
Crowdsourcing of Formally-Specified Computations

Ahmed Abdelmeged Karl Lieberherr
Northeastern University, CCIS, Boston

mohsen/lieber @ ccs.neu.edu

Abstract
Formally-specified computations are defined by logical statements
(a.k.a. claims) interpreted in a computable model. Semantic Games
(SGs) of claims provide novel answers to crowdsourcing chal-
lenges yet with several limitations. We provide a comprehensive
analysis of the limitations of SGs when used for crowdsourcing
and propose a new concept, called the Contradiction-Agreement
Game (CAG), which builds on SGs and has desirable properties for
successful crowdsourcing. The list of desirable properties includes
a progress property (each CAG improves evaluation of scholars or
adds to social welfare), cheating prevention through anonymity and
cheating detection and fairness of the CAG payoff function.

We describe a proof of concept implementation of a CAG-
based crowdsourcing platform for formally-specified computa-
tional problems, called the Scientific Community Game (SCG).
SCG uses a modular construct, called a lab, to group related claims
and to solve labs incrementally through lab relations, which are
themselves captured as labs. SCG has the flavor of a ”Wikipedia
for Computations” where inventions are explicit and composable.

Our proposed system has significant applications, in addition to
crowdsourcing formally-specified computations. (1) The collabora-
tive and self-evaluating nature of SGs provides a peer-based evalu-
ation system for MOOCs on formal science topics. The peer-based
evaluation is guaranteed to be fair, and it saves significant time for
the teaching staff. (2) SGs provide a lower barrier of entry to mak-
ing contributions to formal sciences through game play. It is a sig-
nificant help to scientists to test claims using the crowd.

1. Background
1.1 Crowdsourcing
Crowdsourcing has become an important problem solving ap-
proach that enables us to tackle large scale problems that require
human intelligence to solve. Crowdsourcing has been successfully
applied to several problems over the past decade. Including, la-
beling images indexed by Google on the web [39], discovering
protein foldings [14], synthesizing proteins [4] and building the
Wikipedia.

We are after a “Wikipedia of Computations” where user’s in-
ventions are explicit and composable. A computation is specified
by an interpreted predicate logic claim in a constructivist setting
where computation is performed in some computable model to re-

[Copyright notice will appear here once ’preprint’ option is removed.]

fute the claim. The claim is refuted when the semantic game associ-
ated with the claim is lost by the verifier. The semantic game takes
place between the verifier and falsifier of the claim and requires the
players to compute objects that defend the players’ positions of be-
ing verifier or falsifier. For the purpose of this paper we assume that
the task of judging claims as well as refuting them can be done by
a software. We have avatars playing the role of scholars who recog-
nize true claims and who know how to defend them. Those avatars
have a simple interface whose implementation defines an explicit
invention which will be judged against other inventions.

Computations in the “Wikipedia of Computations” are queried
by a predicate logic claim and either a lab is found which solves that
claim or a new lab is defined to initiate a new call to the crowd to
solve the claim. Solving the claim means to provide the algorithms
necessary to defend it.

What about the quality of the claims in the “Wikipedia of Com-
putations?” That depends on the quality of the crowd participating
in a specific lab. If the crowd is strong and interested in the lab, the
claims will resist refutation even under heavy attacks. What about
spammers trying to infiltrate a lab with false claims? We have three
precautions against spammers: (1) they have to defend their claims
and (2) they don’t know the identity of their adversary (3) they are
responsible for the positions they have taken and might have to de-
fend them against other stronger players.

It is our goal to apply crowdsourcing to solve formally-specified
computational problems. To achieve this goal, there are four chal-
lenging questions that we need to address [16]:

1. What contributions can users make?

2. How to evaluate users and their contributions?

3. How to combine user contributions to solve the target problem?

4. How to recruit and retain users?

1.1.1 Software Development
At first, it appears strange to have a crowd working on the imple-
mentation of a formally-specified function (one of the Skolem func-
tions implied by a claim). Why not just hire one good programmer?
Isn’t the good programmer distracted by having to write an avatar to
play semantic games? The formally-specified function can often be
implemented in many different ways which have different qualities.
To find the optimum quality may be challenging and competition
will improve the quality of the software.

It is true that in the end only one good programmer is needed
but the problem is how to find her or him. A lab serves this purpose.

The avatar has a meta interface which consists of the following
tasks:

1. Choose a claim out of a set of claims.

2. Take a position on a claim, either as verifier (if the avatar thinks
the claim is true) or falsifier (if the avatar thinks the claim is
false).

1 2014/5/1

3. Play the next move in the semantic game.

Actual avatar interfaces are generated specific to each lab.
Our system uses a Crowd Interaction Mechanism (CIM) to

make “optimal” use of the crowd. The CIM tries to create the most
information out of the games that are played. For example, if for
a claim c there are 2 verifiers v1,v2 and 2 falsifiers f1,f2, the CIM
will create 2 games: v1/f1 and v2/f2 and not two games v1/v2 and
f1/f2.

Our system might appear expensive because users don’t see
each others’ software (unless there was a “level the boats” event).
They have to try to reverse engineer the programs of other users.
We feel that this is the price to pay for getting new ideas into
the software. We would not recommend our system for formally
specified computational problems where no innovation is expected
to solve them effectively.

As a running example, consider the MinBasisSize problem:
Size of minimum graph basis: a basis of a directed graph G is

defined as set of nodes such that any node in the graph is reachable
from some node in the basis. Formally,

MinBasisSize(G ∈ Digraphs, n ∈ N) =

BasisSize(G,n) ∧ ∀k s.t. k < n : ¬BasisSize(G, k)
where

BasisSize(G ∈ Digraphs, n ∈ N) =
∃s ∈ P(nodes(G)) s.t. |s| = n :

∀m ∈ nodes(G) ∃p ∈ paths(G) :

first(p) ∈ s ∧ last(p) = m.

In the following we assume that the reader is familiar with
semantic games. In appendix B there is a concise definition.

The software (avatar) we want to have developed takes a graph
G and natural number n and it will tell us whether it wants to be
verifier or falsifier. Let’s assume, the avatar wants to be verifier and
the CIM has found another avatar who wants to be falsifier. Who
is right? The semantic game between the two will give us further
information:

There are two cases:

• First conjunct
If the falsifier chooses the first conjunct:BasisSize(G,n), she
thinks that there is no vertex basis of size n for G. In this case,
the verifier must provide a set s of n nodes and the falsifier
must provide a node m and the verifier must provide a path p.
If first(p) ∈ s∧ last(p) = m the verifier wins, otherwise the
falsifier wins.
• Second conjunct

Remember that negation means that the users switch roles veri-
fier ⇐⇒ falsifier. If the falsifier chooses the second conjunct:
∀k s.t. k < n : ¬BasisSize(G, k), she thinks that she can
strengthen MinBasisSize(G,n) to a smaller n. In this case,
the falsifier chooses a k and a set s of k nodes and the veri-
fier provides a node m and the falsifier provides a path p. If
first(p) ∈ s ∧ last(p) = m the falsifier wins, otherwise the
verifier wins.

The above claim BasisSize(G,n) does not discriminate be-
tween “hard” and “easy” quantifiers. Indeed, the existential quanti-
fier for s seems harder than the universal quantifier for m and the
existential quantifier for p. We can take care of the last two quan-
tifiers with a predicate reachAll(G, s) which checks, using DFS,
whether we can reach all nodes in G from s. reachAll(G, s) is
implemented in the model of graphs. We now use this function,
reducing the communication needs between verifier and falsifier:

BasisSize(G ∈ Digraphs, n ∈ N) =

∃s ∈ P(nodes(G)) s.t. |s| = n : reachAll(G, s)

We see in this example that the lab designer has a choice how the
avatars (or users, in general) are engaged. Notice that the reduction
of quantifiers simplifies the semantic game.

We want to solve the MinBasisSize(G,n) problem incre-
mentally. Let’s first make the simplifying assumption that G is
a DAG (directed acyclic graph). It seems easier to solve the
MinBasisSize problem for this special class of graphs. We have
now a new lab where the claims are of the form:

BasisSize(G ∈ DAGs, n ∈ N) =

∃s ∈ P(nodes(G)) s.t. |s| = n : reachAll(G, s).

Let’s assume we have a solution for this lab. We are lucky to have
now a solution for the general graphs because there exists a map-
ping from general graphs to DAGs that preserves reachability. A
path in the original graph translates into a path (possibly of length
0) in the DAG. This results by itself in a lab for the transforma-
tion. We have a graph G1 = (V1, E1) and we construct a new
DAG G2 = (V2, E2) from G1. We claim there exists a mapping
f(G1)→ G2 with two important properties: (1) the defense (refu-
tation) of claim BasisSize(G2, n) results in a defense (refuta-
tion) of claimBasisSize(G1, n). (2) there is no information loss:
∀G1 : if BasisSize(G1, n) then BasisSize(f(G1), n).

1.2 Logical Games and Computational Problems
Logical games have a long history going back to Socrates. More
recently, they became a familiar tool in many branches of logic. Im-
portant examples are Semantic Games (SGs) used to define truth,
back-and-forth games used to compare structures, and dialogue
games to express (and perhaps explain) formal proofs [30], [18], [23].

SGs are played between two players, the verifier and the falsi-
fier 1. An instructive way of viewing SGs is in their extensive form,
which essentially is a tree structure with the root labeled by the for-
mula φ , the subsequent labeled nodes representing the subformulas
of φ, and the vertices labeled by the actions of the players.

In the theory of SGs, logical statements interpreted in a com-
putable model (a.k.a. claims) derive their meaning from the games
played by the rules prompted by the logical connectives encoun-
tered in the claims [32]. The existence of a winning strategy for the
verifier implies that the underlying logical statement is indeed true
and the existence of a winning strategy for the falsifier implies that
the underlying logical statement is indeed false.

Players need to solve computational problems in the course
of playing SGs. For example, the falsifier of the prime(7) =
∀k s.t. 1 < k < 7 : ¬divides(k, 7) needs to compute the
factors of 7. Similarly, claims can be used to logically specify
computational problems. For example, consider the problem of
finding the factors of a given natural number factors(n). This
problem can be logically specified using the claim ∀n∃s : ∀k :
divides(k, n) ⇔ k ∈ s. In SGs derived from this claim, the
verifier needs to correctly solve factors(n) in order to win.

A computational problem can be logically specified as a claim
about the relation between either (1) the input properties and the
output properties, or (2) the input properties and the output finding
process properties such as resource consumption.

2. Thesis
Our thesis is that semantic games of interpreted logic statements
provide a useful foundation for building successful crowdsourcing
systems for solving computational problems.

1 Other names has been also used in the literature such as I and Nature,
Proponent and Opponent, and Alice (female) and Bob (male).

2 2014/5/1

2.1 Rationale and Limitations of Semantic Games
SGs of claims provide attractive answers to the four challenging
questions of crowdsourcing systems. However, these answers are
only valid in a limited context. A successful SG-based system must
generalize SGs to a much wider context and improve on the way
SGs address these four challenging questions, whenever possible.

An example of such limitation is that SGs define an interac-
tion mechanism between two users only. A successful SG-based
crowdsourcing system must provide a Crowd Interaction Mecha-
nism (CIM) on top of SGs that decides which SGs to be played. To
decide on a game to be played, the CIM must decide on a claim,
a user to take on the verifier position and a user to take on the fal-
sifier position. On one hand it is important that the CIM relies on
user preferences to enhance the user experience, ensure that user
contributions are potentially correct, and to ensure the fairness of
SG-based evaluation. On the other hand, the overall system would
be ineffective if the CIM was just a proxy to users’ preferences be-
cause the CIM would no longer be able to drive the user interaction.
For example, it would be impossible to hold an SG between two ar-
bitrary users unless they hold contradictory positions on the same
claim.

2.1.1 User Contributions
During the course of playing an SG, users make two kinds of formal
contributions: positions and supporting actions. These two kinds of
contributions can be extracted from SG traces as follows:

The trace of an SG can be represented as a directed line graph
where nodes represent the state of the SG and edges represent tran-
sitions. The state is a tuple consisting of a claim and a pair of
players, the player taking the verifier position and the player tak-
ing the falsifier position. For example, the tuple 〈c, p1, p2〉 repre-
sents a state where p1 is the player taking the verifier position and
p2 is the player taking the falsifier position on claim c. A labeled
transition represents a supporting action while an unlabeled tran-
sition represents an implied action. Implied actions are automati-
cally carried out by the system. An example of implied actions is
given by: 〈¬c, p1, p2〉 −→ 〈c, p2, p1〉. Supporting actions are ei-
ther attacks or defenses, and they involve an additional parame-
ter that one of the users must provide. For example, the transition
〈∀x : p(x), p1, p2〉

x0−→ 〈p(x0), p1, p2〉 is an attack made by p2,
where x0 is a counter example provided by p2.

Apart from playing SGs, users can still contribute by improving
their own SG playing strategies. Players, by improving their strate-
gies, are able to spot more problems in the positions taken by their
opponents in future games. Because users have to follow a well
defined formal protocol B to play an SG, this enables users to auto-
mate the execution of their strategies into avatars. Algorithms used
in avatars are themselves yet another potential formal contribution
(see Section 2.2).

2.1.2 Evaluating Users
SGs provide an objective and self-sufficient approach to assess the
relative strength of users. Simply put, the winner of an SG is con-
sidered stronger than the loser. This approach is fundamentally dif-
ferent from the current evaluation schemes used in crowdsourcing
systems such as: gold standards, trusted workers and probabilistic
oracles, and disagreement-based schemes [21].

Disagreement-based schemes evaluate the absolute strength of
users based on how often the user’s contribution is “correct” where
a “Correct” contribution is defined to be similar to the “major-
ity vote”. SG-based evaluation is independent of the “correctness”
of user contributions. Instead SG-based evaluation can objectively
judge one contribution to be “better” than the other. It is worth not-
ing that the “better” contribution is not always necessarily similar
to the “majority vote”.

SG-based evaluation is said to be self-sufficient because, unlike
gold standard evaluation, it is not based on a set of pre-populated
test cases. Instead, the two users test each other.

It is important to evaluate users’ strength based on their perfor-
mance in a large number of SGs. The naı̈ve approach of summing
the number of SGs the user won is unlikely to be fair due to several
concerns that give one group of players an advantage over another
group of players. A comprehensive list of these concerns is given
by:

1. Users can be at an advantage (or at a disadvantage) if they
participate in more SGs where they are at an advantage (or at a
disadvantage). A player is at an advantage (or at a disadvantage)
in an SG if either the claim (CONCERN 1.a) or the position
(CONCERN 1.b) is only forced on their adversary (or only
forced on them).

2. Users can be at an advantage (or at a disadvantage) if they
participate in more (or fewer) than the average number of SGs
played by their counterparts (CONCERN 2).

3. Users can be at an advantage (or at a disadvantage) if they
participate in more SGs against other weaker (or stronger) users
(CONCERN 3).

4. If a group of users can form a coalition with the goal of artifi-
cially increasing the strength of a particular user through losing
against that user on purpose, then the winning user is at an ad-
vantage (CONCERN 4).

As we mentioned before, it would not be effective to address
the first concern by ensuring that, in every game, neither of the
players is at an advantage (or a disadvantage). Instead, the system
has to adopt a non-local view on fairness and ensure that none of
the players in the crowd is at an advantage (or a disadvantage)
considering all played SGs. The second and third concerns can
be addressed through either restricting the algorithm by which
the system decides which SGs to be played, or through a more
sophisticated approach to assess the user strength, or through both
approaches. Anonymity can be used to defend against the fourth
concern.

2.1.3 Evaluating User Contributions
Based on the outcome of an SG, we cannot safely assume that
certain contributions are “correct”. Therefore, the best we can do
is to judge certain user contributions to be potentially correct. We
consider contributions to be potentially correct if we have no reason
to believe they are potentially incorrect.

By definition, the contributions of an SG loser are “Incorrect”.
Other reasons to believe that certain contributions are potentially
incorrect include:

1. The position taken by the winner was forced (CONCERN 5).
2. There is no mechanism to discourage “cheating” (i.e. knowingly

making “incorrect” contributions) either because their adver-
sary is weak enough not to discover the “cheat”, or to lose on
purpose against their opponent (CONCERN 6).

Anonymity can be used to discourage “cheating”. It is also possible
to hold the positions taken by users against themselves in future
SGs.

2.1.4 Combining User Contributions
It is possible to collect the potentially correct contributions of all
winners of SGs into a contribution database. The crowd beliefs
about claims can be assessed from the contribution database. It is
possible that “incorrect” contributions make it to the contribution
database (CONCERN 7). Therefore, it is necessary to have a

3 2014/5/1

periodic mechanism to clean the contribution database in order to
enable more accurate assessment of the crowd beliefs.

Apart from estimating the crowd beliefs, SG losers get precise
feedback on how they can improve their SG playing strategies. Fur-
thermore, users can then build on the crowd beliefs. For example,
suppose that the winners were mostly taking the verifier position
on the claim ∀k : divides(k, 3571) ⇔ k ∈ {1, 3571}, then this
likely-to-be-true claim can be used as a test case for factorization
algorithms.

2.1.5 Recruiting and Retaining Users
Participating in an SG can provide users with an intrinsically re-
warding experience. The exact intrinsic rewarding experience is
user dependent. For example, some participants can find the act of
game play against an adversary to be fun. Others can enjoy the ed-
ucational (or collaborative) nature of SGs that comes from the fact
that the winner of an SG gives the loser very targeted feedback.

We believe that the following three factors could enhance the
intrinsically rewarding experience that SGs provide to users:

1. Choosing claims that both players find interesting (CONCERN
8).

2. Allowing users to choose their positions on claims (CON-
CERN 9).

3. Matching players with similar levels of strength (CONCERN
10).

Neither intrinsic nor extrinsic reward is absolutely superior 2

3. However, most certainly, a crowd would have users that prefer
both kinds of rewards. Therefore, it is still useful to include other
encouragement and retention schemes (CONCERN 11) such as in-
stant gratification, providing ways to establish, measure, and show
different qualities of the users, establishing competitions and pro-
viding ownership situations [16].

2.2 Applications
In this paper we use an SG-based system for crowdsourcing compu-
tational problem solving. However, there are several other signifi-
cant applications to teaching, crowdsourcing software development
and crowdsourcing formal science.

2.2.1 Teaching
The collaborative and self-evaluating nature of SGs is useful in
teaching (especially MOOCs) where teaching other students helps
boost one’s evaluation. The winner against a non-forced opponent
teaches the opponent a lesson.

2.2.2 Software Development
The mandatory use of formal specification of claims and the or-
derly nature of the semantic games enables the system to be used
as a crowdsourcing system for algorithms for computational prob-
lems as well. Because users can “automate themselves” as avatars
(programs). The strongest avatars would have good algorithms ei-
ther for generating tests for other avatars or solving a computational
problem or both.

2 For example, consider using Amazon Mechanical Turk (AMT) to label
all images indexed by Google. Would that be as cost effective as the ESP
game? A second example is building the Wikipedia. Would it be as cost
effective to build the Wikipedia using AMT?
3 Extrinsic reward is believed to be superior in motivating automatic (mo-
tor) tasks, while intrinsic value would be superior in motivating intelligent
(cognitive) tasks [33], [22], [19].

2.2.3 Formal Science
Although scientists in formal sciences are often interested in find-
ing proofs to their claims, it remains helpful to test those claims
first with the help of the crowd. Testing can provide them with use-
ful insights. For example, testing can reveal a corner case where the
claim does not hold. Reformulating the original claim to avoid such
corner cases could be helpful in finding proofs [3]. It is worth men-
tioning that the phrase “formal science” is not limited to mathemat-
ics and logic. It also applies to scientific uses of formal simulation
models.

3. Initial Investigation
To support our thesis, we designed and partially implemented [1]
a proof of concept SG-based crowdsourcing system. Our system
constitutes a redesign from scratch of the Scientific Community
Game (SCG) [7], [6], [29] which has been evolving since 2007.
Below, we describe our newly designed system and report on our
experience of using earlier iterations of SCG for teaching.

3.1 System Overview
In a nutshell, our system uses first-order logic to express claim
families (See Appendix A for more details), and uses the semantic
games of first-order logic formulas defined by Hintikka’s Game-
Theoretic-Semantics [25] (See Appendix B for more details).

To ensure that claims are never forced on users, our system uses
labs. Labs define special interest groups of users. A lab is created
by an owner (one kind of users) and consists of a family of claims.
Scholars (another kind of user) choose to join the labs they find
interesting. The system only allocates users to SGs of claims from
the labs they joined. This enhances the users’ experience while
participating in SGs (CONCERN 8) and guarantees that users are
never at a disadvantage regardless of the method used to chose the
underlying claims for SGs (CONCERN 1.a).

Rather than making scholars participate in SGs directly, the
CIM in our system makes users participate in Contradiction-
Agreement Games (CAGs). Although CAGs are composed of SGs,
CAGs can be played by two players taking the same position on
the underlying claims. This enhances the users’ experience (CON-
CERN 9). Furthermore, CAGs are specifically designed to pro-
vide a fair evaluation (CONCERN 1.b) and to identify potentially
correct contributions (CONCERN 5). CAGs are described in Sec-
tion 3.2. Currently, our system has a per-lab CIM. Lab owners are
required to provide their CIM mechanisms, e.g., to match scholars
with close enough strength. This is critical to enhance the users’
experience (CONCERN 10) and fairness (CONCERN 3).

Our system uses an algorithm to evaluate the users’ strength as
fairly as possible. Our algorithm is designed to address the fair-
ness concerns (CONCERN 2,3). The algorithm is described in
Section 3.3. To estimate crowd beliefs, our system uses a simple
formula that is presented in Section 3.4. To discourage “cheating”
(CONCERN 4,6), our system relies on anonymity. Currently, our
system does not provide a mechanism for cleaning the contribu-
tions database (CONCERN 7) nor any encouragement and reten-
tion schemes (CONCERN 11) other than the fun that scholars get
from participating in SGs.

3.2 The Contradiction-Agreement Game
CAGs remove the restriction that scholars must take contradictory
positions on claims. In case scholars take contradictory positions,
CAG reduces to one SG. Otherwise, CAG reduces to two testing
SGs. In a test SG, one of the scholars, the tester, is forced to take the
opposite position of the position it chose. The two scholars switch
their testing roles between the two games. Even though, the tester is
forced to take a particular position, CAG-based evaluation remains

4 2014/5/1

Game forced winner payoff potentially correct
(p1, p2) contribution

Agreement T1 p2 p1 (0, 0) p1
p2 p2 (0, 1) –

Agreement T2 p1 p1 (1, 0) –
p1 p2 (0, 0) p2

Contradiction – p1 (1, 0) p1
– p2 (0, 1) p2

Table 1. The Contradiction-Agreement Game

fair. It also remains possible to get potentially correct contributions
out of the testing games when the winner is not the forced tester.

SGs with forced scholars can cause unfairness in two different
ways:

1. Winning against a forced scholar is not the same as winning
against an unforced scholar. Giving both winners a point for
winning would be unfair.

2. The forced scholar is at a disadvantage.

To overcome these two problems, we adopt the rule that the scholar
winning an SG scores a point only if its adversary is not forced.
Although, this solves the two problems, it, oddly enough, puts the
winner at a disadvantage because it has no chance of scoring a
point. Luckily, considering both test games together, the evaluation
(i.e. payoff) is fair because both scholars have an equal chance of
scoring. Furthermore, scholars remain properly incentivised to win
under the payoff. This is important to ensure the fairness of user
evaluation as well as the potential correctness of the contributions
of the unforced winners. Our readers can verify these properties
by inspecting Table 1 which summarizes CAGs. The columns of
the table indicate the name of the SG being played, the forced
scholar (if any), the SG winner, and whether the contribution of the
winner is potentially correct (assuming that “cheating” is somehow
discouraged).

3.2.1 CAG Desirable Properties
CAG encourages innovation because forced scholars can score
while their adversary cannot. This provides an incentive for forced
players to win SGs even though they are forced to take positions
that are often contradictory to their own intuition as well as to
the crowd beliefs. Also, CAGs ensure that some form of progress
is taking place either as an update to the player scores or that a
potentially correct contribution has been made. Furthermore, in
the first case, the loser is receiving targeted feedback and in the
second case, the community benefits from the potentially correct
contribution.

3.3 Evaluating User Strength
We devised an algorithm to evaluate user strength based on CAG
scores. The algorithm weighs the scores by the strength of the
adversary and calculates the strength of the scholar as the ratio
of wins over the sum of wins and losses in order to even out the
difference in the number of played CAGs (CONCERN 2) as well
as the difference in the strength of adversaries (CONCERN 3).

Informally, the algorithm starts with an estimate of 1 for the
strength of all players. Then it computes the weighted wins and
losses for each player based on the payoffs and the strength of their
adversaries. Then it computes strength as the fraction of weighted
wins divided by the sum of weighted wins and losses. The last two
steps are iterated to a fixpoint.

Formally, we denote the sum of payoffs that scholar S1 gets
from scholar S2 by Payoff(S1, S2). The strength of user S is
denoted by Str(S). The algorithm is given by:

Str(−1)(Si) = 1

Wins(k)(Si) =
∑

Payoff(Si, Sj) ∗ Str(k−1)(Sj)

Losses(k)(Si) =
∑

Payoff(Sj , Si) ∗ (1− Str(k−1)(Sj))

Total(k)(Si) = Wins(k)(Si) + Losses(k)(Si)

Str(k)(Si) =

{
Wins(k)(Si)/Total

(k)(Si), if Total(k) 6= 0

0.5, otherwise.

Ideally, we would like the strengths produced by the algorithm
to be consistent with the payoffs (i.e. ∀S1, S2 : Payoff(S1, S2) ≥
Payoff(S2, S1) ⇒ Str(S1) ≥ Str(S2)). However, the relation
R(S1, S2) = Payoff(S1, S2) ≥ Payoff(S2, S1) is not necessarily
transitive while the relation Q(S1, S2) = Str(S1) ≥ Str(S2)
is. However, we conjecture that the strengths produced by our
algorithm minimize such inconsistencies.

However, the the algorithm possesses the following weaker
soundness properties:

1. A scholar Si that beats the score of another scholar Sj on
their mutual games as well as on games with all other schol-
ars Sk will have a higher strength. ∀i, jPayoff(Si, Sj) >
Payoff(Sj , Si)∧∀k 6= i, j : Payoff(Si, Sk) ≥ Payoff(SJ , Sk)∧
Payoff(Sj , Sk) ≤ Payoff(Si, Sk)⇒ Str(Si) ≥ Str(Sj).

2. A scholar that only won(lost) games will have a strength of 1(0).
Formally, ∀i∀jPayoff(Si, Sj) = 0 ∧ ∃jPayoff(Sj , Si) >
0⇒ Str(Si) = 0, and ∀i∀jPayoff(Sj , Si) = 0∧∃jPayoff(Si, Sj) >
0⇒ Str(Si) = 1. A scholar that has not won or lost any games
will have a strength of 0.5. Formally, ∀i∀jPayoff(Sj , Si) =
0 ∧ Payoff(Si, Sj) = 0⇒ Str(Si) = 0.5.

3.4 Evaluating Crowd Beliefs
We consider the positions taken by non-forced CAG winners to be
providing the community with an evidence that these positions are
correct. We take the strength of the losing user as the weight of such
evidence. For each claim c we let cT be the sum of the weights of
all evidences that c is true, cF be the sum of the weights of all
evidences that c is false. The believed likelihood that c is true is
CT /(CT +CF). Similarly, the believed likelihood that c is false is
CF /(CT + CF).

4. Experience with the SCG
The SCG has evolved since 2007. We have used the SCG in soft-
ware development courses at both the undergraduate and graduate
level and in several algorithm courses. Detailed information about
those courses is available from the second author’s teaching page.

4.1 Software Development
The most successful graduate classes were the ones that developed
and maintained the software for SCG Court [5] as well as several
labs and their avatars to test SCG Court. Developing labs for avatars
has the flavor of defining a virtual world for artificial creatures.
At the same time, the students got detailed knowledge of some
problem domain and how to solve it. A fun lab was the Highest
Safe Rung lab from [24] where the best avatars needed to solve a
constrained search problem using a modified Pascal triangle.

4.2 Algorithms
The most successful course (using [24] as textbook) was in Spring
2012 where the interaction through the SCG encouraged the stu-
dents to solve difficult problems. Almost all homework problems
were defined through labs and the students posted both their ex-

5 2014/5/1

ploratory and performatory actions on piazza.com. We used a mul-
tiplayer version of the SCG binary game which created a bit of an
information overload. Sticking to binary games would have been
better but requires splitting the students into pairs. The informal
use of the SCG through Piazza (piazza.com) proved successful. All
actions were expressed in JSON which allowed the students to use
a wide variety of programming languages to implement their algo-
rithms.

The students collaboratively solved several problems such as
the problem of finding the worst-case inputs for the Gale-Shapley
algorithm (see the section Example above).

We do not believe that, without the SCG, the students would
have created the same impressive results. The SCG effectively
focuses the scientific discourse on the problem to be solved.

The SCG proved to be adaptive to the skills of the students. A
few good students in a class become effective teachers for the rest
thanks to the SCG mechanism.

5. Related Work
5.1 Crowdsourcing and Human Computation
There are several websites that organize competitions. What is
common to many of those competitions? We believe that the SCG
provides a foundation to websites such as TopCoder.com or kag-
gle.com.

The SCG makes a specific, but incomplete proposal of a pro-
gramming interface to work with the global brain [11]. What is
currently missing is a payment mechanism for scholars and an al-
gorithm to split workers into pairs based on their background.

The SCG is a generic version of the “Beat the Machine” ap-
proach for improving the performance of machine learning systems
[10].

Scientific discovery games, such as FoldIt and EteRNA, are
variants of the SCG. [13] describes the challenges behind devel-
oping scientific discovery games. [9] argues that complex games
such as FoldIt benefit from tutorials. This also applies to the SCG,
but a big part of the tutorial is reusable across scientific disciplines.

5.2 Logic and Imperfect Information Games
Logic has long promoted the view that finding a proof for a claim
is the same as finding a defense strategy for a claim.

Logical Games [30], [18] have a long history going back to
Socrates. The SCG is an imperfect information game which builds
on Paul Lorenzen’s dialogical games [23].

5.3 Foundations of Digital Games
A functioning game should be deep, fair and interesting which re-
quires careful and time-consuming balancing. [20] describes tech-
niques used for balancing that complement the expensive playtest-
ing. This research is relevant to SCG lab design. For example, if
there is an easy way to refute claims without doing the hard work,
the lab is unbalanced.

5.4 Architecting Socio-Technical Ecosystems
This area has been studied by James Herbsleb and the Cen-
ter on Architecting Socio-Technical Ecosystems (COASTE) at
CMU http://www.coaste.org/. A socio-technical ecosystem sup-
ports straightforward integration of contributions from many par-
ticipants and allows easy configuration.

The SCG has this property and provides a specific architecture
for building knowledge bases in (formal) sciences. Collaboration
between scholars is achieved through the scientific discourse which
exchanges instances and solutions. The structure of those instances
and solutions gives hints about the solution approach. An interest-
ing question is why this indirect communication approach works.

The NSF workshop report [35] discusses socio-technical inno-
vation through future games and virtual worlds. The SCG is men-
tioned as an approach to make the scientific method in the spirit
of Karl Popper available to CGVW (Computer Games and Virtual
Worlds).

5.5 Online Judges
An online judge is an online system to test programs in program-
ming contests. A recent entry is [31] where private inputs are used
to test the programs. Topcoder.com includes an online judge capa-
bility, but where the inputs are provided by competitors. This dy-
namic benchmark capability is also expressible with the SCG: The
claims say that for a given program, all inputs create the correct
output. A refutation is an input which creates the wrong result.

5.6 Educational Games
The SCG can be used as an educational game. One way to create
adaptivity for learning is to create an avatar that gradually poses
harder claims and instances. Another way is to pair the learner with
another learner who is stronger. [8] uses concept maps to guide
the learning. Concept maps are important during lab design: they
describe the concepts that need to be mastered by the students for
succeeding in the game.

5.7 Formal Sciences and Karl Popper
James Franklin points out in [17] that there are also experiments
in the formal sciences. One of them is the ‘numerical experiment’
which is used when the mathematical model is hard to solve.
For example, the Riemann Hypothesis and other conjectures have
resisted proof and are studied by collecting numerical evidence
by computer. In the SCG experiments are performed when the
refutation protocol is elaborated.

Karl Popper’s work on falsification [34] is the father of non-
deductive methods in science. The SCG is a way of doing science
on the web according to Karl Popper.

5.8 Scientific Method in CS
Peter Denning defines CS as the science of information processes
and their interactions with the world [15]. The SCG makes the sci-
entific method easily accessible by expressing the hypotheses as
claims. Robert Sedgewick in [36] stresses the importance of the sci-
entific method in understanding program behavior. With the SCG,
we can define labs that explore the fastest practical algorithms for
a specific algorithmic problem.

5.9 Games and Learning
Kevin Zollman studies the proper arrangement of communities
of learners in his dissertation on network epistemology [40]. He
studies the effect of social structure on the reliability of learners.

In the study of learning and games the focus has been on learn-
ing known, but hidden facts. The SCG is about learning unknown
facts, namely new constructions.

5.10 Origins of SCG
A preliminary definition of the SCG was given in a keynote paper
[29]. [26] gives further information on the . The original motiva-
tion for the SCG came from the two papers with Ernst Specker:
[27] and the follow-on paper [28]. Renaissance competitions are
another motivation: the public problem solving duel between Fior
and Tartaglia, about 1535, can easily be expressed with the SCG
protocol language.

6. Conclusion and Future work
We presented SCG, a crowdsourcing platform for computational
problems. SCG provides a simple interface to a community that

6 2014/5/1

uses the (Popperian) Scientific Method. Our future work includes
further development to the current system, its underlying model, as
well as to evaluate our system.

6.1 Model Development
6.1.1 Claim Family Relations and Meta Labs
Relations computational problems can be used to test implementa-
tions of their solution algorithms. Reduction is an important kind of
relation between computational problems that can be used to prove
certain impossibility results as well as to enable the implementa-
tion of one computational problem to reuse the implementation of
another computational problem.

In our system, these relations can be expressed as claims be-
tween claim families specifying computational problems. For ex-
ample, consider the following two claim families:

1. Size of minimum graph basis: a basis of a directed graph G is
defined as set of nodes such that any node in the graph is reach-
able from some node in the basis. Formally,MinBasisSize(G ∈
Digraphs, n ∈ N) = BasisSize(G,n) ∧ ∀k s.t. k < n :
¬BasisSize(G, k) where BasisSize(G ∈ Digraphs, n ∈
N) = ∃s ∈ P(nodes(G)) s.t. |s| = n : ∀m ∈ nodes(G) ∃p ∈
paths(G) : first(p) = m ∧ last(p) ∈ s.

2. Number of source nodes of a DAG: a source node is a node
with no incoming edges. Formally, #src(D ∈ DAGs,m ∈
N) = ∃s ∈ P(nodes(D)) s.t. |s| = m : ∀v ∈ nodes(D) :
inDegree(v) = 0⇔ v ∈ s.

The relation between the two claim families MinBasisSize(G ∈
Digraphs, n ∈ N) and #src(D ∈ DAGs,m ∈ N) can be de-
scribed by ∀G ∈ Digraphs, n ∈ N : MinBasisSize(G,n) =
#src(SCCG(G), n) where SCCG refers to Tarjan’s the Strongly
Connected Component Graph algorithm.

Like other claims, claims about relations between claim families
can be studied in a regular lab in our system. However, we see
a potential to further utilize these claims to cross check crowd
beliefs across labs and to translate user contributions across labs.
To harness this potential, we propose to add meta labs to our
system. More specifically, we propose to answer the two following
questions:

1. How can our system further utilize relations between claim
families beyond regular claims?

2. How to express meta labs so that it is possible to further utilize
them in an automated way?

6.1.2 Generalized Claims
Users can lose SGs involving optimization problems even if their
solutions can be almost optimal. For example, consider the follow-
ing claim: ∀p ∈ Problem : ∃s ∈ Solution : ∀t ∈ Solution :
better(quality(s, p), quality(t, p)) It is enough for the falsifier
to provide a slightly better solution to win. As remedy, it is possi-
ble to bias the situation towards the verifier by requiring the fal-
sifier to provide at solution that is at well better than the solu-
tion provided by the verifier in order to win. The following claim
illustrates this solution: ∀p ∈ Problem : ∃s ∈ Solution :
∀t ∈ Solution : within10%(quality(s, p), quality(t, p)) It
is also possible to generalize the claims such that the larger the
quality gap is the more of a payoff the winner gets. For exam-
ple, assuming the distance function returns a number between
−1 and 1, the following generalized claim illustrates this solu-
tion: ∀p ∈ Problem : ∃s ∈ Solution : ∀t ∈ Solution :
distance(quality(s, p), quality(t, p)) We propose to develop a
systematic approach for computing the payoff in SGs for general-
ized claims.

6.2 System Development
We propose to turn the current implementation [1] into a web based
application. We also propose to further develop the claim language
and the CIM and the encouragement and retention scheme.

6.2.1 Claim Language
There are certain game related concerns that cannot be expressed
in the current claim language. Furthermore, the current language
is not as user friendly as it could be. To overcome these two
problems, we propose to make the following enhancements to the
claim language:

1. make the claim language support second order logical sen-
tences. This enables the claim language to express properties
about the resource consumption of algorithms. For example,
AlgoRunTime(c, nmin, nmax) = ∃a ∈ Algo : ∀i ∈
Input s.t. nmin ≤ size(i) ≤ nmax : correct(i, a(i)) ∧
RunTime(a(i)) <= c ∗ size(i).
Second order logical sentences can also express the dependence
(or independence) of atoms through Skolem functions. Other
approaches to express the dependence concerns is through ei-
ther the dependence friendly logic or the independence friendly
logic [38].

2. add a let binder for efficiency. For example, to avoid computing
a(i) twice in AlgoRuntime.

3. add syntactic forms, in addition to Formula, to provide a more
user friendly support of different kinds of computational prob-
lems (such as search, optimization, counting problems). For ex-
ample, to enable users to write: sat(f) = maxJ csat(f, J),
instead of: sat(f, x) = ∃J s.t. csat(f, J) = x : ∀H :
csat(f,H) ≤ csat(f, J)

4. add an abstraction facility.

6.2.2 Crowd Interaction Mechanism
We propose to implement the following CIM. Lab owners establish
Swiss-style CAG tournaments between scholars in the lab in order
to drive interactions in the lab. Swiss-style tournaments have the
property of matching players with similar strength and therefore
enhancing the users’ experience (CONCERN 10) as well as fair-
ness (CONCERN 3). Claims can be chosen by one of the following
approaches:

1. CAG matches: CAG matches consist of an even number of
CAGs. Each scholar chooses the claim for exactly half of the
CAGs. Claims must be chosen from the lab’s claim family. A
generalization of this approach is to play a cut-and-choose game
[18] where in each round, one players chooses a set of claims
(a cut) then the adversary chooses a claim from the set.

2. Owner dictated: the lab owner provides an algorithm for select-
ing claims to achieve a particular purpose. For example, if the
purpose is to clean the contribution database, then the algorithm
would select claims underlying scholar contributions in the con-
tribution database. The purpose could also to solve a particular
subset of open problems or to solve a computational problem in
a particular approach, delegating subproblems to the crowd. For
example, the purpose could be to plot the relationship between
a particular claim family parameter and the correctness of the
claim.

3. Battleship style: use a claim that both scholars had previously
contributed a position on.

A distinctive feature of this CIM is that scholars never choose
their adversaries. This is important to discourage “cheating” (CON-
CERN 4,6). A second feature is that CIM memoizes winning po-

7 2014/5/1

sitions taken by scholars and never asks scholars to provide these
positions in subsequent CAGs until scholars fail to defend these
positions. The contribution database plays the role of the cache
for winning positions. This is important to discourage “cheating”
(CONCERN 6). It is also important that the CIM allows scholars
to revise their previously established contributions to avoid losing
future CAGs

6.2.3 Encouragement and Retention Scheme
We suppose that scholars will aspire to have the highest scores on
meaningful performance measures. The system can establish the
scores for players and provide few different views, such as a leader-
board, for scholars to encourage score based competition. In addi-
tion to strength, we propose to develop the following complemen-
tary measures:

1. Breakthrough contribution : When required to do so, scholars
might provide well known claims that they know how to de-
fend. The purpose of developing a measure for breakthrough
contributions is to encourage scholars to propose new claims
and take positions opposing to the crowd beliefs.

2. Learning : Learning is an indirect contribution of scholars.
We propose to assess learning through the change in scholar’s
strength as well as through scholar’s revisions to its own estab-
lished contributions.

3. Crowd preference : Scholars might be able to spot certain at-
tractive properties of a particular contribution. The idea is to
enable scholars to “like” contributions and essentially count the
“likes” the contributions of a particular scholar gets.

Another potential encouragement and retention scheme that we
want to explore is to have an underlying theme where scholars
are represented by customizable virtual avatars. This enhances the
engagement as scholars can become invested in customizing their
avatars besides it makes it easier for scholars to be embodied in
CAGs by their avatar.

6.3 Evaluation
We propose to conduct a two part evaluation of effectiveness of our
system in leveraging the problem solving ability of the crowd. The
first part consists of evaluating the quality of the algorithms pro-
duced by the crowd to solve non-trivial computational problems.
We propose to compare those algorithms to the best known algo-
rithms. Examples include the max cut problem and the highest safe
rung problems. The second part consists of comparing the qual-
ity of the algorithms produced by the crowd through our system
to algorithms produced through traditional crowdsourcing compe-
titions. Examples include the genome-sequencing-problem [2].

We propose to also use our crowdsourcing system to evaluate a
number of its components and their properties.

References
[1] Website. https://github.com/amohsen/fscp.
[2] Algorithm development through crowdsourcing. http://catalyst.

harvard.edu/services/crowdsourcing/algosample.html.
[3] The polymath blog. Website. http://polymathprojects.org/.
[4] EteRNA. Website, 2011. http://eterna.cmu.edu/.
[5] A. Abdelmeged and K. J. Lieberherr. SCG Court: Gen-

erator of teaching/innovation labs on the web. Website,
2011. http://sourceforge.net/p/generic-scg/code-0/
110/tree/GenericSCG/.

[6] A. Abdelmeged and K. J. Lieberherr. The Scientific Commu-
nity Game. In CCIS Technical Report NU-CCIS-2012-19, Oc-
tober 2012. http://www.ccs.neu.edu/home/lieber/papers/
SCG-definition/SCG-definition-NU-CCIS-2012.pdf.

[7] A. Abdelmeged and K. J. Lieberherr. FSCP: A Platform for
Crowdsourcing Formal Science. In CCIS Technical Report, Febru-
ary 2013. http://www.ccs.neu.edu/home/lieber/papers/
SCG-crowdsourcing/websci2013_submission_FSCP.pdf.

[8] E. Andersen. Optimizing adaptivity in educational games. In Pro-
ceedings of the International Conference on the Foundations of Dig-
ital Games, FDG ’12, pages 279–281, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1333-9. doi: 10.1145/2282338.2282398.
URL http://doi.acm.org/10.1145/2282338.2282398.

[9] E. Andersen, E. O’Rourke, Y.-E. Liu, R. Snider, J. Lowdermilk,
D. Truong, S. Cooper, and Z. Popovic. The impact of tutorials on
games of varying complexity. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, CHI ’12, pages 59–68,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1015-4. doi:
10.1145/2207676.2207687. URL http://doi.acm.org/10.1145/
2207676.2207687.

[10] J. Attenberg, P. Ipeirotis, and F. Provost. Beat the machine: Chal-
lenging workers to find the unknown unknowns. In Workshops at the
Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011.

[11] A. Bernstein, M. Klein, and T. W. Malone. Programming the global
brain. Commun. ACM, 55(5):41–43, May 2012. ISSN 0001-0782. doi:
10.1145/2160718.2160731. URL http://doi.acm.org/10.1145/
2160718.2160731.

[12] B. Chadwick. DemeterF: The functional adaptive programming
library. Website, 2008. http://www.ccs.neu.edu/home/
chadwick/demeterf/.

[13] S. Cooper, A. Treuille, J. Barbero, A. Leaver-Fay, K. Tuite, F. Khatib,
A. C. Snyder, M. Beenen, D. Salesin, D. Baker, and Z. Popović. The
challenge of designing scientific discovery games. In Proceedings
of the Fifth International Conference on the Foundations of Digital
Games, FDG ’10, pages 40–47, New York, NY, USA, 2010. ACM.
ISBN 978-1-60558-937-4. doi: 10.1145/1822348.1822354. URL
http://doi.acm.org/10.1145/1822348.1822354.

[14] S. Cooper, A. Treuille, J. Barbero, A. Leaver-Fay, K. Tuite, F. Khatib,
A. C. Snyder, M. Beenen, D. Salesin, D. Baker, and Z. Popović. The
challenge of designing scientific discovery games. In Proceedings
of the Fifth International Conference on the Foundations of Digital
Games, FDG ’10, pages 40–47, New York, NY, USA, 2010. ACM.
ISBN 978-1-60558-937-4. doi: 10.1145/1822348.1822354. URL
http://doi.acm.org/10.1145/1822348.1822354.

[15] P. J. Denning. Is computer science science? Commun. ACM, 48(4):
27–31, Apr. 2005. ISSN 0001-0782. doi: 10.1145/1053291.1053309.
URL http://doi.acm.org/10.1145/1053291.1053309.

[16] A. Doan, R. Ramakrishnan, and A. Y. Halevy. Crowdsourcing systems
on the world-wide web. Commun. ACM, 54(4):86–96, Apr. 2011.
ISSN 0001-0782. doi: 10.1145/1924421.1924442. URL http://
doi.acm.org/10.1145/1924421.1924442.

[17] J. Franklin. The formal sciences discover the philosophers’ stone.
Studies in History and Philosophy of Science, 25(4):513–533, 1994.

[18] W. Hodges. Logic and games. In E. N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Spring 2009 edition, 2009.

[19] P. G. Ipeirotis and P. K. Paritosh. Managing crowdsourced human
computation: a tutorial. In Proceedings of the 20th international
conference companion on World wide web, WWW ’11, pages 287–
288, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0637-9.
doi: 10.1145/1963192.1963314. URL http://doi.acm.org/10.
1145/1963192.1963314.

[20] A. Jaffe, A. Miller, E. Andersen, Y.-E. Liu, A. Karlin, and
Z. Popovic. Evaluating competitive game balance with restricted
play, 2012. URL http://aaai.org/ocs/index.php/AIIDE/
AIIDE12/paper/view/5470/5692.

[21] M. Joglekar, H. Garcia-Molina, and A. Parameswaran. Evaluating the
crowd with confidence. Technical report, Stanford University, August
2012. URL http://ilpubs.stanford.edu:8090/1051/.

[22] D. Kahneman. Thinking, Fast and Slow. Farrar, Straus and Giroux,
2011. ISBN 9781429969352. URL http://books.google.com/
books?id=ZuKTvERuPG8C.

8 2014/5/1

https://github.com/amohsen/fscp
http://catalyst.harvard.edu/services/crowdsourcing/algosample.html
http://catalyst.harvard.edu/services/crowdsourcing/algosample.html
http://polymathprojects.org/
http://eterna.cmu.edu/
 http://sourceforge.net/p/generic-scg/code-0/110/tree/GenericSCG/
 http://sourceforge.net/p/generic-scg/code-0/110/tree/GenericSCG/
 http://www.ccs.neu.edu/home/lieber/papers/SCG-definition/SCG-definition-NU-CCIS-2012.pdf
 http://www.ccs.neu.edu/home/lieber/papers/SCG-definition/SCG-definition-NU-CCIS-2012.pdf
 http://www.ccs.neu.edu/home/lieber/papers/SCG-crowdsourcing/websci2013_submission_FSCP.pdf
 http://www.ccs.neu.edu/home/lieber/papers/SCG-crowdsourcing/websci2013_submission_FSCP.pdf
http://doi.acm.org/10.1145/2282338.2282398
http://doi.acm.org/10.1145/2207676.2207687
http://doi.acm.org/10.1145/2207676.2207687
http://doi.acm.org/10.1145/2160718.2160731
http://doi.acm.org/10.1145/2160718.2160731
http://www.ccs.neu.edu/home/chadwick/demeterf/
http://www.ccs.neu.edu/home/chadwick/demeterf/
http://doi.acm.org/10.1145/1822348.1822354
http://doi.acm.org/10.1145/1822348.1822354
http://doi.acm.org/10.1145/1053291.1053309
http://doi.acm.org/10.1145/1924421.1924442
http://doi.acm.org/10.1145/1924421.1924442
http://doi.acm.org/10.1145/1963192.1963314
http://doi.acm.org/10.1145/1963192.1963314
http://aaai.org/ocs/index.php/AIIDE/AIIDE12/paper/view/5470/5692
http://aaai.org/ocs/index.php/AIIDE/AIIDE12/paper/view/5470/5692
http://ilpubs.stanford.edu:8090/1051/
http://books.google.com/books?id=ZuKTvERuPG8C
http://books.google.com/books?id=ZuKTvERuPG8C

[23] L. Keiff. Dialogical logic. In E. N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Summer 2011 edition, 2011.

[24] J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2005. ISBN
0321295358.

[25] J. Kulas and J. Hintikka. The Game of Language: Studies in Game-
Theoretical Semantics and Its Applications. Synthese Language Li-
brary. Springer, 1983. ISBN 9789027716873. URL http://books.
google.com/books?id=6GphI2_3u-sC.

[26] K. Lieberherr. The Scientific Community Game. Website,
2009. http://www.ccs.neu.edu/home/lieber/evergreen/
specker/scg-home.html.

[27] K. J. Lieberherr and E. Specker. Complexity of Partial Satisfaction.
Journal of the ACM, 28(2):411–421, 1981.

[28] K. J. Lieberherr and E. Specker. Complexity of Partial Satisfaction
II. Elemente der Mathematik, 67(3):134–150, 2012. doi: 10.4171/
EM/202. http://www.ccs.neu.edu/home/lieber/p-optimal/
partial-sat-II/Partial-SAT2.pdf.

[29] K. J. Lieberherr, A. Abdelmeged, and B. Chadwick. The
Specker Challenge Game for Education and Innovation in Con-
structive Domains. In Keynote paper at Bionetics 2010, Cam-
bridge, MA, and CCIS Technical Report NU-CCIS-2010-19, Decem-
ber 2010. http://www.ccs.neu.edu/home/lieber/evergreen/
specker/paper/bionetics-2010.pdf.

[30] M. Marion. Why Play Logical Games. Website, 2009. http:
//www.philomath.uqam.ca/doc/LogicalGames.pdf.

[31] J. Petit, O. Giménez, and S. Roura. Jutge.org: an educational pro-
gramming judge. In Proceedings of the 43rd ACM technical sympo-
sium on Computer Science Education, SIGCSE ’12, pages 445–450,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1098-7. doi:
10.1145/2157136.2157267. URL http://doi.acm.org/10.1145/
2157136.2157267.

[32] A. Pietarinen. Games as formal tools vs. games as explanations.
Technical report, 2000.

[33] D. Pink. Drive: The Surprising Truth About What Motivates Us.
Canongate Books, 2011. ISBN 9781847677693. URL http://
books.google.com/books?id=E0H_DIkg0I4C.

[34] K. R. Popper. Conjectures and refutations: the growth of scientific
knowledge, by Karl R. Popper. Routledge, London, 1969. ISBN
710065078.

[35] W. Scacchi. The Future of Research in Computer Games
and Virtual Worlds: Workshop Report. Technical Report UCI-
ISR-12-8, 2012. http://www.isr.uci.edu/tech_reports/
UCI-ISR-12-8.pdf.

[36] R. Sedgewick. The Role of the Scientific Method in Program-
ming. Website, 2010. http://www.cs.princeton.edu/~rs/
talks/ScienceCS.pdf.

[37] T. Tulenheimo. Independence friendly logic. In E. N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Summer 2009 edition, 2009.

[38] J. Väänänen. Dependence Logic:. London Mathematical Society Stu-
dent Texts. Cambridge University Press, 2007. ISBN 9780521876599.
URL http://books.google.com/books?id=KSR5xkAXiQAC.

[39] L. von Ahn and L. Dabbish. Labeling images with a computer game.
In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’04, pages 319–326, New York, NY, USA, 2004.
ACM. ISBN 1-58113-702-8. doi: 10.1145/985692.985733. URL
http://doi.acm.org/10.1145/985692.985733.

[40] K. J. S. Zollman. The communication structure of epistemic commu-
nities. Philosophy of Science, 74(5):574–587, 2007.

Appendix A Claim Language
A claim is an interpreted statement in first order predicate logic. A
claim consists of an underlying model M , a predicate formula φ
potentially containing free variables, an assignment g for the free
variables in φ.

A Formula is either a simple Predicate, a Compound for-
mula, a Negated formula, or a Quantified formula. A Compound
formula consists of two subformulas, left and right and a
Connective which is either an And or an Or connective. A
Quantified formula consists of a Quantification and a sub-
formula. A Quantification consists of a Quantifier, two
identifiers representing the quantified variable name and type,
and an optional Predicate further restricting the values the quan-
tified variable can take. A Quantifier can be either a ForAll, an
Exists, or Free which we use to declare free variables in a for-
mula. Figure 1 shows the grammar for a formula expressed using
the class dictionary notation [12].

Formula = P r e d i c a t e | Compound | Negated |
Q u a n t i f i e d .

P r e d i c a t e = <name> i d e n t ” (” <a rgs> CommaList (
i d e n t) ”) ” .

Compound = ” (” < l e f t > Formula
<c o n n e c t i v e> C o n n e c t i v e
<r i g h t > Formula ”) ” .

Negated = ” (” ” n o t ” <fo rmula> Formula ”) ” .
C o n n e c t i v e = And | Or .
And = ” and ” .
Or = ” or ” .

Q u a n t i f i e d = <q u a n t i f i c a t i o n > Q u a n t i f i c a t i o n <
fo rmula> Formula .

Q u a n t i f i c a t i o n = ” (” <q u a n t i f i e r > Q u a n t i f i e r
<var> i d e n t
” i n ” <type> i d e n t
<qPred> Opt ion (

Q u a n t i f i c a t i o n P r e d i c a t e) ”) ” .
Q u a n t i f i c a t i o n P r e d i c a t e = ” where ” <pred>

P r e d i c a t e .
Q u a n t i f i e r = F o r A l l | E x i s t s | Free .
F o r A l l = ” f o r a l l ” .
E x i s t s = ” e x i s t s ” .
F ree = ” f r e e ” .

Figure 1. Formula Language

Appendix B Semantic Games
Given a claim c and two scholars, a verifier ver and a falsifier
fal. Let M be the underlying model of c, let φ be the formula
and g be c’s assignment to the free variables in φ. We define the
semantic game of ver and fal centered around c SG(c,ver, fal)
to be G(φ,M, g, ver, fal) which is a two-player, zero-sum game
defined as follows:

1. If φ = R(t1, ..., tn) and M, g |= R(t1, ..., tn), ver wins;
otherwise fal wins.

2. If φ =!ψ, the rest of the game is as in G(ψ,M, g, fal, ver).

3. If φ = (ψ ∧ χ), fal chooses θ ∈ {ψ, χ} and the rest of the
game is as in G(θ,M, g, ver, fal).

4. If φ = (ψ ∨ χ), ver chooses θ ∈ {ψ, χ} and the rest of the
game is as in G(θ,M, g, ver, fal).

5. If φ = (∀x : p(x))ψ, fal chooses an element a from M such
that p(a) holds, and the rest of the game is as in
G(ψ,M, g[x/a], ver, fal). If fal fails to do so, it loses.

6. If φ = (∃x : p(x))ψ, ver chooses an element a from M such
that p(a) holds, and the rest of the game is as in
G(ψ,M, g[x/a], ver, fal). If ver fails to do so, it loses.

The definition ofG is adopted from the Game Theoretic Seman-
tics (GTS) of Hintikka [25], [37]. We slightly modified Hintikka’s

9 2014/5/1

http://books.google.com/books?id=6GphI2_3u-sC
http://books.google.com/books?id=6GphI2_3u-sC
http://www.ccs.neu.edu/home/lieber/evergreen/specker/scg-home.html
http://www.ccs.neu.edu/home/lieber/evergreen/specker/scg-home.html
http://www.ccs.neu.edu/home/lieber/p-optimal/partial-sat-II/Partial-SAT2.pdf
http://www.ccs.neu.edu/home/lieber/p-optimal/partial-sat-II/Partial-SAT2.pdf
http://www.ccs.neu.edu/home/lieber/evergreen/specker/paper/bionetics-2010.pdf
http://www.ccs.neu.edu/home/lieber/evergreen/specker/paper/bionetics-2010.pdf
 http://www.philomath.uqam.ca/doc/LogicalGames.pdf
 http://www.philomath.uqam.ca/doc/LogicalGames.pdf
http://doi.acm.org/10.1145/2157136.2157267
http://doi.acm.org/10.1145/2157136.2157267
http://books.google.com/books?id=E0H_DIkg0I4C
http://books.google.com/books?id=E0H_DIkg0I4C
 http://www.isr.uci.edu/tech_reports/UCI-ISR-12-8.pdf
 http://www.isr.uci.edu/tech_reports/UCI-ISR-12-8.pdf
 http://www.cs.princeton.edu/~rs/talks/ScienceCS.pdf
 http://www.cs.princeton.edu/~rs/talks/ScienceCS.pdf
http://books.google.com/books?id=KSR5xkAXiQAC
http://doi.acm.org/10.1145/985692.985733

original definition to handle the quantification predicate in our lan-
guage.

10 2014/5/1

	Background
	Crowdsourcing
	Software Development

	Logical Games and Computational Problems

	Thesis
	Rationale and Limitations of Semantic Games
	User Contributions
	Evaluating Users
	Evaluating User Contributions
	Combining User Contributions
	Recruiting and Retaining Users

	Applications
	Teaching
	Software Development
	Formal Science

	Initial Investigation
	System Overview
	The Contradiction-Agreement Game
	CAG Desirable Properties

	Evaluating User Strength
	Evaluating Crowd Beliefs

	Experience with the SCG
	Software Development
	Algorithms

	Related Work
	Crowdsourcing and Human Computation
	Logic and Imperfect Information Games
	Foundations of Digital Games
	Architecting Socio-Technical Ecosystems
	Online Judges
	Educational Games
	Formal Sciences and Karl Popper
	Scientific Method in CS
	Games and Learning
	Origins of SCG

	Conclusion and Future work
	Model Development
	Claim Family Relations and Meta Labs
	Generalized Claims

	System Development
	Claim Language
	Crowd Interaction Mechanism
	Encouragement and Retention Scheme

	Evaluation

	Appendices
	Appendix Claim Language
	Appendix Semantic Games

