
Incremental Class Dictionary Learning andOptimizationPaul L. Bergstein and Karl J. LieberherrNortheastern University, College of Computer ScienceCullinane Hall, 360 Huntington Ave., Boston MA 02115(pberg or lieber)@corwin.CCS.northeastern.EDUAbstractWe have previously shown how the discovery of classes from objects can be automated,and how the resulting class organization can be e�ciently optimized in the case wherethe optimum is a single inheritance class hierarchy. This paper extends our previous workby showing how an optimal class dictionary can be learned incrementally. The abilityto expand a class organization incrementally as new object examples are presented is animportant consideration in software engineering.Keywords: Object-oriented programming and design, reverse engineering, class library orga-nization, class abstraction algorithms.1 IntroductionIn class-based object-oriented languages, the user has to de�ne classes before objects can becreated. For the novice as well as for the experienced user, the class de�nitions are a non-trivialabstraction of the objects. We claim it is easier to initially describe certain example objectsand to get a proposal for an optimal set of class de�nitions generated automatically than towrite the class de�nitions by hand.We have previously shown ([LBSL90], [LBSL91]) how the discovery of classes from objectscan be automated, and how the resulting class organization can be e�ciently optimized inthe case where the optimum is a single inheritance class hierarchy. This paper extends ourprevious work in an important way: We show how an optimal class organization can be learnedincrementally.The algorithms discussed in this paper are a part of our research results in reverse engineeringof programs from examples. In one line of research, we start with object examples and applyan abstraction algorithm described in this paper to get a set of class de�nitions. Then we apply

a legalization algorithm to the class de�nitions to ensure that each recursive class de�nitionis well behaved. Next, an optimization algorithm summarized in this paper makes the classde�nitions as small as possible while preserving the same set of objects. Then we apply anLL(1)-correction algorithm which adds some concrete syntax to the class de�nitions to makethe object description language LL(1) for easy readability and learnability. The object descrip-tion language allows very succinct object descriptions and the LL(1)-property guarantees thatthere is a one-to-one correspondence between sentences and objects. Finally we apply a C++code generation algorithm to the class de�nitions which produces a tailored class library formanipulating the application objects (e.g., reading, printing, traversing, comparing, copyingetc.).This sequence of algorithms allows us to produce a tailored C++ library just from objectexamples. After the speci�c object implementations are injected into this library, we have thecomplete application code. The creative steps in this method of software development are 1)to �nd the right objects, 2) to �nd good replacements for the names which are generated bythe abstraction programs, 3) to �ne tune the object syntax and 4) to write the speci�c objectimplementations. However, it is much easier to start with a custom generated C++ class librarythan to proceed manually from the object examples. For further information on our researchprogram in object-oriented software engineering, we refer the reader to the survey in [WBJ90].In section 2 the basic learning algorithm is formally presented. An informal presentation hasbeen given in [LBSL90]. This algorithm learns a correct (but not optimal) class dictionarygraph from a list of object example graphs. An algorithm for learning class dictionary graphsincrementally is given in section 3. The ability to expand a class dictionary incrementally asnew object examples are presented is an important consideration in software engineering. Insection 4 the algorithm is extended to incrementally learn an optimal class dictionary graphwhen the optimum is a single inheritance class dictionary.Our algorithms are programming language independent and are therefore useful to programmerswho use object-oriented languages such as C++ [Str86], Smalltalk [GR83], CLOS [BDG+88] orEi�el [Mey88]. We have implemented the abstraction algorithms as part of our C++ CASE tool,called the C++ Demeter SystemTM [Lie88], [LR88]. The input to the abstraction algorithms isa list of object examples, and the output is a programming language independent set of classde�nitions. They can be improved by the user and then translated into C++ by the CASEtool.We �rst describe our class de�nition and object example notations (the key concepts behindthe algorithms we present in this paper), since they are not common in the object-orientedliterature.
2

Leg

color

owner

Ident

Person Number

ssn
Table

leg1 leg2 leg3 leg4Figure 1: Construction class
Owner

Person

Company

Owner

Person

Company

Number

String

expense

address(a) (b)Figure 2: Alternation classes1.1 Class notationWe use a class notation which uses two kinds of classes: construction and alternation classes.1A construction class de�nition is an abstraction of a class de�nition in a typical staticallytyped programming language (e.g., C++). A construction class does not reveal implementationinformation. Examples of construction classes are in Figure 1 for: Table, Leg, etc.Each construction class de�nes a set of objects which can be thought of being elements of thedirect product of the part classes. When modeling an application domain, it is natural to takethe union of object sets de�ned by construction classes. For example, the owner of a table canbe either a person or a company. So the objects we want to store in the owner part of the tableare either person or company objects. We use alternation classes to de�ne such union classes.An example of an alternation class is in Fig. 2a.Person and Company are called alternatives of the alternation class. Often the alternatives havesome common parts. For example, each owner had an expense to acquire the object. We usethe notation in Fig. 2b to express such common parts.Alternation classes have their origin in the variant records of Pascal. Because of the delayedbinding of function calls to code in object-oriented programming, alternation classes are easier1In practice we use a third kind, called repetition classes, which can be expressed in terms of constructionand alternation [Lie88]. 3

to use than variant records.Alternation classes which have common parts are implemented by inheritance. In Fig. 2b,Person and Company inherit from Owner. Class Owner has methods and/or instance variablesto implement the parts expense and address.Construction and alternation classes correspond to the two basic data type constructions indenotational semantics: cartesian products and disjoint sums. They also correspond to the twobasic mechanisms used in formal languages: concatenation and alternation.De�nition 1 A class dictionary graph � is a directed graph � = (V;�; EC;EA) with�nitely many labeled vertices V . There are two de�ning relations: EC;EA. EC is a ternaryrelation on V � V � �, called the (labeled) construction edges: (v;w; l) 2 EC i� there is aconstruction edge with label l from v to w. � is a �nite set of construction edge labels. EA is abinary relation on V � V , called the alternation edges: (v;w) 2 EA i� there is an alternationedge from v to w.Next we partition the set of vertices into two subclasses, called the construction and alternationvertices.De�nition 2 We de�ne� the construction vertices V C = fv j v 2 V;8w 2 V : (v;w) 62 EAg. In other words,the construction vertices have no outgoing alternation edges.� the alternation vertices V A = fv j v 2 V;9w 2 V : (v;w) 2 EAg. In other words, thealternation vertices have at least one outgoing alternation edge.Sometimes, when we want to talk about the construction and alternation vertices, we describea class dictionary graph as a tuple which contains explicit references to V C and V A: � =(V C; V A;�; EC;EA).De�nition 3 Vertex vk 2 V in a class dictionary graph, � = (V;�; EC;EA), is said to bealternation reachable from vertex v0 2 V via a path of length k � 1, if there exist k � 1vertices v1; v2; :::; vk�1 such that for all j, 0 � j < k, (vj; vj+1) 2 EA. The path consists of thesequence of alternation edges. We say that every vertex is alternation-reachable from itself.A legal class dictionary graph is a structure which satis�es two independent axioms.De�nition 4 A class dictionary graph � = (V C; V A;�; EC;EA) is legal if it satis�es thefollowing two axioms: 4

1. Cycle-free alternation axiom:There are no cyclic alternation paths, i.e., 8v 2 V A there is no alternation path from vto v.The cycle-free alternation axiom is natural and has been proposed by other researchers,e.g., [PBF+89, page 396], [Sno89, page 109: Class names may not depend on themselvesin a circular fashion involving only (alternation) class productions]. The axiom says thata class may not inherit from itself.2. Unique labels axiom:8w 2 V there are no p1; p2 2 V s:t: 9x; y 2 V; l 2 � s:t: e1 = (p1; x; l) 2 EC and e2 =(p2; y; l) 2 EC, e1 6= e2 and w is alternation reachable from p1 and p2.The unique labels axiom guarantees that \inherited" construction edges are uniquelylabeled. Other mechanism for uniquely naming the construction edges could be used,e.g., the renaming mechanism of Ei�el [Mey88].In the rest of this paper, when we refer to a class dictionary graph we mean a legal classdictionary graph.We use the following graphical notation, based on [TYF86], for drawing class dictionary graphs:squares for construction vertices, hexagons for alternation vertices, thin arrows for constructionedges and double arrows for alternation edges (see Figures 1 and 2).1.2 Object example notationThe importance of objects extends beyond the programmer concerns of data and control ab-straction and data hiding. Rather, objects are important because they allow the program tomodel some application domain in a natural way. In [MMP88], the execution of an object-oriented program is viewed as a physical model consisting of objects, each object characterizedby parts and a sequence of actions. It is the modeling that is signi�cant, rather than the expres-sion of the model in any particular programming language. We use a programming languageindependent object example notation to describe objects in any application domain.The objects in the application domain are naturally grouped into classes of objects with similarsubobjects. For our object example notation it is important that the designer names thoseclasses consistently. Each object in the application domain has either explicitly named ornumbered subobjects. It is again important for our object example notation that the explicitlynamed parts are named consistently. This consistency in naming classes and subparts is notdi�cult since it is naturally implied by the application domain.An object is described by giving its class name, followed by the named parts. The parts areeither physical parts of the object (e.g., legs of the table) or attributes or properties (e.g., owneror color). An object example is in Fig. 3 which de�nes a table object with 6 parts: 4 physicalparts (legs) and two attributes: color and owner. The object example also indicates that the5

t1:Table

leg3

leg4

leg2

leg1

l1:Leg l2:Leg l3:Leg l4:Leg

color

owner

i1:Ident

p1:Person n1:Number

ssnFigure 3: Table objectfour legs have no parts and that the owner is a Person object with one part called ssn whichis a Number.De�nition 5 An object example graph with respect to a set of classes, S, is a graphH = (W;S;�H; E; �) with vertex set W . �H is a set of edge labels. E is a ternary relation onW �W ��H. If (v;w; l) 2 E, we call l the label of the labeled edge (v;w; l), from v to w. Thefunction � : W ! S labels each vertex of H with an element of S. The following axioms musthold for H:(1) No vertex of H may have two outgoing edges with the same label. (2) All vertices whichhave the same element s 2 S as label (under �) must have either outgoing edges with the samelabels or no outgoing edges at all.De�nition 6 An object graph with respect to a class dictionary graph, �is an object example graph, H = (W;S;�H; E; �) with respect to set S, where S = V C� and�H � ��.Not every object graph with respect to a class dictionary graph is legal; intuitively, the objectstructure has to be consistent with the class de�nitions. For a formal de�nition of legality see[LBSL91].The set of all legal object graphs de�ned by a class dictionary graph � is called Objects(�).When we optimize a class dictionary graph, we must insure that the optimized version de�nesthe same set of objects. The following de�nition formalizes the concept that two sets of classde�nitions de�ne the same set of objects.De�nition 7 A class dictionary graph G1 is object-equivalent to a class dictionary graphG2 if Objects(G1) = Objects(G2). 6

We use a textual notation for describing object graphs using an adjacency representation whichalso shows the mapping of object graph vertices to class dictionary graph vertices. The exampleof Fig. 3 has the following textual representation:t1:Table(<leg1> l1:Leg()<leg2> l2:Leg()<leg3> l3:Leg()<leg4> l4:Leg()<color> i1:Ident()<owner> p1:Person(<ssn> n1:Number()))The vertices correspond to the instance names. The name after the instance name is precededby a \:" and gives the label assigned by �. The edge labels are between the < and > signs.1.3 A simple example of incremental class dictionary learningExample 1 Consider the two object graphs which represent a basket containing two apples anda basket with an orange:b1:Basket(<contents> o1:OneOrMore(<one> a1:Apple(<weight> n1:Number())<more> o2:OneOrMore(<one> a2:Apple(<weight> n2:Number())<more> no1:None())))b1:Basket(<contents> o1:OneOrMore(<one> or1:Orange(<weight> n1:Number())<more> no1:None()))After seeing the �rst object example graph, the learning algorithm generates the class dictionarygraph in Fig. 4a. Now when the second object example is presented, the algorithm will learnthe class dictionary graph in Fig. 4b.Notice that the algorithm \invents" two abstract classes, SeveralFruit and Fruit. Since bothsubclasses of Fruit have a weight part, that part is attached to the Fruit class and is inheritedin the Apple and Orange classes.A sample program to calculate the weight of a fruit basket is given below. All of the userwritten code is shown. The class de�nitions and remaining code are generated automaticallyfrom the class dictionary by the Demeter System CASE tool.7

Basket OneOrMore

SeveralFruit

contents

None

one
Apple

more

Basket OneOrMore

SeveralFruit

contents

None

Apple

more

Orange

Fruit

Number

weight

Number

weight

(a) (b)

one

Figure 4: Fruit basket class dictionary graphs// Basket = <contents> SeveralFruit.Number Basket::get_weight(){ return contents->get_weight(); }// SeveralFruit : None | OneOrMore.virtual Number SeveralFruit::get_weight(){}// OneOrMore = <one> Fruit <more> SeveralFruit.Number OneOrMore::get_weight(){ return (one->get_weight() + more->get_weight()); }// None = .Number None::get_weight(){ return Number(0); }// Fruit : Apple | Orange *common* <weight> Number.Number Fruit::get_weight(){ return *weight; }2 Basic LearningGiven a list of object example graphs, the basic learning algorithm will learn a class dictionarygraph, �, such that the set of objects de�ned by � includes all of the examples. Furthermore,the algorithm insures that the set of objects de�ned by the learned class dictionary graph is asubset of the objects de�ned by any class dictionary graph that includes all of the examples.8

Intuitively, we learn a class dictionary graph that only de�nes objects that are \similar" to theexamples.Formally, given a list of object example graphs,
1;
2; :::;
n, we learn a legal class dictionarygraph, �, such that Objects(�) � f
1;
2; :::;
ng, and for all legal class dictionary graphs, �0where Objects(�0) � f
1;
2; :::;
ng : Objects(�) � Objects(�0).If there is no legal class dictionary graph that de�nes a set of objects that includes all of theexamples, we say that the list of object example graphs is not legal. The following de�nitiongives the conditions under which a list of object example graphs is legal.De�nition 8 A list of object example graphs
1; :::;
n is legal if all vertices which have thesame element s 2 S as label (under �
i for some i; 1 � i � n) have either outgoing edges withthe same labels (under E for
i) or no outgoing edges at all.A legal list of object example graphs
1; :::;
n of the form
 = (W
; S
;�
;E
; �
) is trans-lated into a class dictionary graph � = (V;�; EC;EA) as follows:1. � = [1�i�n�
iThe construction edges of the class dictionary graph are given the same labels as theedges in the object example graph.2. V C = fr j r = �
i(v) and v 2 W
i where 1 � i � ngWe interpret � as a function that maps objects to their classes. For each class thatappears in an object example, we generate a construction class which is represented as aconstruction vertex in the class dictionary graph.3. V A = f(r; l) j r 2 V C; l 2 �;9i; j; v1; v2; w1; w2 : (v1; w1; l) 2 E
i ; (v2; w2; l) 2 E
j ;�
i(v1) = �
j (v2) = r; �
i(w1) 6= �
j (w2)gWhen we learn that objects of class r have a part labeled l that is not always of thesame class, we create an abstract class represented in the class dictionary graph as analternation vertex (r; l). In step 6, we will make each of the part's possible classes asubclass of the new abstract class.4. V = V C [V AThe vertices of the class dictionary graph are given by the union of the constructionvertices and alternation vertices.5. EC = f(r; s; l) j r; s 2 V;9i; v; w : (v;w; l) 2 E
i ; �
i(v) = r; �
i(w) = s; (r; l) 62 V Ag[f(r; (r; l); l) j r 2 V; (r; l) 2 V AgIf an object of class r has a part of class s with label l, then we create a constructionedge from the construction vertex representing r to the construction vertex representing9

s with label l. But if the part can have more than one class, in which case an alternationvertex representing all of the possible classes was created in step 3, we instead create aconstruction edge to that alternation vertex.6. EA = f((r; l); s)j(r; l) 2 V A; s 2 V;9i; v; w : (v;w; l) 2 E
i ; �
i(v) = r; �
i(w) = sgFinally, we create a alternation edge from each alternation vertex (representing an abstractclass) to each vertex which represents a subclass.The following example serves to illustrate the operation of the algorithm:Example 2 .
1: a1:A(hxi b1:B(hyi a2:A))� W = fa1; a2; b1g� S = fA;Bg
a1:A

x

b1:B a2:A

y� � = fx; yg� E = f(a1; b1; x); (b1; a2; y)g� �W = fa1! A; a2! A; b1! Bg
2: a1:A(hxi c1:C())� W = fa1; c1g� S = fA;Cg
a1:A

x

c1:C� � = fxg� E = f(a1; c1; x)g� �W = fa1! A; c1! Cg
10

� : � � = fx; yg
(A,x)

x

B C

A

y

� V C = fA;B;Cg� V A = f(A;x)g� V = fA;B;C; (A;x)g� EC = f(B;A; y); (A; (A;x); x)g� EA = f((A;x); B); ((A;x); C)g3 Incremental LearningGiven a class dictionary graph, �, and an object example graph,
, the incremental learningalgorithm will learn a class dictionary graph, �0, such that the set of objects de�ned by �0includes
 and all of the objects de�ned by �. Furthermore, the algorithm insures that the setof objects de�ned by �0 is a subset of the objects de�ned by any class dictionary graph thatincludes
 and all of the objects de�ned by �. Intuitively, we extend the set of objects de�nedby � only enough to include objects \similar" to
.Formally, given a class dictionary graph, �1, and an object example graph,
, we learn a legalclass dictionary graph, �2, such that Objects(�2) � Objects(�1) [
, and for all legal classdictionary graphs, �3 where Objects(�3) � Objects(�1) [
 : Objects(�2) � Objects(�3).If there is no legal class dictionary graph that de�nes a set of objects that includes
 and allof the objects de�ned by �, we say that the object example graph
 is not incrementally legalwith respect to �.De�nition 9 An object example graph
 is incrementally legal with respect to a class dictio-nary graph � if there exists a legal class dictionary �0 such that Objects(�0) � Objects(�)[
.If a list of object example graphs
1; :::;
n is legal, then each
i in the list must be incrementallylegal with respect to the class dictionary graph learned from
1; :::;
i�1. Therefore a classdictionary graph can be learned incrementally from a legal list of object example graphs.Denote the intermediate class dictionary learned from
1;
2; :::;
m by �m, and let �0 =(;; ;; ;; ;). Then �m is learned from �m�1 and
m, where 1 � m � n, as follows:1. � = ��m�1 [�
mFor each edge in the object example graph there is a construction edge in the classdictionary graph with the same label. 11

2. V C = V C�m�1 [fr j 9v 2 W
m : �
mW (v) = rgWe interpret � as a function that maps objects to their classes. For each new class thatappears in the object example graph, we add a construction class which is represented asa construction vertex in the class dictionary graph.3. V A = V A�m�1[f(r; l) j r 2 V C; l 2 �;9v1; v2; w1; w2 2 W
m :�
mW (v1) = �
mW (v2) = r; �
mW (w1) 6= �
mW (w2); (v1; w1; l); (v2; w2; l) 2 E
mg[f(r; l) j r 2 V C; l 2 �;9v;w 2 W
m ; s 2 V C :�
mW (v) = r; �
mW (w) 6= s; (v;w; l) 2 E
m ; (r; s; l) 2 EC�m�1gThe �rst term represents the alternation vertices already learned in �m�1. The secondterm adds the alternations we learn from
m alone (this is the same term as in the BasicAlgorithm, where
i =
j =
m). The last term adds alternations that are learned inthe Basic Algorithm when
i 6=
j. In the case of incremental learning we rely on thefact that the edges of
1, ...,
m�1 are recorded in �m�1 as construction edges.4. V = V C [V AThe vertices of the class dictionary graph are given by the union of the constructionvertices and alternation vertices.5. EC = (EC�m�1 � f(r; s; l) j (r; l) 2 (V A� V A�m�1)g)[f(r; (r; l); l) j (r; l) 2 (V A� V A�m�1)g[f(r; s; l) j r; s 2 V;9v;w 2 W
m : �
mW (v) = r; �
mW (w) = s; (v;w; l) 2 E
m ; (r; l) 62V AgWe start with the construction edges in �m�1, but if we learned a new abstract class,represented by (r,l), we remove any construction edges to vertices representing subclassesof the new abstract class (�rst term) and replace them with construction edges to (r,l)(second term). Finally, the third term adds new construction edges learned from
m.6. EA = EA�m�1[f((r; l); s)(r; l) 2 V A; s 2 V;9v;w 2 W
m : �
mW (v) = r; �
mW (w) = s; (v;w; l) 2E
mg[f((r; l); s)(r; l) 2 V A; s 2 V; (r; l; s) 2 EC�m�1gHere we start with the alternation edges from the previous class dictionary graph andadd edges learned from
m alone, and from
m and �m�1. The three terms correspondto the three terms used to learn the alternation vertices in step 3.The following theorem can be easily proven by induction on the length of the object examplegraph list:Theorem 1 A class dictionary graph learned incrementally is identical to the class dictionarygraph learned using the basic learning algorithm.12

4 Incremental OptimizationIn this section, we develop an algorithm for incrementally learning minimum single-inheritanceclass dictionary graphs. We measure class dictionary graphs by counting the number of edges,except that we consider construction edges to be at least twice as expensive as alternation edges.Consideration of this problem leads to some important observations regarding class dictionarydesign.Informally, we say that a class dictionary graph is in common normal form (CNF) if it has noredundant parts. If a vertex, v, in a class dictionary graph has two incoming construction edgeswith the same label, l, the part (l; v) is redundant.We observe that we can always avoid redundant parts by introducing multiple inheritance.Sometimes, we can avoid multiple inheritance by introducing redundant parts, but other timeswe can not eliminate multiple inheritance while maintaining object equivalence. When facedwith a choice, multiple inheritance always produces the smaller class dictionary, since construc-tion edges are at least twice as expensive as alternation edges.In [LBSL91] an e�cient algorithm is presented for abstracting minimum single-inheritanceclass dictionary graphs from class dictionary graphs learned using the basic learning algorithm(section 2). It is shown that a class dictionary graph with no redundant parts (i.e., it is inclass dictionary common normal form, or CNF), no useless alternation vertices, and with asingle-inheritance hierarchy is guaranteed minimal. An alternation vertex is \useless" if it doesnot have at least two outgoing alternation edges.Clearly, an incremental learning algorithm will produce a minimum single-inheritance classdictionary graph if with each new example the algorithm maintains a class dictionary graphthat has a single-inheritance hierarchy and no redundant parts. We de�ne the IncrementalSingle-Inheritance Minimum Class Dictionary Learning problem as follows:Instance:A minimumsingle-inheritance class dictionary graph, �, and an object example graph,
, where
 is incrementally legal with respect to �.Problem:Find a minimum single-inheritance class dictionary graph, �0, such thatObjects(�0) � Objects(�) [
.In order to maintain the desired conditions in the intermediate class dictionary graphs, eachnew object example graph must meet two criteria:1. If we learn from an object example graph, H = (W;S;�H; E; �), that a class occurringin H (under �) has a part in common with some other class, C, in the class dictionary itmust have all the parts inherited by C. 13

2. If an object has a class with parts in common with two or more classes in the classdictionary, all of the classes with which it has parts in common must lie on a singlealternation path.It is easy to see how the incremental learning algorithm presented in section 3 can be extendedto produce minimum single-inheritance class dictionaries.5 Practical RelevanceIn this paper we propose a metric (minimizing the number of edges) for measuring class hier-archies. We propose to minimize the number of construction and alternation edges of a classdictionary graph while keeping the set of objects invariant. Our technique is as good as theinput which it gets: If the input does not contain the structural key abstractions of the ap-plication domain then the optimized hierarchy will not be useful either, following the maxim:garbage in { garbage out.However if the input uses names consistently to describe either example objects or a classdictionary then our metric is useful in �nding \good" hierarchies. However, we don't intendthat our algorithms be used to restructure class hierarchies without human control. We believethat the output of our algorithms makes valuable proposals to the human designer who thenmakes a �nal decision.Our current metric is quite rough: we just minimize the number of edges. We also minimize theamount of multiple inheritance (since this is consistent with minimizing edge size), but ignoreother criteria such as the amount of repeated inheritance. This is left for future research.We motivate now why our metric produces class hierarchies which are good from a softwareengineering point of view.5.1 Minimizing the number of construction edges: CNFWe minimize the number of construction edges by eliminating redundant parts. We say a classdictionary with no redundant parts is in class dictionary common normal form (CNF).Even simple functions cannot be implemented properly if a class dictionary is not in CNF. Byproperly we mean with resilience to change. Consider the class dictionary in Figure 5 whichis not in CNF. Suppose we implement a print function for Coin and Brick. Now assume thatseveral hundred years have passed and we �nd ourselves on the moon where the weight has adi�erent composition: a gravity and a mass. We then have to rewrite our print function forboth Coin and Brick.After transformation to CNF we get the class dictionary in Figure 6. Now we implement theprint function for Coin:void Coin::print() { radius->print(); Weight_related::print(); }14

Brick

width

length

height

weight

Coin

weight

radius

NumberFigure 5: A class dictionary not in CNF
Brick

width

length

height
Coin

radius

Weight-related

Number
w
e
ig
h
tFigure 6: After transforming to CNFAfter the change of the weight composition, we get the class dictionary in Figure 7. Wereimplement the print function for this new class and no change is necessary for classes Brickand Coin.In summary: if the class dictionary is in CNF and the functions are written following the strongLaw of Demeter [LHR88], the software is more resilient to change. The strong Law of Demetersays that a function f attached to class C should only call functions of the immediate partclasses of C, of argument classes of f, including C, and of classes which are instantiated in f.Transformation to CNF can be more complicated, but not less bene�cial, than the aboveexample suggests.

Brick

width

length

height
Coin

radius

Weight-related

Number

m
as
s

g
ra
v
it
yFigure 7: After change of weight composition15

5.2 Minimizing the number of alternation edgesConsider the non-minimal class dictionary in Figure 8. By changing the class de�nitions forOccupation and Univ-employee we get the class dictionary in Figure 9. We have now reducedthe number of alternation edges by 5 and have also reduced the amount of multiple inheritance,which we propose as another metric to produce \good" schemas from the software engineeringpoint of view.Another indication that our class dictionary optimization algorithm is useful is that it succeedsin �nding single-inheritance solutions. We can prove the following statement: If we give a classdictionary which is object-equivalent to a single-inheritance class dictionary to the optimizationalgorithm, it will return such a single-inheritance class dictionary. From a software engineeringstandpoint, a single inheritance hierarchy is simpler than a multiple-inheritance hierarchy andour optimization algorithm will �nd such a hierarchy, if there is one.6 Related workOur work is a continuation of earlier work on inductive inference [CF82, Chapter XIV: Learningand inductive inference], [AS83]. Our contribution is an e�cient algorithm for inductive infer-ence of high-level class descriptions from examples. Related work has been done in the areaof learning context-free grammars from examples and syntax trees [AS83]. The key di�erenceto our work is that our approach learns grammars with a richer structure, namely the classdictionary graphs we learn, de�ne both classes and languages.In [Cas89, Cas90] and in his upcoming dissertation, Eduardo Casais introduces incrementalclass hierarchy reorganization algorithms. Those algorithms di�er from our work in a numberof ways:� The models used are di�erent. Casais uses general graphs while we use graphs with aspecial structure which has to satisfy two axioms needed for data modeling. For example,we distinguish between abstract and concrete classes.� A step in Casais' incremental algorithm consists of adding a new subclass with potentiallyrejected attributes. In our work, an incremental step is adding a new object to a classhierarchy and to restructure the hierarchy so that it is optimal and at the same timedescribes the newly added object.� The goal of Casais' algorithms is to restructure class hierarchies to avoid explicit rejectionof inherited properties. In our work we avoid rejected properties.� Casais' algorithms deal with operation signatures. In our work we have not added oper-ation signatures yet. However, an operation of a class can be easily represented as a partby encoding the signature into the part's class name.16

Occupation
ssn

Num

Univ-employee

Grad TA Prof CoachUndergrad Admin
asst

FacultyStudent

salarygpa

assignment

Course

Real_NumFigure 8: Before minimizing alternation edges
Occupation

ssn
Num

Univ-employee

Grad

TA Prof

CoachUndergrad Admin
asst

Student
salarygpa

assignment

Course

Real_Num

FacultyFigure 9: After alternation edge minimization17

In [LM91] several ways in which conceptual database evolution can occur through learning arediscussed. One of these, the generalization of types to form supertypes, is a special case of ourabstraction of common parts, where there are only two objects from which the common partsare abstracted. Another, the expansion of a type into subtypes, is similar to the introductionof alternation vertices which occurs during the basic learning phase of our algorithm.A major di�erence in our work is that we focus on learning from examples, while in [LM91] theemphasis is on learning from observation of instances (e.g., noticing that some of the instancesof a type object have null values for a given attribute). Our examples are more general thaninstances since we don't supply values for attributes.7 ConclusionWe have presented novel algorithms for incremental learning and optimization of class dictio-naries. Earlier we have studied global class reorganization algorithms [LBSL90], [LBSL91].Incremental algorithms are useful for at least two reasons:First, incremental algorithms are much more e�cient than global reorganization algorithms. Ifwe have a class library with several hundred classes, we don't want to globally restructure allthose classes if there is a small evolution of some class de�nition.Second, incremental algorithms give further insight into the design process. They serve as atool to understand change propagation when there is a change in the class structure.Our algorithms are a useful ingredient to a tool suite for object-oriented design and program-ming and we have implemented them in the Demeter System.Acknowledgments: We would like to thank Ignacio Silva-Lepe for the university examplegiven in section 6.2.References[AS83] Dana Angluin and Carl Smith. Inductive inference: Theory. ACM ComputingSurveys, 15(3):237{269, September 1983.[BDG+88] D.G. Bobrow, L.G. DeMichiel, R.P. Gabriel, S.E. Keene, G. Kiczales, and D.A.Moon. Common Lisp Object System Speci�cation. SIGPLAN Notices, 23, Septem-ber 1988.[Cas89] Eduardo Casais. Reorganizing an object system. In Dennis Tsichritzis, editor,Object Oriented Development, pages 161{189. Centre Universitaire D'Informatique,Gen�eve, 1989.[Cas90] Eduardo Casais. Managing class evolution in object-oriented systems. In Den-nis Tsichritzis, editor, Object Management, pages 133{195. Centre UniversitaireD'Informatique, Gen�eve, 1990. 18

[CF82] Paul R. Cohen and Edward A. Feigenbaum. The Handbook of Arti�cial Intelligence,volume 3. William Kaufmann, Inc., 1982.[GR83] A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation.Addison Wesley, 1983.[LBSL90] Karl J. Lieberherr, Paul Bergstein, and Ignacio Silva-Lepe. Abstraction of object-oriented data models. In Hannu Kangassalo, editor, Proceedings of InternationalConference on Entity-Relationship, pages 81{94, Lausanne, Switzerland, 1990. El-sevier.[LBSL91] Karl J. Lieberherr, Paul Bergstein, and Ignacio Silva-Lepe. From objects to classes:Algorithms for object-oriented design. Journal of Software Engineering, 6(4):205{228, July 1991.[LHR88] Karl J. Lieberherr, Ian Holland, and Arthur J. Riel. Object-oriented programming:An objective sense of style. In Object-Oriented Programming Systems, Languagesand Applications Conference, in Special Issue of SIGPLAN Notices, number 11,pages 323{334, San Diego, CA., September 1988. A short version of this paperappears in IEEE Computer, June 88, Open Channel section, pages 78-79.[Lie88] Karl J. Lieberherr. Object-oriented programming with class dictionaries. Journalon Lisp and Symbolic Computation, 1(2):185{212, 1988.[LM91] Qing Li and Dennis McLeod. Conceptual database evolution through learning. InRajiv Gupta and Ellis Horowitz, editors,Object-oriented Databases with applicationsto CASE, networks and VLSI CAD, pages 62{74. Prentice Hall Series in Data andKnowledge Base Systems, 1991.[LR88] Karl J. Lieberherr and Arthur J. Riel. Demeter: A CASE study of software growththrough parameterized classes. Journal of Object-Oriented Programming, 1(3):8{22,August, September 1988. A shorter version of this paper was presented at the 10thInternational Conference on Software Engineering, Singapore, April 1988, IEEEPress, pages 254-264.[Mey88] Bertrand Meyer. Object-Oriented Software Construction. Series in Computer Sci-ence. Prentice Hall International, 1988.[MMP88] Ole Lehrmann Madsen and Birger M�ller-Pedersen. What object-oriented program-ming may be - and what it does not have to be. In S.Gjessing and K. Nygaard,editors, European Conference on Object-Oriented Programming, pages 1{20, Oslo,Norway, 1988. Springer Verlag.[PBF+89] B. Pernici, F. Barbic, M.G. Fugini, R. Maiocchi, J.R. Rames, and C. Rolland. C-TODOS: An automatic tool for o�ce system conceptual design. ACM Transactionson O�ce Information Systems, 7(4):378{419, October 1989.19

[Sno89] Richard Snodgrass. The interface description language. Computer Science Press,1989.[Str86] B. Stroustrup. The C++ Programming Language. Addison Wesley, 1986.[TYF86] T.J. Teorey, D. Yang, and J.P. Fry. A logical design methodology for relational databases. ACM Computing Surveys, 18(2):197{222, June 1986.[WBJ90] Rebecca J. Wirfs-Brock and Ralph E. Johnson. A survey of current research inobject-oriented design. Communications of the ACM, 33(9):104{124, September1990. The description of the Demeter project starts on page 120.

20

Contents1 Introduction 11.1 Class notation : 31.2 Object example notation : 51.3 A simple example of incremental class dictionary learning : : : : : : : : : : : : : 72 Basic Learning 83 Incremental Learning 114 Incremental Optimization 135 Practical Relevance 145.1 Minimizing the number of construction edges: CNF : : : : : : : : : : : : : : : : 145.2 Minimizing the number of alternation edges : 166 Related work 167 Conclusion 18
21

