
Controlled Evolution of Adaptive Programs

Ahmed Abdelmeged Therapon Skotiniotis Karl Lieberherr

College of Computer & Information Science
Northeastern University, 360 Huntington Avenue

Boston, Massachusetts 02115 USA.
{mohsen,skotthe,lieber}@ccs.neu.edu

ABSTRACT
Adaptive programming (AP) is a programming paradigm for
expressing computations over semi-structured data graphs.
An adaptive program is written against an entire family of
input schemas and, at compilation time, it is instantiated
for a specific input schema. Adaptive programs seamlessly
adapt to switching of their input schemas. Due to their
organization as traversals, adaptive programs are also re-
targetabe to different execution platforms (e.g. single and
multi-core architectures).

As other programming paradigms, adaptive programs are
also susceptible to unsafe evolutions; evolutions that jeopar-
dize the correctness of adaptive programs yet go uncaught.
In this paper, we study the evolution of adaptive programs
and present two complementary approaches for controlling
unsafe evolutions.

Categories and Subject Descriptors
D.2.4 [SOFTWARE ENGINEERING]: Software/Pro-
gram VerificationAssertion checkers, Programming by con-
tract, Reliability; D.3.3 [PROGRAMMING LANGUAGES]:
Language Constructs and Features; D.1.2 [PROGRAMMING
TECHNIQUES]: Automatic ProgrammingProgram modi-
fication, Program verification; F.3.1 [LOGICS AND MEAN-
INGS OF PROGRAMS]: Specifying and Verifying and
Reasoning about ProgramsAssertions, Specification techniques

General Terms
Languages, Design, Reliability

Keywords
Adaptive Programming, Evolution, Assertion

1. INTRODUCTION
Adaptive programming (AP) is a programming paradigm for
expressing computations over semi-structured data graphs [7].
An adaptive program is written against an entire family of

input schemas and, at compilation time, it is instantiated
for a specific input schema. Adaptive programs seamlessly
adapt to switching of their input schemas. Due to their
organization as traversals, adaptive programs are also retar-
getabe to different execution platforms [2] (e.g. single and
multi-core architectures).

An adaptive program receives a data graph as input and
comprises two parts: a strategy, and a behavior. The strat-
egy is a regular-expression-like specification that serves two
purposes: guiding a traversal of the input data graph and,
serving as an interface for an entire family of input schemas
against which the behavior is written. The strategy does
not have to fully specify every single detail of the traversal.
This is the reason why adaptive programs seamlessly adapt
to evolutions of their input schema [8]. The behavior is a
set of collaborating aspects that advise the traversal. Each
aspect attaches an advice to a specific type of objects and
advices are executed when the traversal reaches an object
with the type they are attached to.

An adaptive program instance is a specialization of an adap-
tive program using for a specific schema, which defines the
structure of the input data graph. The input schema is also
employed to optimize the runtime overhead of the traver-
sal. Throughout the rest of the paper, we shall use the term
adaptive program to refer to an adaptive program instance.

1.1 Background
As a concrete example of an adaptive program, consider the
task of modeling a bus route. A bus route has one bus, to
start with. The bus has a driver and passengers. We want
to find the number of people, including the driver, on board
of the bus.

Figure 1(a) shows the schema for the input data graph shown
in Figure 1(d). Figure 1(b) shows the strategy which says:
“go from a BusRoute object to a Person object via either
a Driver object or a Passengers object”1. Listing 1 shows
the behavior, which contains two aspects: one is attached to
BusRoute, which initializes a global counter, and the other
is attached to Person, and increments the counter by 1.

Before we can execute our adaptive program, we must turn
the underspecified traversal specification (the strategy) into
a fully specified traversal specification that we call the Traver-

1The carat symbol (∧) is used to denote the source node of
a strategy or a traversal graph

(a) Input Schema (b) Strategy

(c) Traversal Graph (d) Sample input data graph

Figure 1: Bus Route Example

class CountPeopleOnBoard
{ private int noOfPeopleOnBoard ;

before (BusRoute busRoute)
{noOfPeopleOnBoard = 0 ;}

before (Person person)
{noOfPeopleOnBoard += 1;} }

Listing 1: Counting People on Board

sal Graph; Figure 1(c) shows the traversal graph for our ex-
ample. It is computed by replacing every edge, from a node
S to a node T, in the strategy graph, with the maximal sub-
graph of the input schema that contains all nodes reachable
from S and can reach T. For example, the strategy edge from
BusRoute to Driver is replaced with the subgraph that con-
tains BusRoute, Bus, and Driver. The traversal graph nodes
drawn with a thick line correspond to the nodes in the strat-
egy.

To execute our adaptive program on the data graph shown in
Figure 1(d) (which satisfies the input schema) we need both
the traversal graph and the behavior. The execution pro-
ceeds as follows: starting with the object busRouteObj in the
input data graph as the current object and the singleton set
containing the source node (whose label is BusRoute which is
the type of the current object) in the traversal graph as the
current set of traversal graph nodes. We first execute any
advices attached to BusRoute in the behavior. In our exam-
ple, there is one such advice attached to BusRoute. Then, we
go through the children of the current object (busRouteObj
in our example). For each child object, we identify the set
of traversal graph nodes that are both children of any node
in the current set of traversal graph nodes and whose label
is the same as the type of current child object. In our ex-
ample, the first (and only) child to consider is busObj and
the set of traversal graph nodes that satisfy both conditions
contains the two nodes in the traversal graph labeled Bus.

ExecuteAdaptiveProgram (tgNodes , obj , beh)
{ type = obj . getType () ;

adv ice = beh . getAdviceForType (type) ;
i f (adv ice != Empty)
{ advice . f i r e (obj) ; }

foreach (c h i l d : obj . ge tChi ldren ())
{ nextTgNodes = GetNextTgNodes (tgNodes ,

c h i l d . getType ()) ;
i f (nextTgNodes !=EmptyList)
{ ExecuteAdaptiveProgram (nextTGNodes ,

ch i ld , beh) ; } } }

GetNextTgNodes (currentTgNodes , l a b e l)
{ nextTgNodes = EmptyList ;

foreach (tgNode : currentTgNodes)
{ nextTgNodes . append (

tgNode . getChi ldren (l a b e l)) ; }
re turn nextTGNodes ; }

Listing 2: Adaptive Program Execution

In case the set of traversal graph nodes is empty we proceed
to the next child object. When all children are considered,
we simply return. In case the set of traversal graph nodes
is not empty, we recursively execute the above procedure.
Listing 2 shows the pseudocode for executing an adaptive
program.

To see how this program can adapt to a change in the in-
put schema, consider adding a coordinator for the BusRoute.
Figure 2 shows the evolved schema. We observe that the
traversal graph for our adaptive program remains the same.
Therefore, the runtime behavior of our program remains un-
changed.

Figure 2: Bus Route Schema with a Coordinator

Another change to the input schema that our adaptive pro-
gram can seamlessly handle, is to add an Operator node be-
tween Bus and Driver. Figure 3 shows the evolved schema.
Although the traversal graph changes in response to this
evolution. The change does not result in any change to the
runtime behavior of our adaptive program2. The reason is
that Operator is not advised.

1.2 Evolution of Adaptive Programs
Evolution of an adaptive program may include not only
changes to its input schema but also to its strategy as well as
its behavior. Figure 4(a) is essentially a Venn diagram that
illustrates the possible effects of evolution on adaptive pro-
grams. The universe is all syntactically well formed adaptive
programs. The continuous circle contains all legal adaptive

2Judging the runtime behavior of an adaptive program only
by the trace of advice execution events.

Figure 3: Bus Route Schema with a Coordinator
and an Operator

programs 3. The dashed circle contains all“correct”adaptive
programs for some application specific correctness criteria
that the adaptive programming system might be unaware
of.

The arrows represent various kinds of evolutions of adaptive
programs. Starting with a “correct” legal adaptive program.
Evolution can lead to either:

1. Another “correct” adaptive program. We call this kind
of evolution safe.

2. A legal but no longer “correct” adaptive program. We
call this kind of evolution unsafe or dangerous.

3. An illegal adaptive program. We call this kind of evo-
lution illegal.

(a) Current (b) Proposed

Figure 4: Evolution of Adaptive Programs

1.3 Problem
The first problem that we tackle in this paper is that the
“correctness criteria” of an adaptive program is unknown to
the adaptive programming system. Judging the (in)correctness
of a certain adaptive program requires awareness of its spe-
cific correctness criteria. Developers who are not fully aware

3An adaptive program is legal if its input schema is compat-
ible with its strategy. That is for every edge in the strategy
connecting a node S to another node T, T is reachable from
S in the input schema. The restriction of legal adaptive to
those with compatible strategy and input schema does not
jeopardize the expressiveness of adaptive programs because
an adaptive program with incompatible strategy and input
schema can always be transformed into a legal adaptive pro-
gram. Simply by removing all strategy edges whose target
is not reachable from the edge source in the input schema.

of their application’s correctness criteria (e.g. new develop-
ers or developers in a big team) or developers not paying
enough attention to a complex enough correctness criteria
might unsafely evolve their adaptive programs. Since the
adaptive programming system is also unaware of the appli-
cation’s specific correctness criteria, it cannot detect unsafe
evolutions as well, and therefore, unsafe evolutions can go
uncaught. This is a problem of virtually every program-
ming paradigm instantiated in the context of the adaptive
programming paradigm.

The second problem is that adaptive programming adopts
a very permissive approach for judging the “compatibility”
of its three parts. For example, even though the strategy
defines the interface for the legal family of input schemas,
the behavior can still advise nodes that are not mentioned
in the strategy and are not even guaranteed to exist in the
traversal graph.

1.4 Contributions
This paper aims at controlling the unsafe evolutions of adap-
tive programs. To that end, we propose that developers
should declare a“correctness criteria” for their specific appli-
cation. The declared correctness criteria can only be based
on the context(s) in which certain advice executes and how
often it does so. The inner shaded region shown in Fig-
ure 4(b) contains those adaptive programs that violate their
“correctness criteria” and hence deemed illegal.

It is worth mentioning that declaring the correctness crite-
ria is not enough for closing the gap between correct and
legal programs; besides the fact that developers can declare
the wrong correctness criteria, the declared correctness cri-
teria remains only an approximation for the real correctness
criteria. The reason being that the real correctness criteria
might be based on the meaning of the entire computation in
another world. For example, the real “correctness criteria”
might be based on the wall-clock time between the execution
of two advices which is a poor fit for adaptive programming
simply because there is no notion of wall-clock time, per say,
in the adaptive programming model.

We also propose a second complementary approach for con-
trolling the unsafe evolution of adaptive programs which is
based on incorporating a stricter notion of compatibility that
encompasses all three components of an adaptive program
and excludes those adaptive programs that contain some
form of a “conceptual mismatch” regardless of their “cor-
rectness”. The tricky part here is preserving the expressive-
ness of the adaptive programming paradigm. Figure 4(b)
illustrates the effect that a stricter notion of compatibility
might have on controlling unsafe evolutions of adaptive pro-
grams by shrinking the original continuous circle containing
legal adaptive programs to the inner one. The shaded re-
gion between the inner and outer continuous circle contain
those adaptive programs that became illegal as a result of
incorporating the stricter notion of compatibility.

1.5 Organization
In section 2 we present a comprehensive study of the evolu-
tion of adaptive programs with the goal of identifying unsafe
evolutions. In section 3 we present a language for declaring
“approximate correctness criteria”. In section 4 we present

our stricter notion of compatibility. In section ?? we present
some of the related work. Section 6 concludes the paper.

2. EVOLUTION OF ADAPTIVE PROGRAMS
In this section we study the effect of evolution on the run-
time behavior of adaptive programs. However, Listing 2
shows that the runtime behavior of an adaptive program
depends, not only on its traversal graph (hence on the input
schema and the strategy graph), and its behavior, but also
on a specific input data graph. This brings up an interest-
ing question: “how do we represent the runtime behavior of
an adaptive program for all possible input data graphs?”.
Having answered this question, we delve into a study of the
different classes of impact that evolution might have on the
runtime behavior of a “correct” and legal adaptive program.

2.1 Runtime Behavior Representation
Two key observations can be made from Listing 2 about the
runtime behavior of an adaptive program. The first obser-
vation is that all tgNodes are labeled with the type of the
obj. This invariant is preserved in the recursive call and
must be satisfied at the first invocation of ExecuteAdap-

tiveProgram. Therefore, an advice can only be executed if
the type it is attached to, shows up in the traversal graph.
Moreover, an advice attached to type T can be executed in
the context of another advice attached to type S only if the
traversal graph has two nodes: one labeled S and the second
labeled T and the second is reachable from the first. The
second observation is that line 5 where advices are executed
is the only line whose execution can be externally observed.
Therefore, only invocations of ExecuteAdaptiveProgram at
objects with advised types can be externally observed.

The first observation tells us that the traversal graph con-
tains all the necessary information for representing the run-
time behavior of its adaptive program. The second obser-
vation tells us that the traversal graph contains some extra
information that is irrelevant to the observable runtime be-
havior of its adaptive program. Based on this information
we conclude that smoothing out non advised nodes from the
traversal graph yields us the most appropriate representa-
tion of the runtime behavior of an adaptive program we call
this representation: the smoothed traversal graph.

The smoothed traversal graph is a multi-graph that contains
only the advised nodes in the traversal graph. For every
distinct direct path connecting an advised traversal graph
node S to another advised traversal graph node T, an edge
is added from S to T in the smoothed traversal graph. A
path in the traversal graph is represented by its set of edges
rather than its sequence of nodes4. A path is called direct
if it contains exactly two advised nodes: one at its source
and one at its target. A direct path connecting an advised
traversal graph node S to another advised traversal graph
node T represents a situation in which the advice attached
to T executes right after the advice attached to S.

Figure 5 shows the smoothed traversal graph for the the bus

4This is actually a representation of a family of paths rather
than single paths. A loop in our representation corresponds
to an infinite number of paths. Every node along the path
must be the source of only one forward edge and any number
of backward edges

Figure 5: The Smoothed Traversal Graph

route example mentioned in the introduction. It contains the
two advised nodes: BusRoute and Person. All other nodes
are smoothed out. It also contains three edges connecting
the two nodes representing the three different situations that
the advice attached to person can execute right after the
advice attached to BusRoute. The three paths represent-
ing these situations are: { (BusRoute, Bus), (Bus, Driver),
(Driver, Person)} and { (BusRoute, Bus), (Bus, Passen-

gers), (Passengers, PersonList), (PersonList, Person)}
and { (BusRoute, Bus), (Bus, Passengers), (Passengers,
PersonList), (PersonList, PersonList), (PersonList,
Person)}.

(a) BusRoute (b) Person

Figure 6: Advice Execution Contexts

Moreover, the contexts in which an advice is executed are
also evident from the smoothed traversal graph. The con-
texts in which an advice attached to type T executes, are
fully represented by the maximal subgraph of the smoothed
traversal graph containing only those nodes that can reach
a node labeled T. For example, the contexts in which the
advice attached to BusRoute executes, contain a single node
labeled BusRoute and is shown in Figure 6(a). The contexts
in which an advice attached to Person executes contain the
two nodes BusRoute and Person and is shown in Figure 6(b).

2.2 Impacts of Evolution on Adaptive programs
The impact of evolution on the smoothed traversal graph
falls into one of the following three categories:

2.2.1 No Impact
Our first evolution example of adding a Coordinator to the
BusRoute falls into this category. As we mentioned before,
the traversal graph remains unchanged. Hence the smoothed
traversal graph shown in Figure 5 remains unchanged too.

Our second evolution example of adding an Operator node
between Bus and Driver falls into this category as well. Be-
cause even though an Operator node is inserted between Bus

and Driver in the traversal graph, the newly inserted node
gets smoothed out because it is not advised ending with the
same smoothed traversal graph as before evolution.

In general, evolving the input schema by adding non advised
nodes, smoothing out a non advised node, or reordering two
non advised nodes does not impact the runtime behavior
of the adaptive program either because the changes do not
make their way to the traversal graph (as in the first exam-
ple), or they get smoothed out (as in the second example).
Evolutions leading to this kind of impact are considered safe
because they do not change the runtime behavior of the pro-
gram, on which correctness is based.

2.2.2 Minor Impact
Suppose that we were to allow many buses on the same
route. The evolved input schema is shown in Figure 8(a);
an unadvised node BusList is inserted. However, this node
has a self loop. Technically, this allows an infinite number of
ways to reach a Bus object from a BusRoute object; by going
through one, two, three ,or any other number of BusList

objects whereas previously the evolution there was only one
way to do so.

Figure 7: Bus Route with Many Buses

(a) Bus Route with Many Buses (b) Smoothed
Traver-
sal
Graph

Figure 8: Bus Route with Many Busses

On the other hand, we observe that a Person object remains
accessible only in the context of either a Driver object or
a Passengers object and that both Driver and Passengers

objects are only accessible in the context of a BusRoute ob-
ject. This is essential for the advice executing at Person

(see Listing 1) because it relies on the fact that the noOf-

PeopleOnBoard counter is initialized by the advice executing
at BusRoute.

In other words, even though the contexts in which both
advices execute remain unchanged, the advice attached to
Person is executed in more situations than before. This is
evident in the evolved smoothed traversal graph shown in
Figure 8(b); there are six incoming edges to Person com-
pared to only three incoming edges before evolution. The
six edges correspond to the following traversal graph paths:
{ (BusRoute, BusList), (BusList, Bus), (Bus, Driver),
(Driver, Person)} and { (BusRoute, BusList), (BusList,
BusList), (BusList, Bus), (Bus, Driver), (Driver, Per-
son)} and { (BusRoute, BusList), (BusList, Bus), (Bus,
Passengers), (Passengers, PersonList), (PersonList,
Person)} and { (BusRoute, BusList), (BusList, BusList),
(BusList, Bus), (Bus, Passengers), (Passengers, Per-

sonList), (PersonList, Person)} and { (BusRoute, Bus-

List), (BusList, Bus), (Bus, Passengers), (Passengers,
PersonList), (PersonList, PersonList), (PersonList,

Person)} and { (BusRoute, BusList), (BusList, BusList),
(BusList, Bus), (Bus, Passengers), (Passengers, Person-
List), (PersonList, PersonList), (PersonList, Person)}

Figure 9: Bus Route with a Simulator

Another example of a minor impact is to add a Simula-

tor (to train drivers) with a Driver and an Instructor to
the BusRoute. Again, this evolution does not change any
of the contexts in which an advice executes. However, the
situations in which the advice attached to Person change as
the number of ways of going from a BusRoute to a Driver

change.

In general, an evolution that results in a change to the
number of ways that a node can lead to another node in
the smoothed traversal graph without changing the any ad-
vice execution context, constitutes a minor impact to the
smoothed traversal graph.

An evolution leading to a minor impact is not always safe.
For example, one can argue that our first example of minor
impacts is safe because we will be counting the number of
people on board of all buses in the route and that is the“cor-
rect” thing to do. On the other hand, in the second example,
we will also be counting the drivers who are only training
and not on board of any real bus and hence can be deemed
unsafe. Therefore, evolutions leading to minor impacts on
the smoothed traversal graph need to be controlled.

2.2.3 Drastic Impact
Simply speaking, a drastic impact involves a change to at
least one advice execution context. Similar to evolutions
leading to minor impacts, those drastic impacts can be ei-
ther safe, unsafe, or even illegal (we shall discuss illegal evo-
lutions in section 4). Therefore, evolutions leading to drastic
impacts need to be controlled.

As an example of a safe evolution leading to a drastic im-
pact, suppose that we need to keep two separate counts: the
number of passengers on board of any bus as well as a the
number of drivers on duty. Listing 3 shows the behavior
we use to keep the two counts. The set of advised nodes in
the new behavior include Passenger, Driver, and Person

meaning that nodes labeled with these three types will not
be smoothed out in the smoothed traversal graph.

As an example of an unsafe evolution leading to a drastic
impact, consider adding a Coordinator to the input schema
as shown in Figure 2, and at the same time changing the
strategy to also pick the path from the BusRoute via Coor-

dinator to Person. This evolution violates the hidden as-
sumption that the advice attached to Person makes about
its context; that it will be executed the first time in the

class CountPassengersAndDrivers
{ private int noOfPassengersOnBoard = 0 ;

private int noOfDriversOnDuty = 0 ;
private boolean dr ive rSeen ;
private boolean passengerSeen ;

before (Dr iver d r i v e r)
{ dr ive rSeen = true ;

passengerSeen = fa l se ; }
before (Passenger passenger)
{ passengerSeen = true ;

d r ive rSeen = fa l se ; }
before (Person person)
{ i f (dr ive rSeen)
{ noOfDriversOnDuty +=1;

dr ive rSeen = fa l se ; }
i f (passengerSeen)
{ noOfPassengersOnBoard +=1;

passengerSeen = fa l se ; } } }

Listing 3: Counting Passengers and Drivers

Asse r t i on = ”execute ” (Context | Card ina l i t y)
Context = Direc t | Forbidden | Required
Direc t = ” d i r e c t l y ” ”in ” AdvisedType∗
Forbidden = ”not ” ”in ” AdvisedType∗
Required = ”in ” AdvisedType∗

Alternat iveTypes ∗
Alternat iveTypes = ”[” AdvisedType∗ ”] ”
AdvisedType = IDENTIFIER

Card ina l i t y = Pred i cate ”in ” AdvisedType
Pred i cate = Simple | Composite
Composite = ”(” Pred i cate Op Pred iate ”) ”
Simple = Rel INTEGER
Op = (”and ” | ”or ”)
Rel = ”>” | ”<” | ”==” | ”<=” | ”>=” | ”!=”

Listing 4: Language for Asserting the Correctness
of Adaptive Programs

context of either a Driver or a Passengers (see Listing 3).

3. CONTROLLING ADAPTIVE PROGRAM
EVOLUTION

In this section we present a language for asserting the “cor-
rectness” of adaptive programs based on the context(s) in
which certain advice executes and how often it does so. Con-
text correctness assertions can be employed for controlling
evolutions leading to drastic impacts. Cardinality correct-
ness assertions can be employed to control evolutions leading
to minor impacts.

3.1 Syntax
Listing 4 shows the EBNF grammar of the proposed lan-
guage of assertions. An assertion annotates one advice. This
way the assertion gets associated with one advised type. On
the other hand, each advice can be annotated with any num-
ber of assertions. There are two types of assertions: Con-

textAssertion for controlling evolutions leading to drastic
impacts, and CardinalityAssertion for controlling evolu-
tions leading to minor impacts.

Context assertions are further split into three kinds: di-
rect context assertions, forbidden context assertions, and
required context assertions. A direct context assertions is
parameterized by a set of required types, and used to assert
that the traversal visits one these required types right be-
fore the type to which the assertion is associated (i.e., no
other advised type is visited in between). A forbidden con-
text assertions is parameterized by a set of forbidden types,
and used to assert that none of these forbidden types is vis-
ited before the type to which the assertion is associated. A
required context assertions is parameterized by a set of re-
quired types and a set of sets of alternative types, and used
to assert that the traversal visits all of the required types
and only one type from each set of alternative types before
the the type to which the assertion is associated is visited.

A cardinality assertion is parameterized by a “from” node,
and used to assert that the number of ways for reaching the
type to which the assertion is associated from the “from”
type satisfies a certain predicate. Predicates can be formed
from comparison operators and logical connectives.

3.2 Semantics
The meaning of an assertion is the set of adaptive programs
for which it is defined and holds. Since the assertions we
defined above are based on the runtime behavior of the
adaptive program, it is enough to check them against the
smoothed traversal graph.

3.2.1 Checking Direct Context Assertions
A direct context assertion c is associated with an advised
type c.type and has a set of required nodes c.required. For
checking a direct context assertion we use:

getLeadingTypes(c.type) ⊆ c.required

The metafunction getLeadingTypes goes through the all
smoothed traversal graph nodes labeled with c.type, and for
each node, it finds the set of labels of its predecessors. Fi-
nally, the union of all these sets is returned.

3.2.2 Checking Forbidden Context Assertions
A forbidden context assertion c is associated with an advised
type c.type and has a set of forbidden nodes c.forbidden.
For checking a forbidden context assertion we use:

∀p ∈ getPaths(∧, c.type) : c.forbidden ∩ getTypes(p) = ∅

The metafunction getPaths(t1, t2) is used to retrieve the
set of all paths connecting the smoothed traversal graph
node labeled t1 to the smoothed traversal graph node labeled
t2. ∧ denotes the root of the smoothed traversal graph.
Paths are represented as sets of edges. the metafunction
getTypes(p) is used to retrieve the set of types mentioned
in a path p.

3.2.3 Checking Required Context Assertions
A required context assertion c is associated with an advised
type c.type and has a set of required nodes c.required and
a set c.alternatives of set of alternative types. For checking
a required context assertion we use:

∀p ∈ getPaths(∧, c.type) : c.required ⊆ getTypes(p)^
∀a ∈ c.alternatives : |getTypes(p) ∩ a.types| = 1

3.2.4 Checking Cardinality Assertions
A cardinality assertion c is associated with an advised type
c.type, a from type c.from, and a predicate c.pred. For
checking a cardinality assertion we use:

c.pred(|getPaths(c.from, c.type)|)

4. STRICTER LEGALITY NOTION
In this section we present a stricter notion of legal adap-
tive programs. In addition to satisfying all assertions, the
proposed notion has five more criteria: Three of them are
intended to eliminate “conceptual mismatches” between the
strategy and the input schema. The other two are intended
to eliminate conceptual mismatches between the strategy
and the behavior. The trickiest part of defining the new
notion is preserving the expressiveness of the adaptive pro-
gramming paradigm. We conclude this section with a dis-
cussion of the ramification of the new notion on the evolution
of adaptive programs.

4.1 Establishing Compatibility Between the Strat-
egy and the Input Schema

The first kind of conceptual mismatch is: the absence of
desired input schema paths.

As an example, consider an evolution to the input schema
shown in Figure 1(a) that drops the Driver node altogether.
This means that the developer who wrote the strategy“thinks”
that a Person object is accessible from a BusRoute object
through a Driver object, which is not true from the point
of view of the input schema developer. This is in fact the
first and only legality criteria for adaptive programs [6].

It is always possible to transform an adaptive program with
this kind of conceptual mismatch into another adaptive pro-
gram without this kind of conceptual mismatch while keep-
ing with the same runtime behavior. Simply, by dropping
those strategy graph edges (and nodes) that do not have a
corresponding path in the input schema.

The second kind of conceptual mismatch is: the absence of
undesired input schema paths.

Figure 10: Restricting the Strategy Shown in Fig-
ure 1(b)

As an example, suppose that the strategy shown in Fig-
ure 1(b) was restricted to the one shown in Figure 10 by
adding a Bypassing PersonList constraint to the edge con-
necting Driver to Person meaning that we are interested in
Person objects reachable from Driver objects but not hav-
ing any PersonList objects on the way.

In this example, the strategy developer thinks that there
might be a PersonList on the way from Driver to Per-

son, which is not true according to the input schema. This
conceptual mismatch can be eliminated by dropping the re-
dundant bypassing constraint.

The third kind of conceptual mismatch is: the existence of
neither desired nor undesired input schema paths connecting
strategy nodes.

As an example, consider an evolution in which one of the
developers decided that a bus driver can also be seen as a
passenger too thus evolving the input schema to the one
shown in Figure 11.

In this example, the strategy developer thinks that there
is Driver objects are not contained in Passengers objects,
which is not true according to the input schema. Eliminating
this conceptual mismatch involves computing the traversal
graph, smoothing out nodes not mentioned in the strategy,
and finally adding bypassing constraints that bypass all of
the nodes mentioned in the strategy provided that the by-
passing constraints are not redundant themselves

Figure 11: Bus Route with Drivers as Passengers

4.2 Establishing Compatibility Between the Strat-
egy and the Behavior

The fourth kind of conceptual mismatch is: advising types
that are not mentioned in the strategy graph. This means
that the strategy is too general for the behavior. No guar-
antees can be made about the context in which advices for
types not mentioned in the strategy graph. These advices
are not even guaranteed to execute in the first place. Elimi-
nating this kind of conceptual mismatch involves computing
the traversal graph, then smoothing out nodes that are nei-
ther mentioned in the strategy nor advised.

The fifth kind of conceptual mismatch is: the existence of
irrelevant strategy nodes. A strategy node is irrelevant if
it is neither labeled with an advised type nor can reach an
advised type. This simply means that the strategy is too
specific for the behavior and can be generalized to allow
more compatible input schemas.

4.3 Ramifications on Evolution
Adopting the new notion of legality tightens the coupling
between the three components of an adaptive program. It
is now more likely that evolving one of the components can
trigger a series of changes in the other components. The
tighter coupling does not necessarily sacrifice the genericity
of adaptive programs because assertions, when used wisely,
can cut mostly on unsafe evolutions, and we have already
argued that the other five criteria also cut mostly on unsafe
evolutions.

Suppose that we want to add a new advice to the behav-
ior. This might trigger a change in the strategy graph if
the newly advised type does not show up in the strategy,
otherwise the fourth kind of conceptual mismatch will oc-
cur. Likewise, dropping an advice from the behavior might
trigger the fifth kind of conceptual mismatch. Moreover,
adding or removing an advice might disturb the context of
other advices.

Evolving the strategy by dropping a node might result in
the fourth kind of conceptual mismatch if the dropped node
was advised. Dropping a bypassing constraint might either:
violate a cardinality assertion because a new path is picked
from the input schema, disturb the context of an existing
advice because the new path acts as a short cut to the type
that advice is attached to, or result in the third kind of
conceptual mismatch if the bypassed type exists elsewhere
in the strategy. Dropping an edge will result in the third
kind of conceptual mismatch if its source and target nodes
remain in the strategy.

Evolving the strategy graph by adding a node might result
in the fifth kind of conceptual mismatch if it does not lead
to an advised type. Adding a bypassing constraint might
result in the first kind of conceptual mismatch if it excludes
the only path in the input schema that conceits two nodes
that are connected by an edge in the strategy. Adding a
bypassing constraint might also violate a cardinality con-
straint, disturb the context of other advices, or result in the
second kind of conceptual mismatch. Adding an edge to the
strategy might violate a cardinality constraint, act as a short
cut to an advised type thus disturbing the context, or lead
to the first kind of conceptual mismatch because the newly
added edge does not have a corresponding path in the input
schema.

Evolving the input schema by adding non advised nodes
or edges can violate a cardinality constraints, disturb the
context of an advice, or lead to the third kind of conceptual
mismatches. Dropping nodes or edges might also violate a
cardinality constraint, disturb the context of an advice, or
lead to the first kind of conceptual mismatches.

5. RELATED WORK
There is a number of generic programming technologies [5,
4]. To the best of our knowledge, there has been no work
related to controlled evolution in these communities. The
most relevant related work is the work on Demeter interfaces
in [9], and the work on DemeterF type system [3].

6. CONCLUSION AND FUTURE WORK
In this paper we presented a study of adaptive program evo-
lution and two approaches for controlling unsafe evolution of
adaptive programs. We plan to introduce adaptive program-
ming as a technology for event based processing of XML [1].

7. ACKNOWLEDGMENTS
This work is supported in part by Grantham Mayo Van Ot-
terloo, LLC.

8. REFERENCES
[1] The SAX Project. http://www.saxproject.org/.

[2] Bryan Chadwick and Karl Lieberherr. Functional
Adaptive Programming. Technical Report
NU-CCIS-08-75, CCIS/PRL, Northeastern University,
Boston, October 2008.

[3] Bryan Chadwick and Karl Lieberherr. A type system
for functional traversal-based aspects. In FOAL ’09:
Proceedings of the 2009 workshop on Foundations of
aspect-oriented languages, pages 1–6, New York, NY,
USA, 2009. ACM.

[4] Jeremy Gibbons. Datatype-generic programming. In
Roland Backhouse, Jeremy Gibbons, Ralf Hinze, and
Johan Jeuring, editors, Spring School on
Datatype-Generic Programming, volume 4719 of Lecture
Notes in Computer Science. Springer-Verlag, 2007.

[5] Ralf Lämmel, Eelco Visser, and Joost Visser. Strategic
programming meets adaptive programming. In AOSD
’03: Proceedings of the 2nd international conference on
Aspect-oriented software development, pages 168–177,
New York, NY, USA, 2003. ACM.

[6] Karl Lieberherr, Boaz Patt-Shamir, and Doug Orleans.
Traversals of object structures: Specification and
efficient implementation. ACM Trans. Program. Lang.
Syst., 26(2):370–412, 2004.

[7] Karl J. Lieberherr. Adaptive Object-Oriented Software:
The Demeter Method with Propagation Patterns. PWS
Publishing Company, Boston, 1996. 616 pages, web
book at www.ccs.neu.edu/research/demeter.

[8] Johan Ovlinger and Mitchell Wand. A language for
specifying recursive traversals of object structures.
SIGPLAN Not., 34(10):70–81, 1999.

[9] Therapon Skotiniotis, Jeffrey Palm, and Karl J.
Lieberherr. Demeter interfaces: Adaptive programming
without surprises. In European Conference on
Object-Oriented Programming, pages 477–500, Nantes,
France, 2006. Springer Verlag Lecture Notes.

http://www.saxproject.org/

	Introduction
	Background
	Evolution of Adaptive Programs
	Problem
	Contributions
	Organization

	Evolution of Adaptive Programs
	Runtime Behavior Representation
	Impacts of Evolution on Adaptive programs
	No Impact
	Minor Impact
	Drastic Impact

	Controlling Adaptive Program Evolution
	Syntax
	Semantics
	Checking Direct Context Assertions
	Checking Forbidden Context Assertions
	Checking Required Context Assertions
	Checking Cardinality Assertions

	Stricter Legality Notion
	Establishing Compatibility Between the Strategy and the Input Schema
	Establishing Compatibility Between the Strategy and the Behavior
	Ramifications on Evolution

	Related Work
	Conclusion and Future Work

