Demeter Demystified

Mitchell Wand

July 11, 1996

Abstract

My understanding of what Karl’s stuff is about, what it’s good for,
and what its limitations are.

For the past eight years or so, Karl has been working on projects aimed
at making object-oriented programming less onerous. In the process, he has
developed a programming model and vocabulary that newcomers often find
difficult. In this document, I will give my understanding of these projects
and their significance.

This is not a scholarly survey with proper citations. It is instead impres-
sionistic and critical. T will try throughout to be as accurate as I can, but
errors in fact or interpretation are of course mine, and not Karl’s. When in
doubt, consult Karl’s book [1].

Karl’s work seems to divide into four parts:
e The Demeter system
e The Law of Demeter
¢ Propagation Patterns

o Adaptive Programming

1 The Demeter System

The Demeter system is a program framework for implementing the hierar-
chical data model in an object-oriented system. It starts with the notion of
a class graph or class dictionary graph.

¢ In database terminology, a class graph is roughly a database schema
in the hierarchical model.

e In Lisp terminology, it is roughly a DEFSTRUCT with type information.

¢ In SML terminology, it is roughly a datatype definition.
For example, in SMI one might declare such hierarchical data by

datatype Exp = Ident_Exp of Ident
| Abstraction_Exp of (Ident * Exp)
| Application_Exp of (Exp * Exp list)

In SML, operations on such data would typically be specified by pattern
expressions. In Pascal or C (or even in Scheme) one would generally imple-
ment such data by records containing a discriminant or tag field. Operations
on this data would dispatch on the tag field.

The Demeter system provides a tool for implementing such data in an
object-oriented language. It does so by creating a class Exp with subclasses
Ident_Exp, Abstraction_Exp, and Application_Exp. Instead of having a
single procedure foo, it associates a foo method with each subclass. (In
C++, this will be a virtual method associated with the superclass Exp).

The Demeter system provides a set of generic tools for use with this im-
plementation strategy, including generated parsers and unparsers, a graph-
ical front-end, etc.

The notion of a class dictionary graph in Demeter is somewhat richer
than this analogy would indicate. Class graphs in Demeter add to the SML
datatype definition the following capabilities:

1. SML datatype definitions define types (such as Exp) and constructors
(such as Abstraction_Exp). In Demeter, the corresponding entities
are called alternation classes and construction classes. Also,
in Demeter, the data fields have names, corresponding to instance
variables. Hence in Demeter one would write something like

Exp : Ident_Exp | Abstraction_Exp | Application_Exp .
Ident_Exp = <identifier> Ident

Abstraction_Exp = "fn" <bound_var> Ident "=>" <body> Exp .
Application_Exp = <rator> Exp <rands> "(" List(Exp) ")"

The quoted strings specify the concrete syntax for the parser and un-
parser. Demeter offers a variety of input syntaxes; this is the so-called
“concise” syntax.

2. Demeter also allows instance variables to be associated with alterna-
tion classes; such variables become instance variables of each of the
alternatives. This gives a flavor of inheritance.

3. Demeter also allows alternation classes to have other alternation classes
as alternatives. This allows the designer considerable flexibility in
grouping classes. This also means that many different class graphs
actually specify the same set of objects. One can decide whether two
class graphs determine the same objects by transforming the class
graph until it uses no inheritance (like a datatype declaration) and
removing any dead classes. This can be done by a sequence of local
transformations.

The Demeter system was originally implemented with Common Lisp
Flavors as its target language. This system did not get wide usage, perhaps
because it offered little value above the existing defstruct. The Demeter
data-definition system was then ported to C++, where it got considerably
more attention, perhaps because programming in C++ is so difficult that
almost anything helps. We have little data on the actual usage of Deme-
ter/C++4, and still less data on how much of its usage outside Northeastern
is due to the data-definition facilities and how much is due to the propaga-
tion patterns discussed below.

More recently, versions of Demeter have been developed for Stk and
Perl5; versions for Java and the Booch-Rumbaugh Unified Modeling Lan-
guage UML are in the works or contemplated.

Each of these implementations is a preprocessor that extracts the Deme-
ter definitions and generates appropriate segments of code in the target
language; Demeter does not attempt to process code written in the target
language, such as the bodies of methods.

2 The Law of Demeter

In some object systems, instance variables and methods are assumed to be
private; in others, they are assumed to be public. The Law of Demeter was

an attempt to formulate a rational notion of visibility that would bridge this
gap. This was claimed to increase program coherence, so that knowledge of
the internals of a class would be restricted to that class and its neighbors,
even if the language would permit references in other contexts.

There were various versions of the Law: strong vs. weak, run-time vs.
compile-time. The Law of Demeter appears to be quite independent of the
Demeter system described above.

3 Propagation Patterns

Demeter’s underlying data model is that of a directed graph whose nodes are
either atomic data or are labelled by their classes (the so-called constructor
classes), and where the edges are labelled by instance variables. This graph
is called the object graph. A class dictionary determines which such graphs
are legal in any application.

One often wishes to traverse some part of an object graph, perhaps
performing some operation on the nodes as they are traversed. Lieberherr
observed that often one could specify such traversals by simply specifying the
classes of the source and target nodes. Such a traversal specification is called
a propagation directive. The traversal specification determines a subgraph
of the object graph. This subgraph is then traversed depth-first, and actions
can be performed at each node. The action to be performed at each node is
called its wrapper, and is determined by the class of the node. Because the
program executes a depth-first traversal, we can distinguish the prefix and
postfix visits to a node; hence we have prefix and postfix wrappers. Actions
can also be associated with edges. The entire specification, including the
propagation directive and the wrappers, is called a propagation pattern. (1
find the terminology of propagation patterns and wrappers unmotivated at
best; I don’t know if others find them equally discomforting).

Thus, to print out all the variables in an expression, we might write
something like:

xoperation* print_vars ()

traverse *from* Exp *tox Ident_Exp
wrapper Ident_Exp

xprefix* (@ print (self.ident) @)

Here we have written the wrapper in pseudo-code, since Demeter does not
make a commitment about the target language.

To print out all the free variables, we might write

xoperation* print_free_vars (bound_vars)
traverse *from* Exp *tox Ident_Exp
wrapper Ident_Exp
(@ if !'(member (self.ident, bound_vars)
then print (self.ident); @)
wrapper Abstraction_Exp
prefix

(@ bound_vars = cons (self.bound_var, bound_vars) @)
suffixx
(@ bound_vars

cdr (bound_vars) @)

Thus a propagation pattern is a program framework: it constructs a
control structure into which the programmer can insert bits of code.

The propagation pattern tool takes a propagation pattern (traversal
specification) and a class graph (schema) and produces a program that will
perform the traversal on any object graph of the schema.

Full-blown propagation patterns have additional features not shown above:

e The traversal specifications may be more complex than shown above:
they may include union, concatenation, etc., of paths, and the ability
to specify that certain edges are not to be included.

e The operations may also include transportation directives that allow
additional bits of state to be carried along the traversal.

The propagation pattern framework has several shortcomings:

o [ts formulation in terms of paths is somewhat misleading. While prop-
agation directives are formulated in terms of a set of paths, it is more
intuitive to think of the paths as determining a subgraph for a con-
tiguous set of nodes in the graph; then the subgraph is traversed, with
the prefix and postfix actions performed at the appropriate times in
the traversal.

e The semantics of a traversal specification on a graph that changes
during traversal has been the subject of considerable debate within
the Demeter group.

e The framework is essentially imperative. It is not so clear how to do
more complicated tasks that are easily expressed recursively, such as
annotating a parse tree, or constructing a copy of a parse tree with
each node annotated by its set of free variables. Such operations would
seem at best to require hand-simulation of the data structures involved
in the recursion; the manipulation of bound_vars is simple enough,
but more complicated examples seem to require uncomfortably much
hand-coding.

4 Adaptive Programming

Because a propagation pattern usually specifies the classes of only the start-
ing and ending nodes, the propagation pattern can be used on object graphs
from a variety of class graphs (schemas). For example, the propagation pat-
terns above would continue to work if we added a conditional expression to
our language by writing

Exp : Ident_Exp | Abstraction_Exp | Application_Exp | Conditional_Exp .

Conditional_Exp = "if" <test_exp> Exp
"then" <true_exp> Exp
"else" <false_exp> Exp .

This observation is why Karl calls programming with propagation pat-
terns adaptive programming: the propagation patterns adapts to changes in
the schema without modification.

A propagation pattern may be thought of as polymorphic in the “type”
of the graphs that it may be called upon to traverse. Karl sometimes uses
the term customizer to denote a class graph when it used as input to a prop-
agation pattern. (I find this terminology confusing; I would have expected
the customizer to be the program that takes a propagation pattern and a
class graph and produces a customized traversal program.)

A fundamental thesis of Karl’s recent work is that this kind of polymor-
phism is useful. This is a pragmatic question, about which we have little
data. While the system has been used intensively (most importantly for

its own development, of course), there has been no attempt to monitor and
quantify the steps by which schemata and design have evolved. Such quan-
titative measures would help determine the importance of this particular
kind of adaptiveness.

It is likely that many evolutionary schema changes involve adding small
bits of data or additional cases similar to existing ones, like adding a con-
ditional expression to our example. With such changes, the program will
continue to do something with the new data, but it is not clear whether
what it does will be correct. For instance, consider adding a let-expression
to our example:

Let_Exp = "let" <bound_var> Ident '"=" <rhs> Exp "in" <body> Exp

Even though we continued to use the instance variable bound_var for the
bound variable (so that the *bypassing* bound_var directive is still ap-
propriate), we need to add detailed knowledge about the new construct for
the program to work correctly (i.e., the variable is bound in the body but
not the rhs). It seems just as likely that most schema changes involve this
kind of new knowledge. It would seem that capturing such knowledge is a
key to change management.

I have considered adaptiveness separately from the propagation pattern
mechanism because I believe they really are separate. It is entirely possible
that propagation patterns will be judged to be a worthwhile programming
construct even if it turns out that the claim of adaptiveness is unjustified;
and it is also possible that the study of adaptiveness or resilience in the face
of change will be worthwhile even if propagation patterns are not widely
adopted.

References

[1] Karl Lieberherr, Adaptive Object-Oriented Software: The Demeter
Method with Propagation Patterns, PWS Publishing Company, Boston,
MA. 1996.

