
Navigating Object Graphs Using Incomplete

Meta-Information

Ahmed Abdelmeged Therapon Skotiniotis

Karl Lieberherr

April 13, 2010

1 Introduction

Retrieving information from data blobs is a fundamental operation that is a
precursor for other information processing tasks performed by computer pro-
grams. Knowledge about the structure of a data blob is essential for retrieving
information. The input to an information retrieval operation is a query that
specifies the desired information. In this paper we show how to optimize the
retrieval operation when two specific approaches are taken to describe both the
structure and the queries.

We specify structure as a pair of graphs, the object graph and the class
graph, that are in a conforms relationship. Informally, an object graph con-
forms to the class graph if for each node (edge) in the object graph there exists
a corresponding node (edge) in the class graph. A path in the class graph
characterizes a set of concrete paths in any conforming object graph.

We adopt a purely structural approach for specifying queries, i.e., queries
characterize concrete paths where the desired information is located, yet queries
are written as predicates over the class graph. Furthermore, we allow queries
to contain a form of iterated wild card. We call such queries, strategies and
we, again, use graphs to define them. Paths defined in the strategy select paths
in the class graph and thus characterizing a set of paths in an object graph.
The retrieval operation is a walk in an object graph from a specific source node
through object graph paths characterized by the strategy.

A naive approach to carry out an information retrieval operation with strate-
gies is to walk the entire object graph. In [3, 2], it was shown that a compilation
phase can be used to construct an automaton, though in disguise, called the
traversal graph. The traversal graph is simulated at runtime on the local meta
information obtained from the object graph being walked, to guide the rest of
the walk away from all unnecessary edges. The automaton is constructed, in
principle, by gluing together as many copies of the class graph as there are edges
in the strategy. The resulting automaton is non deterministic and can become
big in size making it expensive to simulate.

1

One feature of traversal graphs is that every path between any pair of ar-
bitrary nodes must also be labelled with a path in the class graph. Observing
that we are only interested in traversing object graphs that conform to the same
class graph, we find this property to be not only unnecessary but also wasteful
especially in class graphs with high connectivity. By relaxing this property, the
language of a traversal automaton can contain paths whose sequence of labels
do not describe class graph paths. In effect, it becomes impossible to retrieve
any information about the class graph by reading paths off the traversal au-
tomaton. Therefore, we say that the traversal automaton contains incomplete
meta information.

One contribution of this paper is to formally define the necessary conditions
that an automaton must have so that when used to guide a walk, the walk is
sound, complete, and optimal. A second contribution of this paper is an algo-
rithm for constructing a traversal automaton that exploits the aforementioned
observation which leads to an automaton with fewer states. Furthermore, for
an important restricted subset of strategies, called WYSIWYG strategies [1],
our algorithm constructs a traversal automaton that is deterministic.

WYSIWYG strategies are a restricted form of strategies whose behavior is
more predictable. The key idea is to always exclude all strategy graph nodes
from the set of nodes that can match any iterated wild card. The effect of
this restriction is that the traversed paths become closer-looking to the strategy
paths, hence comes the name.

The paper starts with section 3 that formally presents a simple model for
describing class graphs, object graphs and strategies. In section 4.1 we present
our characterization of correct traversal automata. In section 5 we present our
algorithm for constructing traversal automata and prove it correct. In section 6
we use our characterization of correct traversal automata on a DFS walk of
object graphs.

2 Preliminaries

Graphs, paths and automata play a central role in this presentation. In this
section we describe our notation for graphs, paths and automata and their
operations.

A graph is defined as a pair consisting of two finite sets, a set of nodes and
a set of edges, G = (V,E). The set of edges E contains pairs of nodes, e.g.,
(v1, v2), that represent the edge v1 → v2 in G. For an edge e = (v1, v2) we
define e.source = v1 and e.target = v2. For a graph G we define the following
functions

• G.nodes returns the set of nodes V in G,

• G. edges returns the set of edges E in G,

• G. outgoing(v) returns a set of edges O = {e | e ∈ G ∧ e.source = v}.

2

A node v ∈ G is said to be a sink node if and only if G. outgoing(v) = ∅. A
path p is a sequence of nodes v1, v2, . . . , vn with operations

• p.first returns the first node v1 in p,

• p.last returns the last node vn in p and

• p.tail returns v2, . . . , vn.

A path p is said to be in graph G, denoted as path(p,G), if for every two
consecutive nodes vi and vi+1, (vi, vi+1) ∈ G. edges. A path p is said to be a
prefix of another path q, denoted as p v q if p can be written as v1, . . . , vn and q
can be written as v1, . . . , vn, vn+1, . . . , vm. We also define concatenation of two
paths p = p1, . . . , pn and p′ = p′1, . . . , p

′
m as p • p′ = p1, . . . , pn, p

′
2, . . . , p

′
m if and

only if pn = p′1.
We define the predicate expansion(p, q,R) (read p is an expansion of q, mod-

ulo R) to hold between two paths p and q and a set of nodes R iff

1. p.first = q.first and p.last = q.last .

2. p is obtainable from q by inserting zero or more nodes and each node is
not in the set R.

For a given graphG we also define the predicate reaches(G, v1, vn, allowed) to
hold iff allowed ⊆ G.nodes and ∃p : path(p,G) and p.first = v1 and p.last = vn

and ∀i : 1 < i < n, vi ∈ allowed .
A walk starting at node s in graph G traverses a set of paths P where

∀p ∈ P, path(p,G) ∧ p.first = s. A walk is called unrestricted if P is maximal.
A deterministic finite state automaton (DFA) is a quintuple 〈Q,Σ, δ, q0, F 〉

where

• Q is a finite set of states

• Σ is a finite set of symbols called the alphabet

• δ is a total transition function δ : Q× Σ 7−→ Q

• an initial state q0 ∈ Q

• and a set of final states F ⊆ Q.

We use the dot notation to refer to elements of the quintuple of a DFA, e.g.,
N.Σ refers to the alphabet Σ of automaton N . Also, we define stuck(q) to be a
predicate over the states of a DFA N that holds for a state q iff

1. q 6∈ N.F , and

2. ∀α : α ∈ N.Σ⇒ (q, α, q) ∈ N.δ.

Let N be a DFA, p be a path such that p.nodes ∈ N.Σ, and q ∈ N.Q, we
define the function We also define simulate(N, p) = simulate(N,N.q0, p).

3

3 The Model

In this section we formally present a simple model of class graphs and strate-
gies. In the interest of simplifying our algorithm and its correctness proof we
restrict class graphs to simple unlabeled graphs. We also restrict strategies to
be embedded WYSIWYG strategies with one target node that must be a sink
node.

A class graph (CG) is a graph and a strategy graph embedded in a specific
class graph (SG〈CG〉) is also a graph with a distinguished source node source
and a distinguished target node target such that

1. target is a sink node.

2. SG.nodes ⊆ CG.nodes [Embedded].

3. ∀n ∈ SG.nodes, reaches(SG,SG.source, n,SG.nodes) and reaches(SG, n,SG.target).
[No dead nodes]

4. ∀e ∈ SG. edges : ∃p : path(p, CG) where expand(p, (e.source, e.target),SG.nodes)
[Compatibility]

A path q in a class graph CG is said to satisfy an embedded WYSIWYG strat-
egy graph (SG〈CG〉), denoted as satisfies(q,SG), iff there exists a path s in SG
such that s.first = SG.source, s.last = SG.target , and expansion(q, s,SG.nodes)
holds.

An object graph that conforms to a class graph (O〈CG〉) is a graph with a
total function meta : O.nodes 7−→ CG.nodes such that: ∀e ∈ O. edges,∃e′ ∈
CG. edges such that e.source = meta(e.source) and e′.target = meta(e.target).
We also say that the type of object o is meta(o). The function meta is lifted to
paths in O, e.g., for a path p = p1, . . . , pn, meta(p) = meta(p1), . . . ,meta(pn).
We also say that a path p in O satisfies a strategy graph SG embedded in CG if
and only if satisfies(meta(p),SG).

4 Characterizing Walks

Given an object graph O〈CG〉, a node o ∈ O.nodes, and a strategy graph
SG〈CG〉, SG characterizes a set of paths in O. We call these paths valid under
SG. We say that a path p in O is valid under SG, denoted valid(p,SG), iff

∃q : path(q, CG) ∧ meta(p) v q ∧ satisfies(q,SG)

A walk of O, starting at o, is said to be sound and complete under SG iff
the set of paths P traversed by the walk contains all paths that are valid under
SG. Such a walk can be used to retrieve the set of paths characterized by SG
in O starting at o.

To obtain a sound and complete walk of an object graph O under SG, we
use a traversal automaton to guide (Definition 1) an unrestricted walk.

4

4.1 Characterizing Traversal Automata

A traversal automaton N for class graph CG and a strategy graph SG (Defi-
nition 1), is an automaton with Σ = CG.nodes that is used to guide a walk of
an object graph O conforming to CG only through paths that satisfy the given
strategy. Intuitively, for a traversal automaton N we have that:

• all words w in the language L(N) satisfy the strategy.

• all paths in the class graph that satisfy the strategy are in L(N).

• Simulating N on any path that is not a prefix of a path satisfying the
strategy, leaves N in a stuck state.

Definition 1. (Traversal Automaton)
An automaton, N = 〈Q,Σ, δ, q0, F 〉 is a traversal automaton for a class graph
CG and a strategy SG if and only if

1. Σ = CG.nodes,

2. ∀q ∈ L(N), satisfies(q,SG),

3. ∀q : satisfies(q,SG) ⇐⇒ path(q, CG) ∧ q ∈ L(N),

4. ∀p : path(p, CG) ∧ (∃q : path(q, CG) ∧ satisfies(q,SG) ∧ p v q) ⇔
¬stuck(simulate(N, p)).

5 Constructing A Traversal Automaton

We construct a traversal automaton using the operation buildTA(CG,SG〈CG〉)
which takes as inputs, a class graph CG, and, a strategy graph SG embedded in
CG, (SG〈CG〉). The operation is defined in Algorithm 1.

We also prove that buildTA returns a traversal automaton according to
Definition 1 (Theorem 2). Furthermore, buildTA returns a DFA (Theorem 1).

Theorem 1. (buildTA constructs a DFA)
For all class graphs CG and for all embedded strategies SG〈CG〉, buildTA(CG,SG〈CG〉)
returns an automaton N that is a DFA.

Proof.

1. To show that N is indeed a DFA, we show that Algorithm 1 never adds
two tuples to N.δ with the same first two components (current state and
symbol). There are five locations (lines 9, 11, 16, 21, 24) in the algorithm
where we update δ.

(a) By construction, the symbols mentioned in the line 9 (qm, r, qm) are
always different from the set added in line 11 (qm, n, qn). The symbol
s cannot be a strategy graph node while n is always a strategy graph
node.

5

Input: cg : a class graph

sg : a strategy graph embedded in cg

Output: A traversal automaton N = 〈Q,Σ, δ, q0, F 〉.
1 Q = {q0} ∪ {qv | v ∈ sg .nodes};
2 Σ = cg.nodes;
3 let A = cg.nodes\sg.nodes;
4 foreach e ∈ sg.edges do
5 m = e.source;
6 n = e.target ;

7 let R = {v ∈ cg.nodes | reaches(cg,m, v,A) ∧
reaches(cg, v, n,A) ∧
v 6∈ {m,n}};

8 foreach r ∈ R do
9 δ = δ ∪ {(qm, r, qm)};

10 end
11 δ = δ ∪ {(qm, n, qn)};
12 end
13 s = sg.source;
14 t = sg.target ;
15 F = {qt};
16 δ = δ ∪ {(q0, s, qs)};
17 Q′ = Q ∪ {q⊥} ;
18 foreach α ∈ Σ do
19 foreach q ∈ Q do
20 if 6 ∃q′ : (q, α, q′) ∈ δ then
21 δ = δ ∪ {(q, α, q⊥)};
22 end
23 end
24 δ = δ ∪ {(q⊥, α, q⊥)}
25 end
26 return 〈Q′,Σ, δ, q0, F 〉

Algorithm 1: buildTA(cg,sg)

6

(b) By construction, two tuples added by the line (qm, n, qn) can only
have the same first two components if they are identical. Which
cannot happen because SG is not a multi-graph.

(c) At line 16 (q0, s, qs) where s is SG.source. The state q0 does not
correspond to any class graph node and thus no transition was defined
for q0 because of lines 9 and 11

(d) At line 21 the inner loop only adds a transition to q⊥ if there is no
transition already defined for q ∈ Q and α ∈ Σ. Therefore δ does not
contain 3-tuples whose first two elements are the same.

(e) Line 24 adds transitions (loops) on q⊥ for each element in Σ and
these are the only transitions that start in q⊥ and thus there are not
two transitions that start from q⊥, have the same label.

Theorem 2. (Correctness of buildTA)
Given a class graph CG and a strategy graph SG, buildTA(CG,SG〈CG〉) is a

traversal automaton for CG and SG.

Proof. letN = buildTA(CG,SG〈CG〉), we show thatN satisfies all the properties
of a traversal automaton.

1. Immediate.

2. We start by showing that every word r in L(N) must start with SG.source
and end with SG.target . By definition we know that r is in L(N) iff we
can trace a path through N starting by N.q0 and ending with a state in
N.F whose sequence of labels are the same as r. By construction, there is
one edge going out of q0 whose label is SG.source. Therefore, every word
in L(N) starts with SG.source. Also, by construction, we have a single
final state labeled qSG.target . By the definition of SG, SG.target is a sink
node. Therefore, all the edges leading into qSG.target are created by line 11
(qm, n, qn), i.e., all the edges leading into the final state of N are labelled
SG.target .

Now we show that any word r = r1, r2, . . . rn in L(N) satisfies the strat-
egy. Let s = s1, s2, . . . , sk be the longest subsequence of r such that
s.nodes ∈ SG.nodes. Therefore expansion(r, s,SG.nodes) holds. As we
have shown above r1 = SG.source, therefore, s1 = r1 = SG.source because
otherwise, we can prepend SG.source to s and get a longer subsequence
of r whose nodes are in SG.nodes. Likewise, sk = rn = SG.target . By the
definition of satisfies, if we can show that s is in SG, then we can conclude
that satisfies(r,SG).

7

First, we show that s is in L(N) and then show that s ∈ SG. By construc-
tion, the nodes in r but not in s are added as self loop labels by line 9
(qm, r, qm). Since we can trace a path through N whose labels are the
same as r, we can also trace a path through N whose labels are the same
as s by avoiding self loops.

Finally, we show that s is in SG. Since s is a word in L(N), by con-
struction we know that each symbol si (in SG.nodes) labels a transition
that leads to state qsi (added by line 11 (qm, n, qn)). Furthermore, every
two consecutive symbol si and si+1 show as labels on two transitions, one
leading into state qsi

and the other leading out of qsi
and into qsi+1 . The

second transition can only exist if there is an edge (si, si+1) in SG. edges.
Therefore, s is a path in SG.

3. We first show the forward direction, given satisfies(p,SG) we show that
path(p, CG) and p ∈ L(N). By definition of satisfies we know that p is a
path in CG, thus path(p, CG) holds.

Let p = p0, p1, . . . , pn be a path in CG and satisfies(p,SG). We show that
p can only moves N from the initial state to the final state.

We note that, by construction, only symbols in SG.nodes can move N
through one of the transitions added by line 11 (qm, n, qn) to a different
state other than q⊥. Symbols in CG.nodes \ SG.nodes can either move N
through one of the self-loops added by line 9 (qm, r, qm) to the same state
or to the stuck state q⊥.

We first show that nodes in p but not SG.nodes can not move N to the
stuck state q⊥ and therefore can not change the state of N . Suppose that
pi 6∈ SG.nodes is the first node in p to move N from a non stuck state
into the stuck state q⊥. Let ph be its closest predecessor node that is in
SG.nodes and pj be its closest successor node that is in SG.nodes. ph and
pj always exist and are uniquely identifiable by the definition of satisfies.
Then pi must not be mentioned on any self-loop at qph

, otherwise, pi will
not move N to q⊥. For that to happen, pi must be unreachable in CG from
ph through nodes not in SG.nodes or cannot reach pj in CG through nodes
not in SG.nodes or both. The first condition, contradicts our assumption
that ph can reach pi through a path in CG (a subpath of p) that does
not contain any node in SG.nodes. The second condition, contradicts our
assumption that pj is reachable from pi through a path in CG that does
not contain any node in SG.nodes.

We now show that nodes in p that are in SG.nodes can only move N to
its only final state qSG.target . By definition of satisfies, there exists a path
s = s0, . . . , sk in SG that contains all nodes in p that are in SG.nodes

8

and p0 = s0 = SG.source, which by construction moves N from the initial
state q0 to qSG.source . For any following symbol si where i > 0, there must
be an edge (si−1, si) in SG.edges because, by the definition of satisfies, s
is in SG. Therefore, by construction, there is a transition (qsi−1 , si, qsi

)
(added by line 11 (qm, n, qn)) in N . Furthermore, by the definition of
satisfies, pn = sk = SG.target , which moves N to qSG.target which is the
only final state of N by construction.

For the reverse direction we are given that path(p, CG) and that p ∈ L(N)
and we need to show that satisfies(p,SG). Immediate by clause 2 of
Definition 1 proven in the preceding step.

4. (⇒ direction) From the preceding property, q ∈ L(N). Therefore, every
prefix of q must not move N from the initial state to any stuck state.
Otherwise, q 6∈ L(N).

(⇐ direction)

Given N at state q0 consider a simulation of N on input p = p1, p2, . . . , pn

that moves N to a state qm we need to show that ∃q : path(q, CG) and
satisfies(q,SG) and p v q. We proceed by cases on p.last .

• p.last ∈ N.F then select p = q, and we know that q ∈ L(N) thus
satisfies(q,SG) and p v q.

• p.last = q0. By Lemma 1 we know that there exists a path p in
CG and p.first = SG.source such that given N at state qSG.source

a simulation of N on p.tail moves N to qSG.target . By the con-
struction of N we know that q0 has one and only one transition
(q0,SG.source, qSG.source) that moves N to a non-stuck state. Thus
given N at state q0 a simulation of p will move N to qSG.target . Thus,
p = q, and we know that q ∈ L(N), therefore satisfies(q,SG) and
p v q.

• p.last ∈ SG.nodes\N.F . By construction of N we know that N just
completed a transition between two distinct states q1, q2. We have
already shown (Lemma 1) that from any state q′ ∈ N.Q\{q0, q⊥, } we
can always find a path r in CG such that a simulation of N at state
q′ on input r.tail moves N to SG.target . We also know that p moves
N from q0 to qm where qm is not a stuck state or an accepting state.
We also know that r.first = p.last thus we can construct q = p • r
and path(q, CG) and p v q.

We need to show that satisfies(q,SG). But we have already shown
that for all w ∈ L(N) then satisfies(w,SG) and we know that q ∈
L(N).

• p.last 6∈ SG.nodes. We know that a simulation of N at state q0 on
input p moves N in state qm. By construction of N , (q, v, q) ∈ N.δ

9

iff v ∈ CG.nodes and v 6∈ SG.nodes. Thus the last transition taken
by N while simulating p was a self loop on state qm. We also know
by construction of N that for all v ∈ CG.nodes, (qm, v, qm) ∈ N.δ iff
there exists qk ∈ N.Q and path r = r1, r2, . . . , rn in CG such that

r1 = m ∧
rn = k ∧
∀j : 1 < j < n : rj 6∈ SG.nodes ∧
∃i : 1 < i < n : ri = v

We can thus select transitions

(qm, ri + 1, qm), (qm, ri + 2, qm), . . . , (qm, rn−1, qk), (qm, rn, qk)

By construction we know that the transitions labeled ri+1, ri+2, . . . , rn−1

are defined in N.δ. We also know by constrution that (qm, rn, qk) ∈
N.δ. We have shown (Lemma 1) that for any state qi ∈ N.Q such
that qi 6∈ {q0, q⊥, qSG.target} we can construct a path p′ in CG such
that given an N at state qi simulating N on input p′.tail moves N
from state qi to qSG.target . We can thus construct the path q =
p • (ri, . . . rn • p′) such that path(q, CG) and p v q. Since q ∈ L(N)
we can also conclude that satisfies(q,SG).

Lemma 1. For every state qv in N.Q\{q⊥, q0, qSG.target}, ∃p′ : path(p′, CG) ∧
p′.first = v such that having N at state qv and simulating p′.tail moves N from
qv to qSG.target .

Proof. By the definition of SG (no dead states condition),

∃r : path(r,SG) ∧ r.first = v ∧ r.last = SG.target

By the definition of SG (compatibility condition) we know that

∀e ∈ SG. edges : ∃r′ : path(r′, CG) ∧
expansion(r′, (e.source, e.target),SG.nodes)

Let r′ = r′1, . . . , r
′
m. By the defnition of expansion and by construction of N ,

we know that r′1 = e.source and r′m = e.target and

∀i : 1 < i < m : r′i 6∈ SG.nodes ∧
(qr′1 , r

′
i, qr′1) ∈ N.δ

Thus r′i cannot move N to a stuck state. Observe that qr′1 = qe.source and
qr′n = qe.target for e ∈ SG. edges. Thus

(qr′1 , r
′
n, qr′n) = (qe.source , r

′
n, qe.target)

10

and by construction of N we know that (qe.source , r
′
n, qe.target) ∈ N.δ. We can

thus select
(qr′1 , r

′
2, qr′1)(qr′1 , r

′
3, qr′1) . . . (qr′1 , r

′
n, qr′n)

and move N from qr′1 to qr′n .

We can repeat the same process for each strategy edge ej connecting two
consecutinve nodes in r and obtain a set of paths πj such that each πj .tail moves
N from state qej .source to qej .target . Concatenating all πj returns a path π in CG
such that given N at state qv, a simulating of N on π.tail moves N from qv to
qSG.target .

6 Walking an Object Graph

In this section, we define the operation walk(O〈CG〉, N, os) which takes an object
graph O〈CG〉 that conforms to a class graph CG, and a traversal automaton N ,
and an object (os) in O.nodes and walks O guided by N . We also prove that
walk returns a set P that is the largest set that contains all paths p in O such
that p is a prefix of a path q in O and q satisfies SG.

Input: og : an object graph that conforms to a class graph cg

ta : a traversal automaton

os : an object in the object graph.
Output: a walk of og. guided by ta

1 return walkHelper (og,ta,ta.q0,{os},∅,{os})

Algorithm 2: walk(og,ta,os)

Theorem 3. For all CG and for all traversal automata N , and all object graphs
O〈CG〉 and os such that os ∈ O.nodes and meta(os) = SG.source, let P =
walk(O,N, os) then for all paths p in P valid(p,SG) holds.

Proof.

By induction on the depth of recursive calls to walkHelper. Consider the
first call to walkHelper. P = {os} and we know that meta(os) = SG.source.
We also have that N is in state q0 and by construction of N we know that there
is a transition (q0,meta(os), qSG.source). By Lemma 1 we know that there exists
a path q such that path(q, CG) and a simulation of N on SG.source, q moves N
to SG.target . Thus, SG.source, p ∈ L(N) and by Definition 1 we can deduce
that satisfies(SG.source, p,SG)

Assume that after k recursive calls to walkHelper the theorem holds and
consider the k+ 1 recursive call. By the definition of walkHelper there are two
cases that recursively call the function, lines 9 and 17.

11

Input: og : an object graph that conforms to a class graph cg

ta : a traversal automaton whose alphabet is cg.nodes

state : the current state of ta after simulating meta(list)

reach : set of nodes to process

visited : set of nodes to already processed

P : set of paths in og

Output: set of paths P where for each path p ∈ P there exists a path
q ∈ og such that meta(q) ∈ L(ta) and p v q

1 if reach = ∅ then
2 return P;
3 end
4 oc = reach.randomElement ();
5 reach’ = reach.remove (oc);
6 visited’ = visited ∪ {oc };
7 state’ = ta.δ(state, meta (oc));
8 if state’ = q⊥ then
9 walkHelper (og,ta,state, reach’, visited’, P);

10 end
11 reach’ = reach’ ∪ {o′ | e ∈ og. outgoing(oc) ∧ e.target = o′};
12 foreach p ∈ P do
13 if p.last = oc’ ∧ (oc’, oc) ∈ og then
14 P = P ∪ {p.oc};
15 end
16 end
17 walkHelper (og,ta,state’, reach’, visited’, P)

Algorithm 3: walkHelper(og,ta,state,reach, visited, P)

12

1. Line 9. The set P remains unchanged. By the induction hypothesis ∀p ∈
P : valid(p,SG)

2. Line 17. We know that ta.δ(state, meta(oc)) 6= q⊥. For each p ∈ P
we update P to include p, oc if there exists an edge (p.last , oc) ∈ O.
By the induction hypothesis we know that valid(p,SG). Let q′ be the
automaton’s new state after reading in meta(oc). Since q′ 6= q⊥ we know
that by Lemma 1 there exists an input r such that simulating N at state
q′ on r moves N to its target node. Let h = meta(p),meta(oc), r, then
h ∈ L(N) and by Definition 1 we can deduce satisfies(h,SG)

Theorem 4. For all CG and for all traversal automata N , and all object graphs
O〈CG〉 and os such that os ∈ O.nodes and meta(os) = SG.source, let P =
walk(O,N, os) then P is maximal.

Proof. The definition of walkHelper exhaustively processes all reachable nodes
(line 11) and terminates after all reacheable nodes have been processed. For
each node oc such that meta (oc) moves N to a non stuck state, the algorithm
adds a new path p′ in P if (p.last , oc) ∈ O for each p ∈ P . P starts with the
start node os and creates new paths from each neighbor explored thus covering
all possible paths starting from os in O.

7 Related Work

8 Conclusion

References

[1] Karl Lieberherr and Boaz Patt-Shamir. The refinement relation of graph-
based generic programs. In M. Jazayeri, R. Loos, and David Musser, editors,
1998 Schloss Dagstuhl Workshop on Generic Programming, pages 40–52.
Springer, 2000. LNCS 1766.

[2] Karl Lieberherr, Boaz Patt-Shamir, and Doug Orleans. Traversals of ob-
ject structures: Specification and efficient implementation. ACM Trans.
Program. Lang. Syst., 26(2):370–412, 2004.

[3] Jens Palsberg, Cun Xiao, and Karl Lieberherr. Efficient implementation
of adaptive software. ACM Transactions on Programming Languages and
Systems, 17(2):264–292, March 1995.

13

