The Refinement Relation of Graph-Based
Generic Programs

Karl Lieberherr! and Boaz Patt-Shamir!2

! College of Computer Science

Northeastern University

Boston, MA 02115, USA
lieber@ccs.neu.edu

http://www.ccs.neu.edu/home/lieber
2 Dept. of Electrical Engineering-Systems

Tel Aviv University
Tel Aviv 69978, Israel

boaz@eng.tau.ac.il

Abstract. version 4, Sep. 7, 98

This paper studies a particular variant of Generic Programming, called
Adaptive Programming (AP). We explain the approach taken by Adap-
tive Programming to attain the goals set for Generic Programming.
Within the formalism of AP, we explore the important problem of re-
finement: given two generic programs, does one express a subset of the
programs expressed by the other? We show that two natural definitions
of refinement coincide, but the corresponding decision problem is com-
putationally intractable (co-NP-complete). We proceed to define a more
restricted notion of refinement, which arises frequently in the practice of
AP, and give an efficient algorithm for deciding it.

1 Introduction

What is Generic Programming (GP)? The organizers of this Dagstuhl workshop
view GP to have the following important characteristics:

— Expressing algorithms with minimal assumptions about data abstractions,
and vice versa, thus making them as interoperable as possible.

— Lifting of a concrete algorithm to as a general level as possible without losing
efficiency, i.e., the most abstract form such that when specialized back to the
concrete case the result is just as efficient as the original algorithm.

GP is about parametric polymorphism and we think that non-traditional
kinds of parametric polymorphism lead to particularly useful forms of Generic
Programming. By non-traditional kinds of parametric polymorphism we mean
that parameterization is over larger entities than classes. In this paper we fo-
cus on parametrization with entire class graphs and we outline how Adaptive
Programming is a form of Generic Programming which attempts to satisfy the

2 Karl Lieberherr and Boaz Patt-Shamir

two characteristics mentioned above. We show the role of traversal strategies in
Adaptive Programming by an analogy to Generic Programming and present new
results about traversal strategies. We focus on the concept of graph refinement
which is important when traversals are specialized. We show that the obvious
definition of refinement leads to a co-NP-complete decision problem and we pro-
pose a refinement definition which is computationally tractable and useful for
practical applications. The results are summarized in Table 1.

Relationship Complexity [Symbol

path-set-refinement|co-NP-complete|G1 <y G2
expansion co-NP-complete|G1 <nx G2
refinement polynomial G1 Ly Go

Table 1. Graph relationships for software evolution. A is a mapping of nodes of G»
to nodes of G1. G1 <n G if and ounly if G1 Xy G2. G1 Ex G2 implies G1 <y Go.

A generic program P defines a family of programs P(G), where G ranges
over a set of permissible actual parameters. In this paper we let G range over
directed graphs restricted by the program P. Those graphs are abstractions of
the data structures on which the program operates. Given two generic programs
P, and P, an important question is whether the programs defined by P, are
a subset of the programs defined by P,. We say that P, is a refinement of P;.
For example, the generic program P; “Find all B-objects contained in X-objects
contained in an A-object” defines a subset of the programs determined by the
generic program P» “Find all B-objects contained in an A-object.” P; and P
are generic programs since they are parameterized by a class graph (e.g., a UML
class diagram). Furthermore, the computations done by P; are a refinement of
the computations done by P».

Formalizing the notion of refinement between generic programs leads to graph
theoretic problems which have several applications. Refinement can be used to
define “subroutines” in adaptive programs as well as to define common evolution
relationships between class graphs.

1.1 Adaptive Programming (AP)

Adaptive Programming [Lie92,Lie96] is programming with traversal strategies.

The programs use graphs which are referred to by traversal strategies. A traver-

sal strategy defines traversals of graphs without referring to the details of the tra-

versed graphs. AP is a special case of Aspect-Oriented Programming [Kic96, KLM*97].
AP adds flexibility and simultaneously simplifies designs and programs. We

make a connection between GP (as practiced in the STL community) and AP

(see Table 2). In GP, algorithms are parameterized by iterators so that they can

be used with several different data structures. In AP, algorithms are parame-

terized by traversal strategies so that they can be used with several different

data structures. Traversal strategies can be viewed as a form of iterators which

Lecture Notes in Computer Science 3

Kind Algorithms|Glue Graphs
GP(STL)|Algorithms |Iterators |Data Structures
AP Adaptive Traversal |Class Graphs
Algorithms |Strategies
Table 2. Correspondence between GP and AP

are more flexible than ordinary iterators. For details on the parameterization
mechanism in AP, see [Lie96,ML98].

2 Traversal Strategies

Traversal strategies (also called succinct traversal specifications) are a key con-
cept of AP. They were introduced in [LPS97,PX195] together with efficient com-
pilation algorithms. The purpose of a traversal strategy is to succinctly define a
set of paths in a graph and as such it is a purely graph-theoretic concept. Since
there are several works which demonstrate the usefulness of traversal strategies
to programming [Lie96,PX1.95,AL.98 ML98] we are switching now to a mathe-
matical presentation of the concepts underlying strategies without giving many
connections to the practice of programming.

There are different forms of traversal strategies the most general of which
are described in [LPS97]. In this paper we only consider a special case: positive
strategy graphs. Positive strategy graphs express the path set only in a positive
way without excluding nodes and edges. Positive strategies are defined in terms
of graphs and interpreted in terms of expansions.

2.1 Definitions

A directed graph is a pair (V, E) where V is a finite set of nodes,and E CV xV
is a set of edges. Given a directed graph G = (V, E), a path is a sequence
p = (vovy...v,), where v; € V for 0 < ¢ < n, and (v;—1,v;) € E for all
0<2<n.

We first define the notion of an embedded strategy graph.

Definition 1. A graph S = (V1, Es) with a distinguished source node s and a
distinguished target node t is said to be an embedded strategy graph of a graph
G=(V2,E) if i CVa.

Intuitively, a strategy graph S is a sort of digest of the base graph G which
highlights certain connections between nodes. In the applications, a strategy
graph plays the role of a traversal specification and the base graph plays the
role of defining the class structure of an object-oriented program. For example,
a strategy graph could say: Traverse all C-objects which are contained in B-
objects which are contained in A-objects. This would be summarized as a graph
with three nodes A,B,C and an edge from A to B and an edge from B to C. In

4 Karl Lieberherr and Boaz Patt-Shamir

this paper, the base graphs are just graphs without the embellishments usually
found in a class structure. The edges of the simplified class graphs we use here
represent directed associations between classes (sometimes also called part-of
relationships). (In [LPS97,PXL95] it is shown how to generalize the concept of
a strategy graph for general class graphs used in object-oriented programs.) To
complicate matters, strategy graphs can also play the role of class graphs. In this
case refinement between strategy graphs means refinement between class graphs
in the sense that we make the object structures more complex while preserving
their essential shape.

A strategy graph S of a base graph G defines a path set as follows. We say
that a path p is an expansion of a path p' if p’ can be obtained by deleteing
some elements from p. We define PathSets (G, S) to be the set of all s —¢ paths
in G which are expansions of any s — ¢ path in S.

Unlike embedded strategies, general strategies allow the node sets of the
graphs S and G to be disjoint by using a “name mapping” between them.

Next we define the concept of a strategy graph independent of a base graph.

Definition 2. A strategy graph T is a triple T = (S, s,t), where S = (C, D) is a
directed graph, C is the set of strategy-graph nodes, D is the set of strategy-graph
edges, and s,t € C' are the source and target of T, respectively.

The connection between strategies and base graphs is done by a name map,
defined as follows.

Definition 3. Let S = (C, D) be a graph of a strategy graph and let G = (V, E)
be a base graph. A name map for S and G is a function N : C — V. Ifp is a
sequence of strategy-graph nodes, then N (p) is the sequence of base graph nodes
obtained by applying N to each element of p.

We next define expansion in the presence of a name map.

Definition 4. Let V1, Vs be arbitrary sets, and let N : Vo — Vi be a function.
We say that a sequence p; of elements of V1 is an expansion under N of a sequence
p2 of elements of Vo if N'(p2) is a subsequence of p1, where N is applied to each
element in the sequence.

With this definition, we define the concept of a path set.

Definition 5. Let G = (V1,E1) and Go = (Va, Es) be directed graphs, let
N : Vo — Vi be a function, and let s,t € Va. PathSets (G, N, G2) is defined to

be the set of all paths in G1 which are expansions under N of any s —t path in
G,.

The identity of s and ¢ is assumed to be fixed, and we shall omit subscripts
henceforth.

Using the terminology above, if the name map is the identity function Z, then
G- is an embedded strategy for G;. Note, for example, that PathSet(G,Z, G)
is exactly the set of all s — ¢ paths in G. (Exercise for the reader: Prove that

Lecture Notes in Computer Science 5

PathSet(G,Z, G) = PathSet(G,Z, H), where H is the directed graph consisting
of the single edge (s,1).)

We now turn to the first definition of the graph refinement relations. For the
case of embedded strategy graphs, we say that a strategy graph G is a path-
set-refinement of strategy graph G if for all base graphs G5 for which G; and
G, are strategies, PathSet(Gs, G;) C PathSet(Gs, Go).

Ezample 1. Strategy graph G5: Nodes A,B. Edges (A,B). Strategy graph Gi:
Nodes A,B,X,Y. Edges (A,X), (X,B), (A,Y), (Y,B). Source A, Target B. Name
map is the identity map. G; is a path-set-refinement of G.

In the presence of name maps, the situation is more complex: First, we need
the following technical concept (see Figure 1).

Fig. 1. Illustration for a function h extending g under f.

Definition 6. Let A,B,C be sets, andlet f: A— B,g: A—- C,h: B — C be
functions. We say that h extends g under f if for all a € A we have h(f(a)) =

g(a).

Definition 7. Let Gy = (Vi, E1) and Gy = (Va, E3) be directed graphs, and let
N : Vo — V1 be a function. We say that G is a path-set-refinement under N of
G4, denoted G1 <p Ga, if for all directed graphs G3 = (V3,E3) and functions
Ny : Vi = V3 and Ny : Vo = V3 such that N, extends Ny under N, we have that
PathSet(Gg,N1, G;) C PathSet(Gg,Ng, Gs2).

Note that if Gy <x G2, then usually G is the “smaller” graph: intuitively,
G is less specified than G;.

We now define another relation for graph refinement, called “expansion.”
This relation is more useful for exploring properties of graph refinement. For
the case of embedded strategy graphs, we say that a strategy graph G, is an
expansion of strategy graph G if for any path p; (from s to) in G there exists

6 Karl Lieberherr and Boaz Patt-Shamir

a path po (from s to t) in G2 such that p, is an expansion of p,. In example 1,
(G1 is an expansion of G5.
The general definition of expansion for positive strategies is:

Definition 8. Let G1 = (V1, E1) and G2 = (Va, E») be directed graphs, and let
N : Vo — Vi be a function. We say that G1 is an expansion under N of G,
denoted G1 <Xn Ga, if for any path p; € PathSet(G;,Z, Gy) there exists a path
po € PathSet(Gge,I, Ge) such that py is an expansion under N of p.

We now prove equivalence of the notions of “path-set-refinement” and “ex-
pansion”.

Theorem 1. Let G; = (V1,E1) and Gy = (Va, Es) be directed graphs, and let
N : Vo = Vi be a function. Then G1 <n G2 if and only if G1 <y Ga.

This theorem tells us that we can use the simpler definition of expansion instead
of the more complex definition of path-set-refinement which involves quantifica-
tion over general graphs.
Proof: Suppose first that G; <n G2. Let G3 be any graph, and suppose that
N1, N3 are as in Definition 7. Let p3 € PathSet(Gs,Ni, G;). To show that
G1 <y @, it suffices to prove that p; € PathSet(Gs, N2, G2). This can be
seen as follows. By Definition 5, there exists a path p; € PathSet(Gy,Z,Gy)
such that ps is an expansion of p; under N, i.e., Ni(p1) is a subsequence of
ps3. Since G; <n G2, we have by Definition 8 that there exists a path ps €
PathSet(Gz,T, Gz) such that p; is an expansion of ps under N, i.e., N'(p2) is a
subsequence of p;. It therefore follows that A7 (N (p2)) is a subsequence of p3,
and since V] extends Ny under N, we get p; € PathSet(Gs, Nz, Gs) as desired.
Next, suppose that G1 <y Ga2. Let p; € PathSet(G;,Z, G;). We need to
prove that there exists a path ps € PathSet(Gg,Z, Ge) such that N (p2) is a
subsequence of p;. This follows immediately from Definition 7, which says (by
substituting G» for Gs3, Z for N1, and N for N>) that PathSet(Ge,T, Gs) C
PathSet(G1,N, GQ) I

The following problem arises naturally in many applications of strategies.

Graph Path-set-refinement Problem (GPP)

Input: Digraphs G; = (V1, E1),G2 = (V2, Ey) with s1,t1 € V4, and a
function NV : Vo — V4.

Question: Does G <p G2 hold true?

Unfortunately, it turns out that deciding GPP is hard. To prove that, we
first consider a weakened version of GPP, defined as follows. Call an edge in a
strategy redundant if its removal does not change the path sets defined by the
strategy. For example, if there exists an edge from the source to the target, then
all other edges are redundant, since all source-target paths are expansions of this
edge anyway! More formally, an edge (u,v) in a strategy graph G is redundant
if G <7 G — {(u,v)}. We define the following decision problem.

Lecture Notes in Computer Science 7

Redundant Strategy Edge (RSE)

Input: A digraph G = (V, E) with source and target nodes s,t € V, and
a distinguished edge (u,v) € E.

Question: Is the distinguished edge (u,v) redundant?

Theorem 2. RSE is co-NP-complete.

Proof: Consider the complement problem, namely, given G,s,t and (u,v) as
above, whether G—{(u,v)} is a strict path-set-refinement of G. Call this problem
co-RSE. We prove the theorem by showing that co-RSE is NP-complete. We first
give an NP algorithm for co-RSE:

1. Generate a sequence p of nodes in V.

2. If p is not a path in G, halt the computation.

3. If p is an expansion under Z of a path in G — {(u,v)}, halt the computation.
4. Return “(u,v) is not redundant.”

Next, we prove that co-RSE is NP-hard. This is done by reducing 3SAT
[GJ79] to co-RSE. Fix an instance of 3SAT with m clauses ¢i,...,¢n and n
variables z1,...,z,. That is, we are given a Boolean formula, where each clause
¢; consists of three literals y;1, ¥:2, ¥:3, and each literal is either a variable z; or
its negation —z;. We transform the formula to an instance of co-RSE as follows
(see Figure 2 for an example).

Fig. 2. An example of the reduction linking satisfiability with non-redundancy of dis-
tinguished edge: the Boolean formula is (21 V z2V =z3) A (nz1 V2 V ~z3). The dashed
arrow connecting d» and u; represents the distinguished edge. (- is shown as —.)

8 Karl Lieberherr and Boaz Patt-Shamir

1. For each clause ¢;, create four nodes labeled d;, z;1, 252, 2i3-

For each variable z;, create three nodes labeled u;, w;, ~w;.

3. Create a source node s and a target node . Below, we identify for convenience
s=dp and t = up41-

4. Fori=1,...,m and k = 1,2,3, create edges (zi,d;) and (d;_1, zix)-

Fori=1,...,n, create edges (u;,w;), (u;, ~w;) and (w;, Uir1), (Wi, Uir1)-

6. For s = 1,...,m and k£ = 1,2,3, connect the node representing the literal
yir and its corresponding w node. Specifically, if y;x = x;, create the edge
(zik,w;), and if y; = —x;, create the edge (zik, ~w;).

7. Create an edge (dpm,u1).

8. The co-RSE instance is given by G as defined above, where the distinguished
edge is (dp, u1)-

o

ot

We now need to show that the instance of co-RSE constructed by the transfor-
mation is a YES instance if and only if the Boolean formula is satisfiable. First,
we define a one-to-one correspondence between truth assignments and s —t paths
containing the distinguished edge (d,,,u1): each such path visits exactly one of
wj, ~w; for 1 < 7 < n; if w; is in the path, we will have FALSE assigned to z; in
the corresponding truth assignment, and if —wj is in the path, we assign TRUE
to x;.

Note that any s —t path in G — {(dm,u1)} (i-e., a path not using the distin-
guished edge) must use one of the edges created at Step 6 of the transformation.

To complete the proof, observe that there exists a path which is not an
expansion of a path in G — {(dy,,u1)} if and only if there exists a path passing
through the distinguished edge which does not contain both endpoints of any of
the edges created in Step 6. This in turn holds (using the corresponding truth
assignment) if and only if there is a literal with value TRUE in each clause: the
literals are connected to their FALSE values. It follows that the co-RSE instance
is a YES instance if and only if the Boolean formula is satisfiable. 1

A direct implication of Theorem 2 is that the problem of finding a strategy
with minimal representation is hard. With regard to the main point of this paper,
we have the following easy corollary.

Corollary 1. GPP is co-NP-Complete.

This corollary tells us that when we build tools for AP we cannot use the gen-
eral definition of expansion since it would result in a slow design tool for large
applications.

Proof: By reduction from RSE: given an instance (G, s, t, (u,v)) of RSE, define
an instance of GPP by G1 = G — {(u,v)}, G2 = G, and ask whether G1 <7 G>.
|

3 The Refinement Relation

In this section we define a more stringent version of the graph path-set-refinement
relation, called the refinement relation. We argue that this relation is central to

Lecture Notes in Computer Science 9

software engineering practices. We show that the path-set-refinement relation is
a generalization of the refinement relation, and we give an efficient algorithm for
deciding the refinement relation.

In this section we invoke a mathematical pattern called the Tractable Special-
ization Pattern (TSP) which has several applications in computer science. TSP
is defined as follows: Given is a decision problem which has a high complexity
but which we need to solve for practical purposes. We define a more strict ver-
sion of the decision problem for which we can solve the decision problem more
efficiently. The goal of the restricted version is that it does not disallow too many
of the inputs which are occurring in practice. Fig. 3 shows two applications of
TSP. The first is to graph properties in this paper and the second to context-
free grammar properties in language theory [HU79]. The second column in Fig. 3
shows a decision problem with its complexity. The third column shows a stricter
form of the decision problem with the hopefully lower complexity.

Area Decision Problem Stricter
Graphs path-set-refinement (co-NP-complete)|refinement (polynomial)
Grammars|ambiguous (undecidable) LL(1) (polynomial)

Table 3. Applications of the Tractable Specialization Pattern

We first consider the case of embedded strategy graphs. Let G1 = (V1, E1)
and G2 = (Va, E2) be directed graphs with V5 a subset of V1. We say that Gy is
a refinement of G2, denoted G; C Ga, if for all u,v € V2 we have that (u,v) € Es
if and only if there exists a path in G between u and v which does not use in
its interior a node in V5.

Ezample 2. Strategy graph G,: Nodes A,B,C. Edges (A,B), (B,C). Strategy
graph G1: Nodes A,B,C. Edges (A,C), (C,B), (B,C)). Source A, Target C. Name
map is identity map. G is not a refinement of G5. For the edge from A to B in
G4 there is no path in G; from A to B which does not go through C. However,
strategy graph G3: Nodes A, B, C, X. Edges (A,X), (X,B), (B,C) is a refinement
of Gz.

The intuition behind the graph refinement relation is that we are allowed to
replace an edge with a more complex graph using new nodes. In example 2, we
replace the edge (A,B) by the graph (A,X),(X,B), where X is a new node and
not one of A,B or C. Informally, G; is a refinement of G5 if the connectivity of
G- is exactly and “without surprises” in G1. ”Without surprises” means that
the nodes of G2 can appear on paths only as advertised by G5. For example, if
G, has nodes A, B and C and an edge (A,B) but not an edge (A,C) then a path
A ... C .. Bin G; is disallowed. We first need the following technical concepts
to define graph refinement in the presence of a name map.

Definition 9. Let G1 = (V1, E1) and G2 = (Va, E») be directed graphs, and let
N : Vo = Vi be a function. Given a path p, let first(p) and last(p) denote its

10 Karl Lieberherr and Boaz Patt-Shamir

first and last nodes, respectively. A path p; in Gy (not necessarily an s —t path)
is pure if first(p) = N(u) and last(p) = N (v) for some u,v € Va, and none of
the internal nodes of p is the image of a node in V.

We define refinements as strategies whose pure-path connectivity is the same
as the edge-connectivity in the super-strategy. Formally, we have the following
definition.

Definition 10. Let G; = (V1,E1) and G2 = (Va, Ey) be directed graphs, and
let N : Vo — V1 be a function. We say that Gy is a refinement of G5 under NV,
denoted G1 Ty Ga, if for all u,v € V3 we have that (u,v) € Ey if and only if
there exists a pure path in G1 between N (u) and N (v).

To justify Definition 10, we remark that the notion of strategies is particu-
larly useful in evolution of software, where it is often the case that some crude
concepts (and objects) are refined in the course of development. In such sce-
narios, refining an edge to a more complex structure is usually done with the
aid of a refinement. It is important to check whether such an evolution leads
to modifying the connectivity structure of the strategy, which is the question of
deciding the refinement relation.

The following theorem states that the refinement relation is a subrelation of
the path-set-refinement relation.

Theorem 3. If G1 T G, then G1 <y Ga.

Proof: Suppose that G; Car G=2. By Theorem 1, it is sufficient to prove that
G1 =Xn Ga2. Let p any s — t path in G2. Decompose p = pops - - - pn, Where each
p; is a pure path (this is possible since s,t are in G3). By definition, we have
that the sequence s = first(po), first(p1), - - -, first(pn), last(p,) = t is a path in
G>. It follows that any s — ¢ path in (G; is an expansion of an s — ¢t path in G,
and hence G; <y G». 1

The converse of Theorem 3 does not hold as demonstarted by example 3.

Ezample 3. We give an example of two graphs G; and G2, where G is an
expansion of G, but (G is not a refinement of G5. This proves that expansion
does not imply refinement. An entire family of such examples is obtained by
taking for Gy the directed cycle for n nodes and for G5 the complete graph
for n nodes. As source we select the first node and as target the nth node. For
n=3: G1: Nodes A,B,C. Edges: (A,B), (B,C), (C,A). G2: Nodes A,B,C. Edges:
all ordered pairs. GG1 is an expansion of G2 since G2 is complete and therefore it
has all the paths we want. G is not a refinement of G because for (C,B) in G
there is no path in G; from C to B which does not use A, i.e., there is no pure
path from C to B in G;.

We now give an algorithm to decide whether G1 Ca G2. This is done by a
simple graph search algorithm defined as follows.

First Targets Search (FTS)
Input: Digraph G = (V, E) a node vy € V, and a set of targets T C V.

Lecture Notes in Computer Science 11

Output: A subset 7' C T of the targets, such that for each ¢t € T, there
exists a path in G from vy to ¢t which does not contain any other target.

It is easy to implement FTS (using BFS or DFS) in linear time, assuming
that we can test in constant time whether a node is a target. In Figure 3 we give
a BFS-based algorithm, using a FIFO queue Q.

PROCEDURE FTS(G,v,T)
mark vo visited
insert vp to tail of Q
while Q # 0
remove u from head of Q
if u € T then add u to output set //-..and don’t explore this path further
else for_all v such that (u,v) € E
if v is not marked visited then
mark v visited
insert v to tail of Q
end_if
end_if
end_while

Fig. 3. Algorithm for First Targets Search

Running FTS can detect superfluous or missing connectivity in G, when
compared to G2 under N. The algorithm for deciding the refinement relation
proceeds as follows.

Input: G1 = (‘/l,El),GQ = (‘/Q,EQ),N : ‘/2 — Vi

1. Let T C Vi be the image of V5 under NV, i.e., T = {N(v) | v € Va}.
2. For each node v € V5:
(a) Perform FTS from N (v) with targets T' in G;. Let the resulting set be
T,, ie., Ty = FTS(G1, N (v),T).
(b) If there exists u € V5 such that (v,u) ¢ E; and N (u) € T,, or (v,u) € E
and N (u) ¢ T,, return “G; Zx G»” and halt.
3. Return “Gy Cn Gs.”

The running time of the algorithm is O(|Ey| - |V2]).

3.1 Related Work

This paper studies refinement relations between graphs. The Subgraph Homeo-
morphism problem (SH) is related but different from the problems studied here.

12 Karl Lieberherr and Boaz Patt-Shamir

Definition 11. SH

instance: graph G = (V, E)

question: does G contain a subgraph homeomorphic to H, i.e., a subgraph G' =
(V', E") that can be converted to a graph isomorphic to H by repeatedly removing
any vertezr of degree 2 and adding the edge joining its two neighbors?

SH is NP-complete for variable H. See [FHWS80] for general results. SH sup-
ports only limited graph refinements because only vertices of degree 2 may be
removed.

[GJT9] mentions other refinement-style problems, such as graph contractabil-
ity, graph homomorphism and D-morphism but none of those problems match
our definition of graph refinement.

4 Conclusions

We have discussed how Generic Programming through parameterization of pro-
grams with entire graph structures (as opposed to only single classes) leads to
more flexible programs. We introduced graph theory which is needed to better
apply and understand this new form of generic programming, called Adaptive
Programming.

We introduced the concept of refinement between graphs which has the fol-
lowing applications: It can be applied to 1. check efficiently whether one traversal
is a subtraversal of another (path-set-refinement = expansion). 2. check whether
one class graph is a generalization of another class graph so that the contain-
ment relationships are preserved (refinement). This kind of graph generalization
relation is useful for automating the evolution of adaptive programs. 3. check
whether an adaptive program defines a subset of the programs defined by another
adaptive program (refinement). The results are summarized in Table 1.

5 Acknowledgements

We would like to thank Mira Mezini, Joshua Marshall, Doug Orleans, and Jo-
han Ovlinger for the ideas they contributed to the paper. This work has been
partially supported by the Defense Advanced Projects Agency (DARPA), and
Rome Laboratory, under agreement number F30602-96-2-0239. The views and
conclusions herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or
implied, of the Defense Advanced Research Projects Agency, Rome Laboratory
or the U.S. Government.

http://www.ccs.neu.edu /research/demeter /biblio/graph-refine.html contains
further information about this paper including links to online versions of some
related papers.

Lecture Notes in Computer Science 13

References

[AL98] Dean Allemang and Karl J. Lieberherr. Softening Dependencies between
Interfaces. Technical Report NU-CCS-98-07, College of Computer Science,
Northeastern University, Boston, MA, August 1998.

[FHWS80] S. Fortune, John Hopcroft, and J. Wyllie. The directed subgraph homeo-
morphism problem. Theoretical Computer Science, 10:111-121, 1980.

[GJT79] Michael R. Garey and David S. Johnson. Computers and Intractability.
Freeman, 1979.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

[Kic96] Gregor Kiczales. Aspect-oriented programming. ACM Computing Surveys,

28A(4), December 1996.

[KLM*97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina

[Lie92]

[Lie96]

[LPS97]

[ML98]

[PXL95]

Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.
In European Conference on Object-Oriented Programming, pages 220-242.
Springer Verlag, 1997.

Karl J. Lieberherr. Component enhancement: An adaptive reusability mech-
anism for groups of collaborating classes. In J. van Leeuwen, editor, In-
formation Processing '92, 12th World Computer Congress, pages 179-185,
Madrid, Spain, 1992. Elsevier.

Karl J. Lieberherr. Adaptive Object-Oriented Software: The
Demeter Method with Propagation Patterns. PWS Publishing
Company, Boston, 1996. ISBN 0-534-94602-X, entire book at

www.ccs.neu.edu/research/demeter.

Karl J. Lieberherr and Boaz Patt-Shamir. Traversals of Object Structures:
Specification and Efficient Implementation. Technical Report NU-CCS-97-
15, College of Computer Science, Northeastern University, Boston, MA, Sep.
1997.

Mira Mezini and Karl Lieberherr. Adaptive plug-and-play components for
evolutionary software development. Technical Report NU-CCS-98-3, North-
eastern University, April 1998. To appear in OOPSLA ’98.

Jens Palsberg, Cun Xiao, and Karl Lieberherr. Efficient implementation
of adaptive software. ACM Transactions on Programming Languages and
Systems, 17(2):264-292, March 1995.

