
Demeter Demysti�ed

Mitchell Wand

July ��� ����

Abstract

My understanding of what Karl�s stu� is about� what it�s good for�

and what its limitations are�

For the past eight years or so� Karl has been working on projects aimed
at making object�oriented programming less onerous� In the process� he has
developed a programming model and vocabulary that newcomers often �nd
di�cult� In this document� I will give my understanding of these projects
and their signi�cance�

This is not a scholarly survey with proper citations� It is instead impres�
sionistic and critical� I will try throughout to be as accurate as I can� but
errors in fact or interpretation are of course mine� and not Karl�s� When in
doubt� consult Karl�s book �	
�

Karl�s work seems to divide into four parts�

� The Demeter system

� The Law of Demeter

� Propagation Patterns

� Adaptive Programming

� The Demeter System

The Demeter system is a program framework for implementing the hierar�
chical data model in an object�oriented system� It starts with the notion of
a class graph or class dictionary graph�

	



� In database terminology� a class graph is roughly a database schema
in the hierarchical model�

� In Lisp terminology� it is roughly a DEFSTRUCT with type information�

� In SML terminology� it is roughly a datatype de�nition�

For example� in SML one might declare such hierarchical data by

datatype Exp � Ident�Exp of Ident

� Abstraction�Exp of �Ident � Exp�

� Application�Exp of �Exp � Exp list�

In SML� operations on such data would typically be speci�ed by pattern
expressions� In Pascal or C �or even in Scheme
 one would generally imple�
ment such data by records containing a discriminant or tag �eld� Operations
on this data would dispatch on the tag �eld�

The Demeter system provides a tool for implementing such data in an
object�oriented language� It does so by creating a class Exp with subclasses
Ident�Exp� Abstraction�Exp� and Application�Exp� Instead of having a
single procedure foo� it associates a foo method with each subclass� �In
C��� this will be a virtual method associated with the superclass Exp
�

The Demeter system provides a set of generic tools for use with this im�
plementation strategy� including generated parsers and unparsers� a graph�
ical front�end� etc�

The notion of a class dictionary graph in Demeter is somewhat richer
than this analogy would indicate� Class graphs in Demeter add to the SML
datatype de�nition the following capabilities�

	� SML datatype de�nitions de�ne types �such as Exp
 and constructors

�such as Abstraction�Exp
� In Demeter� the corresponding entities
are called alternation classes and construction classes� Also�
in Demeter� the data �elds have names� corresponding to instance
variables� Hence in Demeter one would write something like

Exp � Ident�Exp � Abstraction�Exp � Application�Exp 	

Ident�Exp � 
identifier� Ident 	

Abstraction�Exp � �fn� 
bound�var� Ident ���� 
body� Exp 	

Application�Exp � 
rator� Exp 
rands� ��� List�Exp� ��� 	

�



The quoted strings specify the concrete syntax for the parser and un�
parser� Demeter o�ers a variety of input syntaxes� this is the so�called
�concise� syntax�

�� Demeter also allows instance variables to be associated with alterna�
tion classes� such variables become instance variables of each of the
alternatives� This gives a �avor of inheritance�

�� Demeter also allows alternation classes to have other alternation classes
as alternatives� This allows the designer considerable �exibility in
grouping classes� This also means that many di�erent class graphs
actually specify the same set of objects� One can decide whether two
class graphs determine the same objects by transforming the class
graph until it uses no inheritance �like a datatype declaration
 and
removing any dead classes� This can be done by a sequence of local
transformations�

The Demeter system was originally implemented with Common Lisp
Flavors as its target language� This system did not get wide usage� perhaps
because it o�ered little value above the existing defstruct� The Demeter
data�de�nition system was then ported to C��� where it got considerably
more attention� perhaps because programming in C�� is so di�cult that
almost anything helps� We have little data on the actual usage of Deme�
ter�C��� and still less data on how much of its usage outside Northeastern
is due to the data�de�nition facilities and how much is due to the propaga�
tion patterns discussed below�

More recently� versions of Demeter have been developed for Stk and
Perl�� versions for Java and the Booch�Rumbaugh Uni�ed Modeling Lan�
guage UML are in the works or contemplated�

Each of these implementations is a preprocessor that extracts the Deme�
ter de�nitions and generates appropriate segments of code in the target
language� Demeter does not attempt to process code written in the target
language� such as the bodies of methods�

� The Law of Demeter

In some object systems� instance variables and methods are assumed to be
private� in others� they are assumed to be public� The Law of Demeter was

�



an attempt to formulate a rational notion of visibility that would bridge this
gap� This was claimed to increase program coherence� so that knowledge of
the internals of a class would be restricted to that class and its neighbors�
even if the language would permit references in other contexts�

There were various versions of the Law� strong vs� weak� run�time vs�
compile�time� The Law of Demeter appears to be quite independent of the
Demeter system described above�

� Propagation Patterns

Demeter�s underlying data model is that of a directed graph whose nodes are
either atomic data or are labelled by their classes �the so�called constructor

classes
� and where the edges are labelled by instance variables� This graph
is called the object graph� A class dictionary determines which such graphs
are legal in any application�

One often wishes to traverse some part of an object graph� perhaps
performing some operation on the nodes as they are traversed� Lieberherr
observed that often one could specify such traversals by simply specifying the
classes of the source and target nodes� Such a traversal speci�cation is called
a propagation directive� The traversal speci�cation determines a subgraph
of the object graph� This subgraph is then traversed depth��rst� and actions
can be performed at each node� The action to be performed at each node is
called its wrapper� and is determined by the class of the node� Because the
program executes a depth��rst traversal� we can distinguish the pre�x and
post�x visits to a node� hence we have pre�x and post�x wrappers� Actions
can also be associated with edges� The entire speci�cation� including the
propagation directive and the wrappers� is called a propagation pattern� �I
�nd the terminology of propagation patterns and wrappers unmotivated at
best� I don�t know if others �nd them equally discomforting
�

Thus� to print out all the variables in an expression� we might write
something like�

�operation� print�vars ��

�traverse� �from� Exp �to� Ident�Exp

�wrapper� Ident�Exp

�prefix� �
 print �self	ident� 
�

�



Here we have written the wrapper in pseudo�code� since Demeter does not
make a commitment about the target language�

To print out all the free variables� we might write

�operation� print�free�vars �bound�vars�

�traverse� �from� Exp �to� Ident�Exp

�wrapper� Ident�Exp

�
 if ��member �self	ident� bound�vars�

then print �self	ident�� 
�

�wrapper� Abstraction�Exp

�prefix�

�
 bound�vars � cons �self	bound�var� bound�vars� 
�

�suffix�

�
 bound�vars � cdr �bound�vars� 
�

Thus a propagation pattern is a program framework� it constructs a
control structure into which the programmer can insert bits of code�

The propagation pattern tool takes a propagation pattern �traversal
speci�cation
 and a class graph �schema
 and produces a program that will
perform the traversal on any object graph of the schema�

Full�blown propagation patterns have additional features not shown above�

� The traversal speci�cations may be more complex than shown above�
they may include union� concatenation� etc�� of paths� and the ability
to specify that certain edges are not to be included�

� The operations may also include transportation directives that allow
additional bits of state to be carried along the traversal�

The propagation pattern framework has several shortcomings�

� Its formulation in terms of paths is somewhat misleading� While prop�
agation directives are formulated in terms of a set of paths� it is more
intuitive to think of the paths as determining a subgraph for a con�
tiguous set of nodes in the graph� then the subgraph is traversed� with
the pre�x and post�x actions performed at the appropriate times in
the traversal�

�



� The semantics of a traversal speci�cation on a graph that changes
during traversal has been the subject of considerable debate within
the Demeter group�

� The framework is essentially imperative� It is not so clear how to do
more complicated tasks that are easily expressed recursively� such as
annotating a parse tree� or constructing a copy of a parse tree with
each node annotated by its set of free variables� Such operations would
seem at best to require hand�simulation of the data structures involved
in the recursion� the manipulation of bound�vars is simple enough�
but more complicated examples seem to require uncomfortably much
hand�coding�

� Adaptive Programming

Because a propagation pattern usually speci�es the classes of only the start�
ing and ending nodes� the propagation pattern can be used on object graphs
from a variety of class graphs �schemas
� For example� the propagation pat�
terns above would continue to work if we added a conditional expression to
our language by writing

Exp � Ident�Exp � Abstraction�Exp � Application�Exp � Conditional�Exp 	

Conditional�Exp � �if� 
test�exp� Exp

�then� 
true�exp� Exp

�else� 
false�exp� Exp 	

This observation is why Karl calls programming with propagation pat�
terns adaptive programming� the propagation patterns adapts to changes in
the schema without modi�cation�

A propagation pattern may be thought of as polymorphic in the �type�
of the graphs that it may be called upon to traverse� Karl sometimes uses
the term customizer to denote a class graph when it used as input to a prop�
agation pattern� �I �nd this terminology confusing� I would have expected
the customizer to be the program that takes a propagation pattern and a
class graph and produces a customized traversal program�


A fundamental thesis of Karl�s recent work is that this kind of polymor�
phism is useful� This is a pragmatic question� about which we have little
data� While the system has been used intensively �most importantly for

�



its own development� of course
� there has been no attempt to monitor and
quantify the steps by which schemata and design have evolved� Such quan�
titative measures would help determine the importance of this particular
kind of adaptiveness�

It is likely that many evolutionary schema changes involve adding small
bits of data or additional cases similar to existing ones� like adding a con�
ditional expression to our example� With such changes� the program will
continue to do something with the new data� but it is not clear whether
what it does will be correct� For instance� consider adding a let�expression
to our example�

Let�Exp � �let� 
bound�var� Ident ��� 
rhs� Exp �in� 
body� Exp

Even though we continued to use the instance variable bound�var for the
bound variable �so that the �bypassing� bound�var directive is still ap�
propriate
� we need to add detailed knowledge about the new construct for
the program to work correctly �i�e�� the variable is bound in the body but
not the rhs
� It seems just as likely that most schema changes involve this
kind of new knowledge� It would seem that capturing such knowledge is a
key to change management�

I have considered adaptiveness separately from the propagation pattern
mechanism because I believe they really are separate� It is entirely possible
that propagation patterns will be judged to be a worthwhile programming
construct even if it turns out that the claim of adaptiveness is unjusti�ed�
and it is also possible that the study of adaptiveness or resilience in the face
of change will be worthwhile even if propagation patterns are not widely
adopted�

References

�	
 Karl Lieberherr� Adaptive Object�Oriented Software� The Demeter

Method with Propagation Patterns� PWS Publishing Company� Boston�
MA� 	����

�


