, we have the following claim.
The only distribution of balls that maximizes the chance of drawing a red ball is when
one of the sacks has only one ball and the color of that ball is red.
We have chosen to express the claim in plain English, which could be translated into
a predicate logic formula that precisely defines the SCG.

A.4.3. Minimum Graph Basis

(1) Size of minimum graph basis: a basis of a directed graph G is defined as a
set of nodes such that any node in the graph is reachable from some node in
the basis. Formally, MinBasisSize(G ∈ Digraphs, n ∈ N) = BasisSize(G,n) ∧
∀k s.t. k < n : ¬BasisSize(G, k) where BasisSize(G ∈ Digraphs, n ∈ N) = ∃s ∈
P(nodes(G)) s.t. |s| = n : ∀m ∈ nodes(G) ∃p ∈ paths(G) : last(p) = m ∧ first(p) ∈ s.

(2) Number of source nodes of a DAG: a source node is a node with no incoming edges.
Formally, #src(D ∈ DAGs,m ∈ N) = ∃s ∈ P(nodes(D)) s.t. |s| = m : ∀v ∈
nodes(D) : inDegree(v) = 0⇔ v ∈ s.

The relation between the two claim families MinBasisSize(G ∈ Digraphs, n ∈ N)
and #src(D ∈ DAGs,m ∈ N) can be described by ∀G ∈ Digraphs, n ∈ N :
MinBasisSize(G,n) = #src(SCCG(G), n) where SCCG refers to Tarjan’s the Strongly
Connected Component Graph algorithm.

Note that the above claims don’t express that we want the fastest algorithm.
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