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Abstract
The space-for-time trade-off is one of the earliest to be dis-
covered in computer science. Taking program complexity
into account, we can safely call it “space and elegance”-
for-time trade-off. Contemporary algorithms text books of-
ten tackle the complexity problem by first presenting algo-
rithms in an elegant, but inefficient form, followed by a few
paragraphs informally describing optimizations. We used as-
pects to improve the presentation of several algorithms like
Topological Ordering, Dijkstra’s shortest path, Closest Pair,
Stable Marriage, etc.

Harmlessness is a key safety requirement for optimiza-
tion aspects. Existing models for harmless aspects disallow
general around advice which is indispensable for express-
ing optimization aspects. We present a model for harmless
aspects with around advice. We also present a domain spe-
cific model for space-for-time optimization aspects that rules
out several situations when the optimization aspect is not im-
proving the runtime efficiency and enables more informative
error messages.

1. Introduction
The space-for-time trade-off is one of the earliest trade-offs
to be discovered in computer science. There are automated
approaches that trade off memory space to improve the run
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time efficiency of an easy to understand top-down algorithm
(obtained through functional decomposition). These ap-
proaches include memoization and incrementalization [12],
[13] (a.k.a. dynamization). It is also possible to execute these
algorithms on a self-adjusting machine [1] that trades space
for time.

However, there are application specific space-for-time
optimizations for which it is highly unlikely that they can
be implemented using an automated approach. The reason
is that application specific space-for-time optimizations tend
to be more liberal in:

1. Cache representation. The cache can be represented us-
ing a hash map or using “inter-type declaration”. For ex-
ample, it is possible to keep a hash map from a node to
its predecessor count in a particular graph or inter-type-
declare the predecessor count into the node (see Sec-
tion 2.2 on topological ordering). Even when the cache
is implemented as a hash map, the table size as well as
the hashing function can make a difference. For example,
when the cache can hold at most a single entry.

2. Adding entries to the cache. It might be more efficient
to eagerly compute several values together than perform-
ing them individually on demand. For example we can
compute the predecessor count of all nodes in a graph
using a single walk where computing the predecessor
count of a single node would also require walk of the
entire graph (see Section 2.2 on topological ordering). It
might be also more efficient to maintain the cache un-
der functional updates. For example, if the cache for the
method sort maps list to v and the statement list’ =
filter(list, predicate) is executed, then it is pos-
sible to add to the cache a mapping from list’ to the
value of filter(v, predicate) (see Section 2.3 on
finding the closest pair of points).

3. Maintaining cache entries under destructive updates. For
example, it might be more efficient to maintain the cache
after several destructive updates rather than eagerly main-
tain the cache after each destructive update. For ex-
ample, if the cache for the method sort maps list
to v. It is possible to maintain the cache eagerly after
list.add(e). The maintenance involves an insertion of
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e into v. Grouping several list.add(e) operations to-
gether, it is possible to sort all the newly added elements
using an O(n · log(n)) algorithm then merge them into
v. It can also be beneficial from a software engineering
perspective to abstract over several alternative destruc-
tive updates. For example, the fact that we maintain the
cache for the method sort after list.add(e) abstracts
over several alternative sequences of destructive updates
of several list.add(..) implementations.

4. Overriding the computation to make it more amenable
to cache-based optimizations 1. For example, the method
Graph.sourceNode() (Shown in Figure 2) that finds a
node without predecessors in a graph, is not amenable
to incrementalization under Graph.remove(Node) be-
cause the old source node is not useful in comput-
ing the new source node once the old source node
is removed from the graph. It is possible to override
Graph.sourceNode() with a less efficient implemen-
tation that computes all source nodes then returns one of
them. The method that computes all source nodes can be
incrementalized under Graph.remove(Node).

5. Utilizing a single cache to speed up several computations.
For example, it is possible to utilize a cache for the sort
method to speed up the computation of order statistics.

Taking program complexity into account, the space-for-
time trade-off can be safely called “space and elegance”-for-
time trade-off. Contemporary algorithms text books often
tackle the complexity problem by first presenting algorithms
in an elegant, but inefficient form, followed by a few para-
graphs informally describing optimizations.

Aspects can not only be used to restore the lost elegance
of optimized programs, but also to better support the process
of optimizing programs, enhance the safety of optimized
programs, and to enable mixing and matching of optimiza-
tions.

Using aspects, an optimized program OPTPROG can
be structured as PROG + OPT1 + . . . + OPTn enabling
developers to mix and match optimizations. But more impor-
tantly, each of OPT1, . . . , OPTn can be separately checked
for harmlessness which enhances safety and provides more
targeted feedback which supports the debugging of opti-
mizations. The concept of harmless aspects is a well known
concept that has been used in the context of enabling modu-
lar reasoning about the base program [8], [5], [6], [16], [7].

Unfortunately, AspectJ-like aspects can become harmful
for a variety of subtle reasons that are hard discover. To make
things worse, space-for-time optimization aspects are not
expressible in AOP languages devised to exclusively express
harmless aspects such as harmless advice [6] and pure
aspects [16]. Because both systems disallow general around

1 Related to the notion of trace stability in [1]

advice 2 which is indispensable for expressing optimization
aspects.

We developed a model for harmless aspects with around
advice. The model consists of a set of contracts that the
aspect’s behavior must satisfy to be considered harmless.

We also developed a domain specific model for space-
for-time optimization aspects. In our model, each advice in
a space-for-time optimization aspect must be declared to be
one of three kinds (memoization, maintenance and manage-
ment). Furthermore, the behavior of each kind of advice has
a particular set of contracts to satisfy. For example, the cache
must be consistent before a memoization advice executes.
The purpose of this model is neither to ensure the correctness
of optimization aspects nor to enable a more concise expres-
sion of optimization aspects, but to support the debugging
of space-for-time optimization aspects through informative
error messages.

1.1 Organization
The rest of this paper is organized as follows, In section 2
we present a recipe for developing space-for-time optimiza-
tion aspects and illustrate our recipe with few examples that
we also use as running examples. In section 3 we present
our model for harmless aspects with around advice. In sec-
tion 4 we present our model for space-for-time optimization
aspects. In section 5 we describe the checkers we imple-
mented for both models. In section 6 we discuss some of
the related work. Section 7 concludes this paper.

2. Space-for-Time Optimization Aspects
We studied space-for-time optimizations described in [11]
for algorithms like Topological Ordering, Dijkstra’s shortest
path, Closest Pair, Stable Marriage, etc. Eventually, we came
up with a recipe for developing space-for-time optimization
aspects. We start by outlining our recipe then we illustrate it
by examples.

2.1 Developing Space-for-Time Optimization Aspects
The development of space-for-time optimization aspects has
three key activities, identifying optimization opportunities,
ranking them, and handling them.

2.1.1 Identifying Optimization Opportunities
We identify optimization opportunities by analyzing the
trace of an execution of our program on a typical input.
An optimization opportunity is a set of similar join points
corresponding to the execution of referentially transparent
methods. A set of join points are considered similar iff they
have the same shadow and have at least one similar context
element. For example, two join points with the same shadow
such as the execution of some method m are considered sim-

2 In pure aspects a limited form of around advice is allowed where the
advice must invoke proceed() on all execution paths and return what
proceed() returns
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ilar if they have similar implicit this arguments or similar
first arguments and so on.

A set of objects are considered similar iff there is at
least one object reachable from all of them. For example,
an ArrayList object containing the object o1 is considered
similar to a LinkedList object containing the object o1.

Our notion of similarity between join points and objects
is a weak one that is expected to apply to a large number of
sets of join points. Therefore, it is important to rank them.

2.1.2 Ranking Optimization Opportunities
We rank optimization opportunities based on the average
cost of join points in them, then by the number of join points
in them. The cost of a join point is defined to be the number
of join points it encloses.

2.2 Example I: Topological Ordering
Given a directed graph g it is desired to find an ordering of its
nodes such that node a comes before node b in the computed
ordering if g contains an edge from a to b, if such ordering
exists.

Figures 1 and 2 show a simple directed graph structure
and a simple algorithm for computing the topological order-
ing of a given directed graph. We chose to separate the struc-
ture from the algorithm to simplify the presentation of the
latter. We also omitted an aspect that prevents the algorithm
from destroying the graph by marking removed nodes and
overriding the structure accessors to take those marks into
account. To save space and to avoid distracting the reader,
we elided visibility modifiers, some generics, some initializ-
ers, and some method implementations.

The algorithm keeps removing some arbitrary node with
no predecessors from the graph appending it to the output
list until there are no more nodes with no predecessors.

2.2.1 Optimization Opportunities
Considering the join points in the control flow of an invoca-
tion of Graph.topord(), lines 19- 32 in Figure 2 we iden-
tify the following optimization opportunities:

1. The set of join points corresponding to executing
Graph.getSourceNode() (lines 10- 17 in Figure 2)
with the same Graph object. The number of join points
in this set is n, the number of nodes in the graph.

2. The set of join points corresponding to executing
Node.getPredCount() (lines 2- 2 in Figure 2) with
the same Node object enclosed in the same Graph object.
The number of join points in this set is n · (n+ 1)/2.

3. Several sets of join points corresponding to executing
Node.getPredCount() (lines 2- 2 in Figure 2) with
some Node object enclosed in the same Graph object.
The average number of join points in each of these sets is
n/2.

1 c l a s s Graph {
2 L i s t <Node> nodes = . . .
3 c l a s s Node{
4 L i s t <Node> s u c c e s s o r s = . . .
5 Node ( ) {
6 g e t E n c l o s i n g G r a p h ( ) . add ( t h i s ) ;
7 }
8 Graph g e t E n c l o s i n g G r a p h ( ) { . . . }
9 C o l l e c t i o n g e t S u c c e s s o r s ( ) { . . . }

10 boolean h a s S u c c e s s o r ( Node succ ) {
11 re turn s u c c e s s o r s . c o n t a i n s ( succ ) ;
12 }
13 void r e m o v e A l l S u c c e s s o r s ( ) {
14 s u c c e s s o r s . c l e a r ( ) ;
15 }
16 }
17 void add ( Node node ) { . . . }
18 L i s t ge tNodes ( ) { . . . }
19 i n t getNumNodes ( ) { . . . }
20 void remove ( Node node ) {
21 node . r e m o v e A l l S u c c e s s o r s ( ) ;
22 nodes . remove ( node ) ;
23 }
24 }

Figure 1: Directed Graph Structure

1 a s p e c t Topord {
2 i n t Node . g e t P r e d C o u n t ( ) {
3 i n t predCount = 0 ;
4 f o r ( Node n : g e t E n c l o s i n g G r a p h ( ) . ge tNodes ( ) )

{
5 i f ( n . h a s S u c c e s s o r ( t h i s ) ) p redCoun t ++;
6 }
7 re turn predCount ;
8 }
9

10 Maybe<Node> Graph . ge tSourceNode ( ) {
11 f o r ( Node n : ge tNodes ( ) ) {
12 i f ( n . g e t P r e d C o u n t ( ) == 0){
13 re turn new Some ( n ) ;
14 }
15 }
16 re turn new None ( ) ;
17 }
18
19 Maybe<L i s t <Node>> Graph . t o p o r d ( ) {
20 L i s t <Node> orde redNodes = . . .
21 whi le ( t rue ) {
22 Maybe<Node> mbSource = ge tSourceNode ( ) ;
23 i f ( ! mbSource . isSome ( ) ) break ;
24 Node n = mbSource . g e t ( ) ;
25 o rde redNodes . add ( n ) ;
26 remove ( n ) ;
27 }
28 i f ( getNumNodes ( ) > 0 ) {
29 re turn new None ( ) ;
30 }
31 re turn new Some ( o rde redNodes ) ;
32 }
33 }

Figure 2: Algorithm for Finding The Topological Ordering
of a Directed Graph
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4. Several other join points corresponding to getter meth-
ods.

It is worth noting that in a top-down program it is also
possible to search for optimization opportunities in a top-
down fashion as the average cost of join points correspond-
ing to higher level methods is expected to be higher than that
at the lower level because higher level methods invoke lower
level ones. For example the average cost of join points cor-
responding to the execution of Graph.getSourceNode()
is expected to be more than that of Node.getPredCount()
because the former invokes the latter.

It is also worth noting that the second optimization op-
portunity have the same shadow, the execution of
Node.getPredCount(), as any of third-ranked optimiza-
tion opportunities. The difference is that join points in the
second opportunity have less similar implicit this argument
and therefore the second optimization opportunity contains
all of the third-ranked optimization opportunities.

2.2.2 Handling The First Optimization Opportunity
We can start by memoizing Graph.sourceNode() method.
We do so by developing an aspect that inter-type-declares
a field memoizedSorceNode of type Node into Graph. We
then develop a memoization advice for
Graph.sourceNode(). Soon we discover that our opti-
mization aspect is harmful because the memoization advice
returns a different value than what Graph.sourceNode()
returns. The root cause for this problem is that the im-
plicit this argument was destructively updated by the
remove(..) call on line 26 in Figure 2. To fix this problem
we add a maintenance advice for the memoizedSorceNode
field. Our maintenance advice catches the execution of
Graph.remove(Node) and assigns memoizedSourceNode
a correct value. Unfortunately, the maintenance advice can
only compute a new value of memoizedSourceNode from
scratch, making the whole optimization not beneficial.

At this point, we have two approaches to improve our
optimization aspect:

1. to eagerly compute the list of all source nodes the first
time Graph.sourceNode() is invoked. This requires a
pass over all the nodes in the graph which is not neces-
sary for the typical case. This approach is presented in
Figure 3. We chosen this approach because we know that
sooner or later all of the source nodes are going to be
computed.

2. to save as much information as possible to speed up sub-
sequent computations of source node. For example, the
first time Graph.sourceNode() is invoked, it examines
say the first 7 nodes in the graph before it returns the
8th node. This information should be made available to
speedup subsequent computations of source node.

With this optimization aspect in place, the frequency
with which the Node.getPredCount() is invoked in a

typical run decreases. Node.getPredCount() is invoked
with some Node object enclosed in the same Graph object
as many as the sum of number of nodes and edges in the
graph. Also, Node.getPredCount() is invoked with the
same Node object as many times as the in-degree of that
node plus one.

1 a s p e c t SrcNode {
2 L i s t <Node> Graph . sourceNodes = n u l l ;
3
4 / / Memoiza t ion + Eager i n i t i a l i z a t i o n
5 Maybe<Node> around ( Graph g ) : e x e c u t i o n ( p u b l i c

Maybe<Node> ge tSourceNode ( ) ) && t a r g e t ( g ) {
6 i f ( g . sou rceNodes == n u l l ) {
7 g . sourceNodes = new A r r a y L i s t <Node >() ; f o r

( Node n : g . ge tNodes ( ) ) {
8 i f ( n . g e t P r e d C o u n t ( ) == 0){
9 g . sourceNodes . add ( n ) ;

10 }
11 }
12 }
13 i f ( g . sou rceNodes . s i z e ( ) == 0){
14 re turn new None ( ) ;
15 } e l s e {
16 re turn new Some ( g . sourceNodes . g e t ( 0 ) ) ;
17 }
18 }
19
20 / / Main tenance
21 void around ( Graph g , Node n ) : e x e c u t i o n ( p u b l i c

vo id remove ( Node ) ) && t a r g e t ( g ) && args ( n ) {

22 L i s t <Node> successorsOfToBeRemovedNode = new
A r r a y L i s t <Node>(n . g e t S u c c e s s o r s ( ) ) ;

23 proceed ( g , n ) ;
24 f o r ( Node succ : successorsOfToBeRemovedNode )

{
25 i f ( succ . g e t P r e d C o u n t ( ) == 0){
26 g . sourceNodes . add ( succ ) ;
27 }
28 }
29 g . sourceNodes . remove ( n ) ;
30 }
31 }

Figure 3: First Optimization Aspect for The Topological
Ordering Algorithm

2.2.3 Handling The Second Optimization Opportunity
Join points in the second optimization opportunity do have
the same Graph object but different Node objects, to handle
this optimization opportunity we need to share all the work
performed by Node.getPredCount() that is related to the
Graph object. Again, we have the same two approaches to
share that work. We choose the eager approach here because
we know that the predecessor counts for all nodes will be
eventually computed. Figure 4 shows an implementation of
the second optimization opportunity.
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1 a s p e c t P r e d s {
2 i n t Node . p redCount = −1;
3
4 / / Memoiza t ion + Eager i n i t i a l i z a t i o n
5 i n t around ( Node node ) :
6 e x e c u t i o n ( p u b l i c i n t g e t P r e d C o u n t ( ) )
7 && t a r g e t ( node ) {
8 i f ( node . p redCoun t == −1){
9 f o r ( Node n : node . g e t E n c l o s i n g G r a p h ( ) .

ge tNodes ( ) ) {
10 n . p redCount = 0 ;
11 }
12 f o r ( Node n : node . g e t E n c l o s i n g G r a p h ( ) .

ge tNodes ( ) ) {
13 f o r ( Node succ : n . g e t S u c c e s s o r s ( ) ) {
14 succ . p redCount ++;
15 }
16 }
17 }
18 re turn node . p redCoun t ;
19 }
20
21 / / Main tenance
22 b e f or e ( Node n ) :
23 e x e c u t i o n ( p r i v a t e vo id r e m o v e A l l S u c c e s s o r s ( ) )
24 && t a r g e t ( n ) {
25 f o r ( Node succ : n . g e t S u c c e s s o r s ( ) ) {
26 succ . predCount−−;
27 }
28 }
29 }

Figure 4: Second Optimization Aspect for The Topological
Ordering Algorithm

2.3 Example II: Finding The Closest Pair of Points in a
Plane

Given a set S of n points in a two dimensional plane, it is
desired to find the closest pair of points. The computational
complexity of the problem is known to have an asymptotic
lower bound of Ω(n · log n)3. We describe a divide an
conquer algorithm for solving this problem matching the
lower bound.

In the divide phase, the points are split into two subsets
S1, S2 with roughly the same number of points in each set.
The points are split such that the x-coordinate of all the
points in S1 is smaller than xmedian and all the points in
S2 are greater than it. Where xmedian is the median value of
all x-coordinates of the points in S. The linear time median
finding algorithm is used.

After the split, the closest pair of points in each subset
is recursively computed. Let P1, P2 be the closest pair of
points in S1, S2 respectively. When the number of points
is sufficiently small, the brute force procedure is used to
bottom up from the recursion.

In the combine phase, it is not correct to return one of
P1 or P2. It is necessary to also examine pairs with one

3 Via a straight forward reduction from the element uniqueness problem

point in S1 and the other point in S2. More precisely, it is
enough to examine the set S′ of points in either S1 or S2 with
an x-coordinate within a distance δ from xmedian, where
δ = min(δ1, δ2), δ1 is the minimum distance between the
pair of points P1, δ2 is the minimum for P2.

Since the set S′ can be as large as S, applying the brute
force procedure to the elements in the strip lead to an Ω(n2)
best case performance. Instead, we use a more efficient pro-
cedure that relies on the fact that the points in S′ do have a
special structure. Namely, they form a 2 · δ vertical strip and
that they are δ-sparse meaning that there is a fixed number
of points within a δ distance from any point in S′.

The solution for the δ-sparse vertical strip case involves
sorting the points by their y-coordinate then going through
the sorted list and for each point, a fixed number of its fol-
lowing points are examined. Figure 5 shows a Java imple-
mentation of the entire algorithm.

2.3.1 Optimization Opportunities
Considering the join points in the control flow of an invoca-
tion of ClosestPair.DCCP(List), lines 2- 25 in Figure 5
we identify the following optimization opportunities:

1. Sets of join points corrresponding to executing
ClosestPair.DCCP(List) with similar List objects.

2. Sets of join points corrresponding to executing
median(List, Comparator) with similar List ob-
jects and the same Comparator object.

3. Sets of join points corrresponding to executing
partition(List, Predicate) with similar List ob-
jects.

4. Sets of join points corrresponding to executing
filter(List, Predicate) with similar List objects.

5. Sets of join points corrresponding to executing
ClosestPair.DCVSCP(List) with similar List ob-
jects.

6. Sets of join points corrresponding to executing
sort(List, Comparator) with similar List objects
and the same Comparator object.

7. Several other sets join points corresponding to other
methods such as Result.combine(Result).

Any two join points in an optimization opportunity corre-
sponding to ClosestPair.DCCP(List) have the property
that the List argument in one of the join points must be
a sublist of the List argument of the other. The algorithm
already utilizes all these opportunities.

We also observe that join points corresponding to the ex-
ecution of partition(List, Predicate) differ in their
Predicate argument. By inspecting the implementation of
partition(List, Predicate) we discover that it cannot
be effectively incrementalized under updates to the Point
argument. The same observation applies to filter(List,
Predicate).
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1 c l a s s C l o s e s t P a i r {
2 p u b l i c s t a t i c R e s u l t DCCP( L i s t <P o i n t> p o i n t s ) {
3 i n t n = p o i n t s . s i z e ( ) ;
4 i f ( n<=3){
5 re turn BruteForceCP ( p o i n t s ) ;
6 } e l s e {
7 f i n a l P o i n t xMedian = U t i l s . median ( p o i n t s ,

P o i n t . xCompara tor ( ) ) ;
8 L i s t <L i s t <P o i n t>> s = U t i l s . p a r t i t i o n (

p o i n t s , new U t i l s . P r e d i c a t e <P o i n t >(){
9 @Override

10 p u b l i c boolean h o l d s F o r ( P o i n t p o i n t ) {
11 re turn P o i n t . xCompara tor ( ) . compare (

p o i n t , xMedian ) <= 0 ;
12 }} ) ;
13 R e s u l t P1 = DCCP( s . g e t ( 0 ) ) ;
14 R e s u l t P2 = DCCP( s . g e t ( 1 ) ) ;
15
16 f i n a l R e s u l t c p I n P a r t i t i o n s = P1 . combine ( P2

) ;
17 L i s t <P o i n t> p t s I n S t r i p = U t i l s . f i l t e r (

p o i n t s , new U t i l s . P r e d i c a t e <P o i n t >(){
18 @Override
19 p u b l i c boolean h o l d s F o r ( P o i n t p o i n t ) {
20 re turn Math . abs ( p o i n t . x − xMedian . x ) <=

c p I n P a r t i t i o n s . g e t D i s t a n c e ( ) ;
21 }} ) ;
22 R e s u l t c p I n S t r i p = DCVSCP( p t s I n S t r i p ) ;
23 re turn c p I n S t r i p . combine ( c p I n P a r t i t i o n s ) ;
24 }
25 }
26
27 p u b l i c s t a t i c R e s u l t DCVSCP( L i s t <P o i n t> p o i n t s )

{
28 L i s t <P o i n t> y S o r t e d P o i n t s = U t i l s . s o r t ( p o i n t s

, P o i n t . yCompara tor ( ) ) ;
29 R e s u l t r e s u l t = new R e s u l t ( ) ;
30 f o r ( i n t i = 0 ; i < y S o r t e d P o i n t s . s i z e ( ) ; i

++) {
31 P o i n t p i = y S o r t e d P o i n t s . g e t ( i ) ;
32 f o r ( i n t j = i +1 ; j < y S o r t e d P o i n t s . s i z e ( )

&& j < i +7 ; j ++) {
33 r e s u l t = r e s u l t . combine ( new R e s u l t ( p i ,

y S o r t e d P o i n t s . g e t ( j ) ) ) ;
34 }
35 }
36 re turn r e s u l t ;
37 }
38
39 / / . . . BruteForceCP i s e l i d e d
40 }
41 c l a s s R e s u l t {
42 f i n a l double d i s t a n c e ;
43 f i n a l P o i n t p1 ;
44 f i n a l P o i n t p2 ;
45
46 p u b l i c R e s u l t combine ( R e s u l t o t h e r ) {
47 re turn ( o t h e r . d i s t a n c e < d i s t a n c e ) ? o t h e r :

t h i s ;
48 }
49 / / . . . r e s t i s e l i d e d
50 }

Figure 5: Divide and Conquer Algorithm for Finding The
Closest Pair of Points

Depending on the input, the vertical strips could intersect.
In this case, there will be some similarity between the List
arguments of some ClosestPair.DCVSCP(List) invoca-
tions as well as sort(List, Comparator).

ClosestPair.DCVSCP(List) cannot be incremental-
ized under removing a Point from its input list because
Result objects cannot be uncombined.

Therefore, we are left with two sets of optimization op-
portunities, those corresponding to median(List, Comparator)
and those corresponding to sort(List, Comparator).

2.3.2 Handling The First Optimization Opportunity
Figure 6 shows an aspect that handles optimization oppor-
tunities corresponding to median(List, Comparator).
Conceptually, the aspect is similar to the first optimization
aspect for the topological ordering algorithm. The aspects
stores a sorted version of the List to speed up subsequent
median computations because the old median is not so use-
ful in computing the new median once the List argument is
updated.

This aspect differs from the first optimization aspect for
the topological ordering algorithm in that the List argument
is not destructively updated. Instead, List is functionally
updated through partition. Failure to maintain the cache
under functional updates makes the aspect ineffective.

2.3.3 Handling The Second Optimization Opportunity
Figure 7 shows an aspect that handles optimization opportu-
nities corresponding to sort(List, Comparator). Con-
ceptually, the aspect memoizes sort(List, Comparator)
invocations and maintains the cache under functional up-
dates by partition(List, Predicate) and filter(List,
Predicate). However, the cache must be eagerly initialized
otherwise the aspect will be ineffective.

3. Harmless Aspects with around Advice
An aspect is said to be harmless, to the base program, iff

1. the aspect does not influence the final value produced by
the base program,

2. the aspect influences other aspects only indirectly through
triggering or blocking their advice.

The aspect can change the termination behavior of the base
program and perform I/O and still be considered harmless.

3.1 A Model for Harmless Aspects
An aspect is considered harmless if its behavior satisfies the
following contracts:

3.1.1 Contract 1: No External Data or Control Flow
Effects

Every around advice must return the same value or throw
the same exception as the join point it advises. For primitive
types, sameness is defined as equality. For reference types,
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1 a s p e c t Median {
2 Map<L i s t , L i s t > x S o r t e d = new I den t i t yHashMap ( ) ;
3
4 / / memo i za t i on
5 O b j e c t around ( L i s t l i s t , Compara tor c o m p a r a t o r )

:
6 e x e c u t i o n ( p u b l i c O b j e c t U t i l s . median ( . . ) )
7 && args ( l i s t , c o m p a r a t o r )
8 && ! c f low ( wi th in ( Median | | YSort ) ) {
9 L i s t v a l u e = x S o r t e d . g e t ( l i s t ) ;

10 i f ( v a l u e == n u l l ) {
11 v a l u e = U t i l s . s o r t ( l i s t , P o i n t . xCompara tor

( ) ) ;
12 x S o r t e d . p u t ( l i s t , v a l u e ) ;
13 }
14 re turn v a l u e . g e t ( l i s t . s i z e ( ) / 2 ) ;
15 }
16
17 / / management
18 a f t e r ( L i s t l i s t , P r e d i c a t e p r e d i c a t e )
19 r e t u r n i n g ( L i s t p a r t i t i o n s ) :
20 e x e c u t i o n ( p u b l i c L i s t U t i l s . p a r t i t i o n ( . . ) )
21 && args ( l i s t , p r e d i c a t e )
22 && ! c f low ( wi th i n ( Median | | YSort ) ) {
23 L i s t v a l u e = x S o r t e d . g e t ( l i s t ) ;
24 i f ( v a l u e != n u l l ) {
25 L i s t s o r t e d P a r t i t i o n s = U t i l s . p a r t i t i o n (

va lue , p r e d i c a t e ) ;
26 f o r ( i n t i = 0 ; i< p a r t i t i o n s . s i z e ( ) ; i ++){
27 x S o r t e d . p u t ( ( L i s t ) p a r t i t i o n s . g e t ( i ) , (

L i s t ) s o r t e d P a r t i t i o n s . g e t ( i ) ) ;
28 }
29 }
30 }
31 }

Figure 6: First Optimization for The Closest Pair Algorithm

sameness is defined as reference equality unless the object is
constructed in the control flow of the join point. In this case,
sameness is defined as sameness of corresponding subcom-
ponents. Every before and after advice in the aspect must
not throw any exceptions.

The aspect cannot have an external data flow effect be-
cause every around advice returns the same value or throw
the same exception as the join point it advises.

We ignore, termination and nontermination control flow
effects as they do not affect the harmlessness of an aspect by
definition. Also, we assume that advice cannot directly ma-
nipulate the current continuation. Therefore, the only con-
trol flow effect that we need to consider is throwing excep-
tions4. before and after advice cannot throw exceptions
and hence cannot have any external control effect. Also,
around advice return the same value or throws the same ex-
ception as the join point it advises and hence cannot have
any control effect observable by the base program.

4 In AspectJ exceptions can declaratively softened. A harmless aspect is not
allowed to soften exceptions.

1 a s p e c t YSort {
2 Map<L i s t , L i s t > y S o r t e d = new I den t i t y HashMap ( ) ;
3
4 / / memo i za t i on
5 L i s t around ( L i s t l i s t , Compara tor c o m p a r a t o r ) :
6 e x e c u t i o n ( p u b l i c L i s t U t i l s . s o r t ( . . ) )
7 && args ( l i s t , c o m p a r a t o r )
8 && ! c f low ( wi th in ( Median | | YSort ) ) {
9 L i s t v a l u e = y S o r t e d . g e t ( l i s t ) ;

10 i f ( v a l u e != n u l l ) re turn v a l u e ;
11 v a l u e = proceed ( l i s t , c o m p a r a t o r ) ;
12 y S o r t e d . p u t ( l i s t , v a l u e ) ;
13 re turn v a l u e ;
14 }
15
16 / / management
17 a f t e r ( L i s t l i s t , P r e d i c a t e p r e d i c a t e )
18 r e t u r n i n g ( L i s t p a r t i t i o n s ) :
19 e x e c u t i o n ( p u b l i c L i s t U t i l s . p a r t i t i o n ( . . ) )
20 && args ( l i s t , p r e d i c a t e )
21 && ! c f low ( wi th in ( Median | | YSort ) ) {
22 L i s t v a l u e = y S o r t e d . g e t ( l i s t ) ;
23 i f ( v a l u e != n u l l ) {
24 L i s t <L i s t > s o r t e d P a r t i t i o n s = U t i l s .

p a r t i t i o n ( va lue , p r e d i c a t e ) ;
25 f o r ( i n t i = 0 ; i< p a r t i t i o n s . s i z e ( ) ; i ++){
26 y S o r t e d . p u t ( ( L i s t ) p a r t i t i o n s . g e t ( i ) ,

s o r t e d P a r t i t i o n s . g e t ( i ) ) ;
27 }
28 }
29 }
30
31 / / management
32 a f t e r ( L i s t l i s t , P r e d i c a t e p r e d i c a t e )
33 r e t u r n i n g ( L i s t f i l t e r e d ) :
34 e x e c u t i o n ( p u b l i c L i s t U t i l s . f i l t e r ( . . ) )
35 && args ( l i s t , p r e d i c a t e )
36 && ! c f low ( wi th in ( Median | | YSort ) ) {
37 L i s t v a l u e = y S o r t e d . g e t ( l i s t ) ;
38 i f ( v a l u e != n u l l ) {
39 L i s t s o r t e d F i l t e r e d = U t i l s . f i l t e r ( va lue ,

p r e d i c a t e ) ;
40 y S o r t e d . p u t ( f i l t e r e d , s o r t e d F i l t e r e d ) ;
41 }
42 }
43
44 p o i n t c u t DCCP( L i s t l i s t ) :
45 e x e c u t i o n ( R e s u l t DCCP ( . . ) ) && args ( l i s t ) ;
46 p o i n t c u t t o p L e v e l C l o s e s t P a i r ( L i s t l i s t ) :
47 DCCP( l i s t ) && ! cf lowbelow (DCCP( L i s t ) ) ;
48
49 / / i n i t
50 b e f or e ( L i s t l i s t ) : t o p L e v e l C l o s e s t P a i r ( l i s t ) {
51 y S o r t e d . p u t ( l i s t , U t i l s . s o r t ( l i s t , P o i n t .

yCompara tor ( ) ) ) ;
52 }
53 }

Figure 7: Second Optimization for The Closest Pair Algo-
rithm
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3.1.2 Contract 2: No Blocked or Repeated External
Memory Effects

Every around advice must only advise join points with no
external memory effects. A join point is said to have no
external memory effects iff none of the objects that existed
before the join point executes is mutated in the control flow
of the join point. For brevity, we use memory effects to
denote external memory effects.

As a result, an around advice that does not invoke
proceed() or invoke it several times cannot block or re-
peat any memory effect visible to the base program.

3.1.3 Contract 3: No Introduced Memory Effects
The fields of objects mutated in the control flow of the aspect
cannot be referenced outside the control flow of the aspect
unless reachable from one of the objects returned from the
aspect. A join point J is said to be in the control flow of
some aspect A iff J’s static shadow is lexically in A or J is
in the control flow of some join pointK whose static shadow
is lexically in A.

As a result, no advice can introduce a memory effect that
is visible by the base program.

3.2 A Model for Crosscutting Harmless Aspects
The aforementioned harmlessness contracts are too strict to
allow one harmless advice to crosscut another. For example,
suppose that we have a harmless profiling aspect P that
counts for every method the number of times it is invoked
and stores this information in a file. P is likely to crosscut
the base program as well as other aspects. The problem is
that an otherwise harmless aspectA that has one of its advice
advised by P will have a memory effect on some object (one
of P ’s counters) that can be referenced outside the control
flow of A and cannot be returned by one of A’s advice.

Below we present a relaxed version of the harmlessness
contracts that allows two harmless aspects to crosscut each
other. But first we present a key definition direct control flow.

3.2.1 Direct Control Flow
We say that a join point J is in the direct control flow of
another join point K iff K encloses J and there is no other
adviceexecution() join point L that encloses J and is
enclosed by K.

The intuition is that an adviceexecution() join point
acts as a module boundary marker; an adviceexecution()
join point is encountered before jumping into the execution
of an independently developed module.

3.2.2 Contract 2’: No Blocked or Repeated Memory
Effects

Every around advice must only advise join points with
either confined or no memory effects. A memory effect is
said to be confined iff it is made in the control flow of
some other harmless aspect C. The rationale is that if C is
a harmless advice, then memory effects in its control flow

are confined to C. Otherwise, C is blamed for violating the
harmlessness conditions.

3.2.3 Contract 3’: No Introduced Memory Effects
The fields of objects mutated in the direct control flow of the
aspect cannot be referenced outside the direct control flow of
the aspect unless reachable from one of the objects returned
from the aspect.

4. A Model for Space-for-Time Optimization
Aspects

Although the harmlessness rules are enough to guarantee the
correctness of space-for-time optimization aspects, they can
catch errors long after they occur when the root cause of the
error is no longer on the stack.

As a remedy we designed a model for space-for-time op-
timization aspects. In our model, a space-for-time optimiza-
tion aspect is valid iff

1. it is a harmless aspect,

2. it contains only three kinds of advice: memoization,
maintenance, and management,

3. it has a method boolean isConsistent() method that
checks the consistency of the aspect’s confined memory
which typically holds some sort of a memoization table
or cache,

4. its behavior satisfies the contracts enumerated in sec-
tion 4.1.

A memoization advice lazily populates the cache upon a
cache miss. Upon a cache hit, a memoization advice returns
a value from the cache instead of proceeding to the memo-
ized method. It is also possible that a memoization advice
eagerly computes the result of several possible invocations
of the memoized method. A maintenance advice restores the
cache consistency after destructive updates to objects reach-
able from the cache. A management advice lazily populates
the cache upon functional updates to objects reachable from
the cache.

4.1 A Behavioral Interface for Space-for-Time
Optimization Aspects

4.1.1 Contract 1: Consistency After Every Advice
Every advice, whether it is memoization, maintenance, or
management, must leave the aspect in a consistent state. Oth-
erwise, that advice is incorrect. The purpose of this rule is
to prevent errors from propagating from an incorrect advice
eventually leading to the memoization advice returning an
incorrect value.

4.1.2 Contract 2: Consistency Before Memoization and
Management

The aspect must be consistent before memoization and man-
agement advice. Otherwise, there is a missing maintenance
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advice. In this case, it is useful to report the most recent de-
terioration join point. That is the most recent join point at
which the aspect ceased to be consistent.

4.1.3 Contract 3: Inconsistency Before Maintenance
For each join point shadow advised by a maintenance ad-
vice, there must be at least one join point belonging to that
shadow where the cache was inconsistent before the main-
tenance advice executes. Otherwise, the shadow might be
unnecessarily caught by the pointcut of the maintenance ad-
vice.

4.1.4 Contract 4: There is a Space-for-Time
Optimization Opportunity

Every memoized method is invoked more than once with the
same or related arguments. Otherwise, there is no chance
that the optimization aspect improves the running time effi-
ciency.

4.1.5 Contract 5: There are Cache Hits
For each memoization advice, there must be at least one
cache hit. That is, execution does not affect the confined
state of the aspect. Otherwise, either the memoization advice
is incorrect or there is a missing or incorrect management
advice.

5. Implementation
We implemented set of runtime checkers for the behav-
ioral rules of our harmless aspects model and space-for-
time optimization aspects model. The checkers recognize
both kinds of aspects through the interfaces Harmless and
SpaceForTimeOpt shown in Figure 8. The checkers recog-
nize the advice kind in space-for-time optimization aspects
through the annotations @Memoization, @Maintenance,
and @Management.

1 i n t e r f a c e Harmless{}
2 i n t e r f a c e SpaceForTimeOpt ex tends h a r m l e s s {
3 boolean i s C o n s i s t e n t ( ) ;
4 }

Figure 8: Harmless and SpaceForTimeOpt interfaces

One issue that we faced with checking that an around
advice returns the same value as the join point it advises.
The issue is computing the value returned by an around
advised join point without the advice. At first, one might try
to deactivate the aspect containing the around advice under
check, proceed(), and then reactivate the aspect. Figure 9
shows a first attempt at writing such checker.

The activation/deactivation mechanism can be imple-
mented using an if() clause added to the pointcut of ev-
ery around advice in some Harmless aspect. The if()
clause can be woven into the aforementioned pointcuts us-
ing ORATA [15].

1 a s p e c t O b s e r v a t i o n a l E q u i v a l e n c e implements
Checker{

2 O b j e c t around ( Harmless t h e A s p e c t ) :
a d v i c e e x e c u t i o n ( ) && ! wi th in ( Checker +) &&
t a r g e t ( t h e A s p e c t ) {

3 i f ( i sAround ( t h i s J o i n P o i n t ) ) {
4 d e a c t i v a t e ( t h e A s p e c t ) ;
5 O b j e c t u n a d v i s e d = proceed ( t h e A s p e c t ) ;
6 a c t i v a t e ( t h e A s p e c t ) ;
7 O b j e c t a d v i s e d = proceed ( t h e A s p e c t ) ;
8 i f ( ! sameAs ( a d v i s e d , u n a d v i s e d ) ) error ( ) ;
9 re turn a d v i s e d ;

10 }
11 }
12 }

Figure 9: Naive Observational Equivalence Checker

The problem with this approach is that the checker is trig-
gered by the execution of the around advice under check.
Therefore, it is too late to deactivate the aspect under check
from within the checker.

In our checker, we adopted the following workaround. We
require every around advice in a Harmless aspect to:

1. only advise a single method call or method execution join
point,

2. be annotated with the the method it advises.

The checker invokes the method specified in the annota-
tion instead of the proceed on line 5 in Figure 9. Figure 10
shows the annotation type we use to annotate around advice
in Harmless aspects.

1 @ i n t e r f a c e O b s e r v a t i o n a l l y E q u i v a l e n t T o {
2 Class <?> c l a z z ( ) ;
3 S t r i n g methodName ( ) ;
4 Class <?>[] a rgumentTypes ( ) ;
5 S t r i n g t h i s A r g u m e n t ( ) ;
6 S t r i n g [ ] a rgumen t s ( ) ;
7 }

Figure 10: ObservationallyEquivalentTo Annotation
Type

5.1 A Special proceed Form
A better solution is to introduce a pointcut designator
aroundadviceexecution() that matches the execution of
around advice. A special form
proceedwithoutadviceexecution() should also be avail-
able in the body of around() advice with
aroundadviceexecution() pointcut.

In the body of around advice with
aroundadviceexecution(), the available around closure
executes some inner around advice which in turn has an in-
ner around closure. proceedwithoutadviceexecution()
executes the inner around closure.
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proceedwithoutadviceexecution() is designed be
used to on line 5 in Figure 9 without deactivation and ac-
tivation.

6. Related work
6.1 Harmless Aspects
Our model for harmless aspects is different from both
harmless advice [6] and pure aspects [16] in the support
for around advice. Also, our model differs from both
systems in that it is dynamically checked. Harmless ad-
vice HarmlessAdvice can directly or indirectly influence
other advice. Pure Aspects PureAspects are only checked
for purity on a specific set of classes. In our model, harm-
less aspects cannot affect the base program neither can they
directly affect other aspects. Harmless aspects can indirectly
affect other aspects through triggering or blocking advice
belonging to other aspects.

6.2 Domain Specific Aspect Languages
The earliest work on AOP [14], [10] was domain specific. An
experimental domain specific aspect language for caching is
implemented in [9]. Maintenance is limited to clearing the
cache and there is no notion of management advice. Finally,
there is no checking that the provided cache invalidation
pointcuts are complete.

6.3 Contracts and Behavioral Interfaces
Computational contracts [4] assert properties of the compu-
tations other than the relation between its inputs and out-
puts. PIPA [17] is a behavioral interface specification for
AspectJ. PIPA can assert certain control effects, for exam-
ple that the advice proceeds in specific contexts. Translu-
cid Contracts [3] are abstract algorithms that advice must be
structurally similar to. Tracemonitors [2] can be used to as-
sert that events during the program execution satisfy certain
regular expression.

7. Conclusion and Future Work
We presented a model for harmless aspects with around
advice and a model for space-for-time optimization aspects
along with a recipe for developing space-for-time optimiza-
tion aspects. We implemented a checker for both models.

In future, we plan to develop a tool that analyzes program
traces to identify optimization opportunities. We also plan
to use static analysis to reduce the runtime overhead of our
checkers. Finally, we plan to implement
proceedwithoutadviceexecution.

References
[1] U. A. Acar. Self-adjusting computation. PhD thesis, Carnegie

Mellon University, Pittsburgh, PA, USA, 2005. AAI3166271.

[2] P. Avgustinov, E. Bodden, E. Hajiyev, L. Hendren, O. Lhoták,
O. de Moor, N. Ongkingco, D. Sereni, G. Sittampalam,
J. Tibble, and M. Verbaere. Aspects for trace monitoring.

In K. Havelund, M. Nunez, G. Rosu, and B. Wolff, edi-
tors, Formal Approaches to Testing Systems and Runtime
Verification (FATES/RV), volume 4262 of Lecture Notes
in Computer Science, pages 20–39. Springer, 2006. URL
http://www.bodden.de/pubs/abh+06aspects-for.pdf.

[3] M. Bagherzadeh, H. Rajan, G. T. Leavens, and S. Mooney.
Translucid contracts for modular reasoning about aspect-
oriented programs. In Proceedings of the ACM inter-
national conference companion on Object oriented
programming systems languages and applications com-
panion, SPLASH ’10, pages 245–246, New York, NY,
USA, 2010. ACM. ISBN 978-1-4503-0240-1. doi:
http://doi.acm.org/10.1145/1869542.1869596. URL
http://doi.acm.org/10.1145/1869542.1869596.

[4] W. D. M. Christophe Scholliers, Éric Tanter. Computational
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