Controlled Evolution of Adaptive Programs

Ahmed Abdelmeged Therapon Skotiniotis Karl Lieberherr

College of Computer & Information Science
Northeastern University, 360 Huntington Avenue
Boston, Massachusetts 02115 USA.
{mohsen,skotthe,lieber}@ccs.neu.edu

ABSTRACT
Adaptive programming (AP) is a programming paradigm for expressing computations over semi-structured data graphs. An adaptive program is written against an entire family of input schemas and, at compilation time, it is instantiated for a specific input schema. Adaptive programs seamlessly adapt to switching of their input schemas. Due to their organization as traversals, adaptive programs are also re-targetable to different execution platforms (e.g. single and multi-core architectures).

As other programming paradigms, adaptive programs are also susceptible to unsafe evolutions; evolutions that jeopardize the correctness of adaptive programs yet go uncaught. In this paper, we study the evolution of adaptive programs and present two complementary approaches for controlling unsafe evolutions.

Categories and Subject Descriptors
D.2.4 [SOFTWARE ENGINEERING]: Software/Program VerificationAssertion checkers, Programming by contract, Reliability; D.3.3 [PROGRAMMING LANGUAGES]: Language Constructs and Features; D.1.2 [PROGRAMMING TECHNIQUES]: Automatic ProgrammingProgram modification, Program verification; F.3.1 [LOGICS AND MEANINGS OF PROGRAMS]: Specifying and Verifying and Reasoning about ProgramsAssertions, Specification techniques

General Terms
Languages, Design, Reliability

Keywords
Adaptive Programming, Evolution, Assertion

1. INTRODUCTION
Adaptive programming (AP) is a programming paradigm for expressing computations over semi-structured data graphs. An adaptive program is written against an entire family of input schemas and, at compilation time, it is instantiated for a specific input schema. Adaptive programs seamlessly adapt to switching of their input schemas. Due to their organization as traversals, adaptive programs are also re-targetable to different execution platforms (e.g. single and multi-core architectures).

An adaptive program receives a data graph as input and comprises two parts: a strategy, and a behavior. The strategy is a regular-expression-like specification that serves two purposes: guiding a traversal of the input data graph and, serving as an interface for an entire family of input schemas against which the behavior is written. The strategy does not have to fully specify every single detail of the traversal. This is the reason why adaptive programs seamlessly adapt to evolutions of their input schema. The behavior is a set of collaborating aspects that advise the traversal. Each aspect attaches an advice to a specific type of objects and advices are executed when the traversal reaches an object with the type they are attached to.

An adaptive program instance is a specialization of an adaptive program using for a specific schema, which defines the structure of the input data graph. The input schema is also employed to optimize the runtime overhead of the traversal. Throughout the rest of the paper, we shall use the term adaptive program to refer to an adaptive program instance.

1.1 Background
As a concrete example of an adaptive program, consider the task of modeling a bus route. A bus route has one bus, to start with. The bus has a driver and passengers. We want to find the number of people, including the driver, on board of the bus.

Figure 1(a) shows the schema for the input data graph shown in Figure 1(d). Figure 1(b) shows the strategy which says: “go from a BusRoute object to a Person object via either a Driver object or a Passengers object” Listing 1 shows the behavior, which contains two aspects: one is attached to BusRoute, which initializes a global counter, and the other is attached to Person, and increments the counter by 1.

Before we can execute our adaptive program, we must turn the underspecified traversal specification (the strategy) into a fully specified traversal specification that we call the Traverse-
Figure 1: Bus Route Example

(a) Input Schema
(b) Strategy
(c) Traversal Graph
(d) Sample input data graph

To execute our adaptive program on the data graph shown in Figure 1(d) (which satisfies the input schema) we need both the traversal graph and the behavior. The execution proceeds as follows: starting with the object busRouteObj in the input data graph as the current object and the singleton set containing the source node (whose label is BusRoute which is the type of the current object) in the traversal graph as the current set of traversal graph nodes. We first execute any advices attached to BusRoute in the behavior. In our example, there is one such advice attached to BusRoute. Then, we go through the children of the current object (busRouteObj in our example). For each child object, we identify the set of traversal graph nodes that are both children of any node in the current set of traversal graph nodes and whose label is the same as the type of current child object. In our example, the first (and only) child to consider is busObj and the set of traversal graph nodes that satisfy both conditions contains the two nodes in the traversal graph labeled Bus.

executeAdaptiveProgram(tgNodes, obj, beh) {
 type = obj.getType();
 advice = beh.getAdviceForType(type);
 if (advice != Empty) {
 advice.fire(obj);
 }
 foreach (child : obj.getChildren()) {
 nextTgNodes = getNextTgNodes(tgNodes, child.getType());
 if (nextTgNodes != EmptyList) {
 executeAdaptiveProgram(nextTgNodes, child, beh);
 }
 }
}

getNextTgNodes(currentTgNodes, label) {
 nextTgNodes = EmptyList;
 foreach (tgNode : currentTgNodes) {
 nextTgNodes.append(tgNode.getChildren(label));
 }
 return nextTgNodes;
}

Listing 2: Adaptive Program Execution

In case the set of traversal graph nodes is empty we proceed to the next child object. When all children are considered, we simply return. In case the set of traversal graph nodes is not empty, we recursively execute the above procedure. Listing 2 shows the pseudocode for executing an adaptive program.

To see how this program can adapt to a change in the input schema, consider adding a coordinator for the BusRoute. Figure 2 shows the evolved schema. We observe that the traversal graph for our adaptive program remains the same. Therefore, the runtime behavior of our program remains unchanged.

Figure 2: Bus Route Schema with a Coordinator

Another change to the input schema that our adaptive program can seamlessly handle, is to add an Operator node between Bus and Driver. Figure 3 shows the evolved schema. Although the traversal graph changes in response to this evolution, the change does not result in any change to the runtime behavior of our adaptive program. The reason is that Operator is not advised.

1.2 Evolution of Adaptive Programs

Evolution of an adaptive program may include not only changes to its input schema but also to its strategy as well as its behavior. Figure 4(a) is essentially a Venn diagram that illustrates the possible effects of evolution on adaptive programs. The universe is all syntactically well formed adaptive programs. The continuous circle contains all legal adaptive programs. The reason is that Operator is not advised.

Judging the runtime behavior of an adaptive program only by the trace of advice execution events.

Listing 1: Counting People on Board

class CountPeopleOnBoard {
 private int noOfPeopleOnBoard;
 before(BusRoute busRoute) {
 noOfPeopleOnBoard = 0;
 }
 before(Person person) {
 noOfPeopleOnBoard += 1;
 }
}
The first problem that we tackle in this paper is that the adaptive programming system might be unaware of the specific correctness criteria that the adaptive programming system might be unaware of.

The arrows represent various kinds of evolutions of adaptive programs. Starting with a "correct" legal adaptive program. Evolution can lead to either:

1. Another "correct" adaptive program. We call this kind of evolution safe.
2. A legal but no longer "correct" adaptive program. We call this kind of evolution unsafe or dangerous.
3. An illegal adaptive program. We call this kind of evolution illegal.

![Figure 3: Bus Route Schema with a Coordinator and an Operator](image)

![Figure 4: Evolution of Adaptive Programs](image)

1.3 Problem

The first problem that we tackle in this paper is that the "correctness criteria" of an adaptive program is unknown to the adaptive programming system. Judging the (in)correctness of a certain adaptive program requires awareness of its specific correctness criteria. Developers who are not fully aware of their application’s correctness criteria (e.g. new developers or developers in a big team) or developers not paying enough attention to a complex enough correctness criteria might unsafely evolve their adaptive programs. Since the adaptive programming system is also unaware of the application’s specific correctness criteria, it cannot detect unsafe evolutions as well, and therefore, unsafe evolutions can go uncaught. This is a problem of virtually every programming paradigm instantiated in the context of the adaptive programming paradigm.

The second problem is that adaptive programming adopts a very permissive approach for judging the “compatibility” of its three parts. For example, even though the strategy defines the interface for the legal family of input schemas, the behavior can still advise nodes that are not mentioned in the strategy and are not even guaranteed to exist in the traversal graph.

1.4 Contributions

This paper aims at controlling the unsafe evolutions of adaptive programs. To that end, we propose that developers should declare a “correctness criteria” for their specific application. The declared correctness criteria can only be based on the context(s) in which certain advice executes and how often it does so. The inner shaded region shown in Figure 4(b) contains those adaptive programs that violate their “correctness criteria” and hence deemed illegal.

It is worth mentioning that declaring the correctness criteria is not enough for closing the gap between correct and legal programs; besides the fact that developers can declare the wrong correctness criteria, the declared correctness criteria remains only an approximation for the real correctness criteria. The reason being that the real correctness criteria might be based on the meaning of the entire computation in another world. For example, the real “correctness criteria” might be based on the wall-clock time between the execution of two advices which is a poor fit for adaptive programming simply because there is no notion of wall-clock time, per say, in the adaptive programming model.

We also propose a second complementary approach for controlling the unsafe evolution of adaptive programs which is based on incorporating a stricter notion of compatibility that encompasses all three components of an adaptive program and excludes those adaptive programs that contain some form of a “conceptual mismatch” regardless of their “correctness”. The tricky part here is preserving the expressiveness of the adaptive programming paradigm. Figure 4(b) illustrates the effect that a stricter notion of compatibility might have on controlling unsafe evolutions of adaptive programs by shrinking the original continuous circle containing legal adaptive programs to the inner one. The shaded region between the inner and outer continuous circle contain those adaptive programs that became illegal as a result of incorporating the stricter notion of compatibility.

1.5 Organization

In section 2 we present a comprehensive study of the evolution of adaptive programs with the goal of identifying unsafe evolutions. In section 3 we present a language for declaring “approximate correctness criteria”. In section 4 we present...
our stricter notion of compatibility. In section ?? we present some of the related work. Section [8] concludes the paper.

2. EVOLUTION OF ADAPTIVE PROGRAMS

In this section we study the effect of evolution on the runtime behavior of adaptive programs. However, Listing [2] shows that the runtime behavior of an adaptive program depends, not only on its traversal graph (hence on the input schema and the strategy graph), and its behavior, but also on a specific input data graph. This brings up an interesting question: “how do we represent the runtime behavior of an adaptive program for all possible input data graphs?”

Having answered this question, we delve into a study of the different classes of impact that evolution might have on the runtime behavior of a “correct” and legal adaptive program.

2.1 Runtime Behavior Representation

Two key observations can be made from Listing 2 about the runtime behavior of an adaptive program. The first observation is that all tglNodes are labeled with the type of the obj. This invariant is preserved in the recursive call and must be satisfied at the first invocation of ExecuteAdaptiveProgram. Therefore, an advice can only be executed if the type it is attached to shows up in the traversal graph. Moreover, an advice attached to type T can be executed in the context of another advice attached to type S only if the traversal graph has two nodes: one labeled S and the second labeled T and the second is reachable from the first. The second observation is that line 5 where advices are executed is the only line whose execution can be externally observed. Therefore, only invocations of ExecuteAdaptiveProgram at objects with advised types can be externally observed.

The first observation tells us that the traversal graph contains all the necessary information for representing the runtime behavior of its adaptive program. The second observation tells us that the traversal graph contains some extra information that is irrelevant to the observable runtime behavior of its adaptive program. Based on this information we conclude that smoothing out non advised nodes from the traversal graph yields us the most appropriate representation of the runtime behavior of an adaptive program we call this representation: the smoothed traversal graph.

The smoothed traversal graph is a multi-graph that contains only the advised nodes in the traversal graph. For every distinct direct path connecting an advised traversal graph node S to another advised traversal graph node T, an edge is added from S to T in the smoothed traversal graph. A path in the traversal graph is represented by its set of edges rather than its sequence of nodes. A path is called direct if it contains exactly two advised nodes: one at its source and one at its target. A direct path connecting an advised traversal graph node S to another advised traversal graph node T represents a situation in which the advice attached to T executes right after the advice attached to S.

Figure 5 shows the smoothed traversal graph for the the bus route example mentioned in the introduction. It contains the two advised nodes: BusRoute and Person. All other nodes are smoothed out. It also contains three edges connecting the two nodes representing the three different situations that the advice attached to person can execute right after the advice attached to BusRoute. The three paths representing these situations are: \{ (BusRoute, Bus), (Bus, Driver), (Driver, Person) \} and \{ (BusRoute, Bus), (Bus, Passengers), (Passengers, PersonList), (PersonList, Person) \} and \{ (BusRoute, Bus), (Bus, Passengers), (Passengers, PersonList), (PersonList, PersonList), (PersonList, Person) \}.

2.2 Impacts of Evolution on Adaptive programs

The impact of evolution on the smoothed traversal graph falls into one of the following three categories:

2.2.1 No Impact

Our first evolution example of adding a Coordinator to the BusRoute falls into this category. As we mentioned before, the traversal graph remains unchanged. Hence the smoothed traversal graph shown in Figure 5 remains unchanged too.

Our second evolution example of adding an Operator node between Bus and Driver falls into this category as well. Because even though an Operator node is inserted between Bus and Driver in the traversal graph, the newly inserted node gets smoothed out because it is not advised ending with the same smoothed traversal graph as before evolution.

In general, evolving the input schema by adding non advised nodes, smoothing out a non advised node, or reordering two non advised nodes does not impact the runtime behavior of the adaptive program either because the changes do not make their way to the traversal graph (as in the first example), or they get smoothed out (as in the second example). Evolutions leading to this kind of impact are considered safe because they do not change the runtime behavior of the program, on which correctness is based.
2.2.2 Minor Impact

Suppose that we were to allow many buses on the same route. The evolved input schema is shown in Figure 8(a) an unadvised node BusList is inserted. However, this node has a self loop. Technically, this allows an infinite number of ways to reach a Bus object from a BusRoute object by going through one, two, three, or any other number of BusList objects whereas previously the evolution there was only one way to do so.

![Figure 8: Bus Route with Many Busses](image)

On the other hand, we observe that a Person object remains accessible only in the context of either a Driver object or a Passengers object and that both Driver and Passengers objects are only accessible in the context of a BusRoute object. This is essential for the advice executing at Person (see Listing 1) because it relies on the fact that the noOfPeopleOnBoard counter is initialized by the advice executing at BusRoute.

In other words, even though the contexts in which both advices execute remain unchanged, the advice attached to Person is executed in more situations than before. This is evident in the evolved smoothed traversal graph shown in Figure 8(b) there are six incoming edges to Person compared to only three incoming edges before evolution. The six edges correspond to the following traversal graph paths: { (BusRoute, BusList), (BusList, Bus), (Bus, Driver), (Driver, Person) } and { (BusRoute, BusList), (BusList, Bus), (Bus, Passengers), (Passengers, PersonList), (PersonList, Person) } and { (BusRoute, BusList), (BusList, BusList), (BusList, Bus), (Bus, Passengers), (Passengers, PersonList), (PersonList, PersonList) } and { (BusRoute, BusList), (BusList, Bus), (Bus, Passengers), (Passengers, PersonList), (PersonList, PersonList), (PersonList, Person) } and { (BusRoute, BusList), (BusList, BusList), (BusList, Bus), (Bus, Passengers), (Passengers, PersonList), (PersonList, PersonList) } and { (BusRoute, BusList), (BusList, Bus), (Bus, Passengers), (Passengers, PersonList), (PersonList, PersonList), (PersonList, Person) }

![Figure 9: Bus Route with a Simulator](image)

Another example of a minor impact is to add a Simulator (to train drivers) with a Driver and an Instructor to the BusRoute. Again, this evolution does not change any of the contexts in which an advice executes. However, the situations in which the advice attached to Person change as the number of ways of going from a BusRoute to a Driver change.

In general, an evolution that results in a change to the number of ways that a node can lead to another node in the smoothed traversal graph without changing the any advice execution context, constitutes a minor impact to the smoothed traversal graph.

An evolution leading to a minor impact is not always safe. For example, one can argue that our first example of minor impacts is safe because we will be counting the number of people on board of all buses in the route and that is the “correct” thing to do. On the other hand, in the second example, we will also be counting the drivers who are only training and not on board of any real bus and hence can be deemed unsafe. Therefore, evolutions leading to minor impacts on the smoothed traversal graph need to be controlled.

2.2.3 Drastic Impact

Simply speaking, a drastic impact involves a change to at least one advice execution context. Similar to evolutions leading to minor impacts, those drastic impacts can be either safe, unsafe, or even illegal (we shall discuss illegal evolutions in section 4). Therefore, evolutions leading to drastic impacts need to be controlled.

As an example of a safe evolution leading to a drastic impact, suppose that we need to keep two separate counts: the number of passengers on board of any bus as well as the number of drivers on duty. Listing 2 shows the behavior we use to keep the two counts. The set of advised nodes in the new behavior include Passenger, Driver, and Person meaning that nodes labeled with these three types will not be smoothed out in the smoothed traversal graph.

As an example of an unsafe evolution leading to a drastic impact, consider adding a Coordinator to the input schema as shown in Figure 9 and at the same time changing the strategy to also pick the path from the BusRoute via Coordinator to Person. This evolution violates the hidden assumption that the advice attached to Person makes about its context; that it will be executed the first time in the
Listing 3: Counting Passengers and Drivers

```java
class CountPassengersAndDrivers {
  private int noOfPassengersOnBoard = 0;
  private int noOfDriversOnDuty = 0;
  private boolean driverSeen;
  private boolean passengerSeen;

  before(Driver driver) {
    driverSeen = true;
    passengerSeen = false;
  }

  before(Passenger passenger) {
    passengerSeen = true;
    driverSeen = false;
  }

  before(Person person) {
    if (driverSeen) {
      noOfDriversOnDuty += 1;
      driverSeen = false;
    }
    if (passengerSeen) {
      noOfPassengersOnBoard += 1;
      passengerSeen = false;
    }
  }
}
```

Listing 4: Language for Asserting the Correctness of Adaptive Programs

- **Assertion** = "execute" (Context | Cardinality)
- **Context** = Direct | Forbidden | Required
- **Direct** = "directly" "in" AdvisedType
- **Forbidden** = "not" "in" AdvisedType
- **Required** = "in" AdvisedType
- **AlternativeTypes** = ["AdvisedType"]
- **AdvisedType** = IDENTIFIER
- **Cardinality** = Predicate "in" AdvisedType
- **Predicate** = Simple | Composite
- **Simple** = Rel INTEGER
- **Rel** = "\(<\)" | "\(!\)" | "\(\geq\)" | "\(\leq\)" | "\(!=\)"

3. CONTROLLING ADAPTIVE PROGRAM EVOLUTION

In this section we present a language for asserting the “correctness” of adaptive programs based on the context(s) in which certain advice executes and how often it does so. Context correctness assertions can be employed for controlling evolutions leading to drastic impacts. Cardinality correctness assertions can be employed to control evolutions leading to minor impacts.

3.1 Syntax

Listing 1 shows the EBNF grammar of the proposed language of assertions. An assertion annotates one advice. This way the assertion gets associated with one advised type. On the other hand, each advice can be annotated with any number of assertions. There are two types of assertions: **ContextAssertion** for controlling evolutions leading to drastic impacts, and **CardinalityAssertion** for controlling evolutions leading to minor impacts.

Context assertions are further split into three kinds: direct context assertions, forbidden context assertions, and required context assertions. A direct context assertions is parameterized by a set of required types, and used to assert that the traversal visits one these required types right before the type to which the assertion is associated (i.e., no other advised type is visited in between). A forbidden context assertions is parameterized by a set of forbidden types, and used to assert that none of these forbidden types is visited before the type to which the assertion is associated. A required context assertions is parameterized by a set of required types and a set of sets of alternative types, and used to assert that the traversal visits all of the required types and only one type from each set of alternative types before the the type to which the assertion is associated is visited.

A cardinality assertion is parameterized by a “from” node, and used to assert that the number of ways for reaching the type to which the assertion is associated from the “from” type satisfies a certain predicate. Predicates can be formed from comparison operators and logical connectives.

3.2 Semantics

The meaning of an assertion is the set of adaptive programs for which it is defined and holds. Since the assertions we defined above are based on the runtime behavior of the adaptive program, it is enough to check them against the smoothed traversal graph.

3.2.1 Checking Direct Context Assertions

A direct context assertion \(c \) is associated with an advised type \(c.type \) and has a set of required nodes \(c.required \). For checking a direct context assertion we use:

\[
\forall p \in getPaths(\land, c.type) : c.required \land getTypes(p) = \emptyset
\]

The metafunction \(getLeadingTypes(c.type) \subseteq c.required \) goes through the all smoothed traversal graph nodes labeled with \(c.type \), and for each node, it finds the set of labels of its predecessors. Finally, the union of all these sets is returned.

3.2.2 Checking Forbidden Context Assertions

A forbidden context assertion \(c \) is associated with an advised type \(c.type \) and has a set of forbidden nodes \(c.forbidden \). For checking a forbidden context assertion we use:

\[
\forall p \in getPaths(\land, c.type) : c.forbidden \land getTypes(p) = \emptyset
\]

The metafunction \(getPaths(t1, t2) \) is used to retrieve the set of all paths connecting the smoothed traversal graph node labeled \(t1 \) to the smoothed traversal graph node labeled \(t2 \). \(\land \) denotes the root of the smoothed traversal graph. Paths are represented as sets of edges. The metafunction \(getTypes(p) \) is used to retrieve the set of types mentioned in a path \(p \).

3.2.3 Checking Required Context Assertions

A required context assertion \(c \) is associated with an advised type \(c.type \) and has a set of required nodes \(c.required \) and a set \(c.alternatives \) of set of alternative types. For checking a required context assertion we use:

\[
\forall p \in getPaths(\land, c.type) : c.required \subseteq getTypes(p) \land \forall a \in c.alternatives : \left| getTypes(p) \cap a.types \right| = 1
\]
3.2.4 Checking Cardinality Assertions

A cardinality assertion \(c \) is associated with an advised type \(c.type \), a from type \(c.from \), and a predicate \(c.pred \). For checking a cardinality assertion we use:

\[
c.pred([getPaths(c.from, c.type)])
\]

4. STRICHER LEGALITY NOTION

In this section we present a stricter notion of legal adaptive programs. In addition to satisfying all assertions, the proposed notion has five criteria: Three of them are intended to eliminate “conceptual mismatches” between the strategy and the input schema. The other two are intended to eliminate conceptual mismatches between the strategy and the behavior. The trickiest part of defining the new notion is preserving the expressiveness of the adaptive programming paradigm. We conclude this section with a discussion of the ramification of the new notion on the evolution of adaptive programs.

4.1 Establishing Compatibility Between the Strategy and the Input Schema

The first kind of conceptual mismatch is: the absence of desired input schema paths.

As an example, consider an evolution to the input schema shown in Figure 1(a) that drops the Driver node altogether. This means that the developer who wrote the strategy “thinks” that a Person object is accessible from a BusRoute object through a Driver object, which is not true from the point of view of the input scheme developer. This is in fact the first and only legality criteria for adaptive programs [6].

It is always possible to transform an adaptive program with this kind of conceptual mismatch into another adaptive program without this kind of conceptual mismatch while keeping with the same runtime behavior. Simply, by dropping those strategy graph edges (and nodes) that do not have a corresponding path in the input schema.

The second kind of conceptual mismatch is: the absence of undesired input schema paths.

The third kind of conceptual mismatch is: the existence of neither desired nor undesired input schema paths connecting strategy nodes.

As an example, consider an evolution in which one of the developers decided that a bus driver can also be seen as a passenger too thus evolving the input schema to the one shown in Figure 11.

In this example, the strategy developer thinks that there is Driver objects that are not contained in Passengers objects, which is not true according to the input schema. Eliminating this conceptual mismatch involves computing the traversal graph, smoothing out nodes not mentioned in the strategy, and finally adding bypassing constraints that bypass all of the nodes mentioned in the strategy provided that the bypassing constraints are not redundant themselves.

4.2 Establishing Compatibility Between the Strategy and the Behavior

The fourth kind of conceptual mismatch is: advising types that are not mentioned in the strategy graph. This means that the strategy is too general for the behavior. No guarantees can be made about the context in which advice for types not mentioned in the strategy graph. These advices are not even guaranteed to execute in the first place. Eliminating this kind of conceptual mismatch involves computing the traversal graph, then smoothing out nodes that are neither mentioned in the strategy nor advised.

The fifth kind of conceptual mismatch is: the existence of irrelevant strategy nodes. A strategy node is irrelevant if it is neither labeled with an advised type nor can reach an advised type. This simply means that the strategy is too specific for the behavior and can be generalized to allow more compatible input schemas.

4.3 Ramifications on Evolution

Adopting the new notion of legality tightens the coupling between the three components of an adaptive program. It is now more likely that evolving one of the components can trigger a series of changes in the other components. The tighter coupling does not necessarily sacrifice the genericity of adaptive programs because assertions, when used wisely, can cut mostly on unsafe evolutions, and we have already argued that the other five criteria also cut mostly on unsafe evolutions.
Suppose that we want to add a new advice to the behavior. This might trigger a change in the strategy graph if the newly advised type does not show up in the strategy, otherwise the fourth kind of conceptual mismatch will occur. Likewise, dropping an advice from the behavior might trigger the fifth kind of conceptual mismatch. Moreover, adding or removing an advice might disturb the context of other advices.

Evolving the strategy by dropping a node might result in the fourth kind of conceptual mismatch if the dropped node was advised. Dropping a bypassing constraint might either: violate a cardinality assertion because a new path is picked from the input schema, disturb the context of an existing advice because the new path acts as a short cut to the type that advice is attached to, or result in the third kind of conceptual mismatch if the bypassed type exists elsewhere in the strategy. Dropping an edge will result in the third kind of conceptual mismatch if its source and target nodes remain in the strategy.

Evolving the strategy graph by adding a node might result in the fifth kind of conceptual mismatch if it does not lead to an advised type. Adding a bypassing constraint might result in the first kind of conceptual mismatch if it excludes the only path in the input schema that conceits two nodes that are connected by an edge in the strategy. Adding a bypassing constraint might also violate a cardinality constraint, disturb the context of other advices, or result in the second kind of conceptual mismatch. Adding an edge to the strategy might violate a cardinality constraint, act as a short cut to an advised type thus disturbing the context, or lead to the first kind of conceptual mismatch because the newly added edge does not have a corresponding path in the input schema.

Evolving the input schema by adding non advised nodes or edges can violate a cardinality constraint, disturb the context of an advice, or lead to the third kind of conceptual mismatches. Dropping nodes or edges might also violate a cardinality constraint, disturb the context of an advice, or lead to the first kind of conceptual mismatches.

5. RELATED WORK

There is a number of generic programming technologies [4]. To the best of our knowledge, there has been no work related to controlled evolution in these communities. The most relevant related work is the work on Demeter interfaces in [8], and the work on DemeterP type system [5].

6. CONCLUSION AND FUTURE WORK

In this paper we presented a study of adaptive program evolution and two approaches for controlling unsafe evolution of adaptive programs. We plan to introduce adaptive programming as a technology for event based processing of XML [1].

7. ACKNOWLEDGMENTS

This work is supported in part by Grantham Mayo Van Otterloo, LLC.

8. REFERENCES