
The Scientific Community Game

Karl Lieberherr
Northeastern University

CCIS
Boston

lieber@ccs.neu.edu

Ahmed Abdelmeged
Northeastern University

CCIS
Boston

mohsen@ccs.neu.com

10/15/2012

ABSTRACT
We provide a clean definition of the Scientific Community
Game (SCG, formerly called the Specker Challenge Game)
and prove basic properties. An example illustrates the con-
cepts.

The key contribution of this paper is a simple protocol lan-
guage which is at the heart of defining constructive claims
through games. Our protocol language generalizes the class
of claims that can be expressed in predicate logic. We build
on the long tradition in logic and games of imperfect infor-
mation: our protocol language can also express indetermi-
nate claims, such as “I am better than you at solving this
problem.”

The purpose of SCG is to provide a helpful framework to de-
velop and disseminate the world’s constructive claims in for-
mal scientific domains. The development of claims is both
collaborative and self-evaluating using the global brain.

INTRODUCTION
The Scientific Method has not yet been implemented as a
generic software tool that can be customized for various do-
mains to develop new knowledge. We present our design of
such a generic tool. Applications range from research (re-
futing and defending claims) to teaching (traditional, online
and massively open online) courses in STEM areas. While
this paper defines SCG, there are separate papers planned
that describe various applications of SCG.

• SCG for Funding Agencies
Funding agencies, such as NSF, define, in collaboration
with interested researchers, labs that define the problem to
be solved. The self-evaluating nature of SCG will fairly
evaluate the contributions of the scholars and the collabo-
rative nature will lead to productive team work. Newcom-
ers can contribute by participating in a long-running lab
(dozens of years).

Submitted for review to Foundations of Digital Games, 2013, Crete.

• SCG for Software Development

A computational task is defined by a lab where the role of
scholar is played by an avatar (software). Competitions
are held and the winning avatars will contain the best al-
gorithms for the computational task.

• SCG for Teaching

To teach a specific skill, we design a lab which encour-
ages scholars to acquire that skill to perform well in the
lab. For teaching it is important to use a payoff function
which reduces the competitiveness of the game and which
enhances the collaborative nature. Good students become
effective teachers to the weaker students. Our experience
has been that optimization labs work best for teaching.

We focus on formal sciences although the idea applies to
both formal sciences and other sciences. Unlike other sci-
ences, the formal sciences are not concerned with the va-
lidity of claims based on observations in the real world, but
instead with the properties of formal systems based on def-
initions and rules. Examples of formal sciences are: logic,
mathematics, theoretical computer science, information the-
ory, systems theory, decision theory, statistics. Natural sci-
ences for which adequate simulators exist, become formal
sciences.

In SCG, claims are organized into labs where they are ex-
posed to refutation. A refutation attempt initiates a scien-
tific dialog between proponent and opponent which induces
collaborative behavior. The labs are self-evaluating in that
there is no need of a third party to evaluate the contributions
of the scholars: they evaluate each other fairly. This is en-
forced by the SCG-level generic game rules and refined by
the lab-level more specialized rules.

We have developed an implementation of SCG which is avail-
able on SourceForge [1]. The following SCG definition is an
abstraction of our implementation.

SCG users
There are two levels of SCG users: Lab designers and schol-
ars. SCG defines generic rules for a scientific community
and lab designers specialize those rules to a specific domain
which in turn defines the tasks to be performed by the schol-
ars.

• Lab designers have a computational problem they want
to have solved. The role of lab designer can be played

1



by a researcher who needs a specific problem solved or
an educator who wants her students to practice what they
were taught. Lab designers define a few sets and func-
tions that define the problem to be solved and as return on
their investment they get a lab where scholars are invited
to participate. Defining a lab is like writing a program for
the global brain [5].

• Scholars inhabit a lab, either because they are enticed by
an educator or because they have good skills to solve the
problem defined by the lab. A scholar has the opportu-
nity to influence the quality of the knowledge base and
the quality of the lab procedures. Scholars are evaluated
in the lab based on the quality of their contributions com-
pared to the contributions of their peers.

The role of scholar can be played by a human or an avatar
(software). The avatar variant works only for labs that are
sufficiently well understood.

BINARY GAME DEFINITION
We first define the SCG binary game which is the building
block for competitions. We define the SCG binary game
through its extensive-form (or tree-form) representation which
is a common representation in game theory [11].

We call the players scholars because the game is about mak-
ing scientific or technical claims and defending them.

The extensive-form representation of SCG binary game is
given by: (1) Two scholars, called Proponent (female) and
Opponent (male). (2) For both scholars, every opportunity
they have to move. The sequencing of moves is important.
(3) What each scholar can do for each of their moves. They
can choose from some set, e.g., claims, instances and solu-
tions or make a decision about classifying claims. (4) what
each scholar knows for every move. (5) the payoffs received
by both scholars for every possible combination of moves.

To define the moves, we need a few sets and functions which
make up what we call a lab where experiments and measure-
ments may be performed in a specific domain. A lab is an
environment where (human) computation solves a problem
and develops a knowledge base of claims. By a problem
we mean the set of instances in Instance. The lab definition
consists of Instance, Solution, Claim, valid, quality, stronger
which are defined next.

Instance and Solution
Instance is defining a set of instances to be solved. The def-
inition of an Instance is split into two parts: the parameters
which constrain a family of instances and the structure which
defines the structure of the instances based on specific values
of the parameters.

Solution is defining a set of solutions. We need a valid func-
tion to check whether a solution s ∈ Solution is valid for an
instance i ∈ Instance :

boolean valid(i, s).

We need a quality function to return a real number for a given
instance i ∈ Instance and solution s ∈ Solution :

float quality(i, s).

Claim
The first choice made in the SCG binary game tree of the ex-
tensive form representation is to choose a claim from Claim.
A claim consists of a definition of Instance and Solution, a
protocol and a rational number. The rational number has
the meaning of a quality that can be achieved when solving
a constructive task that precisely defines the allowed inputs
(i ∈ Instance) and the allowed solutions (s ∈ Solution sat-
isfying valid(i,s)) with quality(i, s). In an earlier version of
Scientific Community Game we used the term “challenge”
instead of “claim.” A claim challenges you to refute it.

We need a function to compare claims. Function

stronger(c1, c2)

checks for two claims c1, c2 in Claim whether claim c1 is
stronger than claim c2. For some labs, stronger always re-
turns false.

The second choice in the SCG binary game tree is of a differ-
ent nature: to decide whether (to try) to refute, strengthen,
or agree with the claim. Depending on the choice made,
the refutation protocol is executed with the appropriate ar-
guments. strengthen and agree are also reduced to refute.

Refutation protocol
The refutation protocol decides one’s performance when in-
teracting with a scholar in a given lab. It provides oppor-
tunities for learning and trying to figure out how the other
scholar “thinks”. It defines the scientific discourse to be used
to “test” a claim.

The refutation protocol has three arguments: a claim c and
a Proponent and an Opponent and consists of a list of steps
followed by a refutation predicate which receives the data
as arguments. The list of steps defines data (instances in
Instance and solutions in Solution) that are given to the refu-
tation predicate.

Protocols are defined by the following grammar: (// is the
comment symbol)

ProtocolSpec = List(Step).
Step =
Action "from" Role.

interface Role = Proponent | Opponent.
Proponent = "Proponent".
Opponent = "Opponent".
interface Action =
ProvideAction | SolveAction.

ProvideAction = "instance".

// solve the instance provided in
// step # stepNo.
// stepNo is 0-based.
SolveAction = "solution" "of" // stepNo

2



int.

Now that the claim definition is complete, we define a claim
to be true if it has a defense strategy for the proponent. This
means that for true claims, the proponent can always avoid
refutations. We define a claim to be false if it has a refuta-
tion strategy for the opponent, i.e., the opponent will always
succeed in refuting. We define a claim to be indeterminate if
it has neither a defense nor a refutation strategy.

Consider the following protocol instance used in a claim pro-
posed by Proponent:

instance from Proponent // i
solution of 0 from Opponent // sB

The protocol predicate is p(i, sB, claim).

Proponent expresses the claim: There exists an instance i in
Instance so that for all solutions sB of i for which the predi-
cate valid(i,sB) is true, the predicate p(i,sB,claim) holds. In
order to support her claim, the Proponent has to deliver i
and Opponent has to deliver sB in a resource constrained en-
vironment.

If we add the following line to the end of the above protocol

solution of 0 from Proponent // sA

and define the protocol predicate to be:

p(i, sA, sB, claim) = (quality(sA, i) ≥ quality(sB, i)),

we get a very different kind of claim. It says that Proponent
is at least as good as Opponent in solving instances in the
given lab.

As a general rule, solutions are all kept secret until protocol
evaluation. When Proponent computes sA she does not know
sB.

In SCG, the payoff is determined by the value of a refutation
predicate which has as parameters the values collected along
the current path back to the root. The value of the refutation
predicate determines the payoffs.

The game tree is given by:

• Proponent: propose claim c from Claim.

• Opponent: decide between 3 alternatives:

– refute,
– strengthen with a stronger claim c’ from Claim, i.e.,

stronger(c′, c),
– agree.

Function refute directly invokes the refutation protocol

refute(c, Proponent, Opponent).

Function strengthen(c’) invokes the refutation protocol

refute(c′, Opponent, Proponent)

with the scholars switched. Function agree invokes the refu-
tation protocol

refute(c, Opponent, Proponent)

also with the scholars switched.

The payoff information is determined by the refutation pred-
icate p(c, ...). The three dots ... refer to the data collected
by the refutation protocol, consisting of a heterogeneous se-
quence of instances and solutions. The Proponent tries to
make the predicate true while the Opposer tries to make
it false. The refutation is successful when the predicate is
false.

We use the following notation:

p(c, ...)?(Pt, Ot), (Pf, Of).

If p(c, ...) is true, Pt is the payoff for the Proponent and Ot
is the payoff for the Opponent. If p(c, ...) is false, Pf is the
payoff for the Proponent and Of is the payoff for the Oppo-
nent.

We give an example of a payoff function, called competitive
payoff (zero-sum), which is the default pay-off function:

1. refute: p(c, ...)?(1,−1) : (−1, 1)
If the predicate is true, the Proponent gets rewarded with
one point because she successfully defended her claim. If
the predicate is false, the Opponent has won and gets a
point.

2. strengthen c to c’: p(c′, ...)?(−1, 1) : (1,−1)
If the predicate is true, the Opponent gets rewarded with
one point because he successfully defended the stronger
claim. If the predicate is false, the Proponent has won and
gets a point. The strengthening was not successful.

3. agree: p(c, ...)?(0, 0) : (1,−1)
If the predicate is true, the Opponent has successfully de-
fended the claim and nobody gets a point. Agreement
is successful. If the predicate is false, the Opponent has
failed to defend the claim and loses a point. Agreement is
not successful.

Depending on the application, many more meaningful pay-
off functions can be defined. For example, if SCG is used
for creating student interaction in a MOOC, I recommend
the following low competition payoff function:

1. refute: p(c, ...)?(0, 0) : (0, 1)
If the predicate is true, nobody gets a point because we
want the Opponent to learn from the Proponent through
the refutation protocol. If the predicate is false, the Oppo-
nent has won and gets a point.

2. strengthen c to c’: p(c′, ...)?(0, 1) : (0, 0)
If the predicate is true, the Opponent gets rewarded with
one point because he successfully defended the stronger
claim. If the predicate is false, the Proponent has won
but does not get a point because we want the Opponent to
have cheap opportunities to attack and learn.

3



3. agree: p(c, ...)?(0, 0) : (1, 0)
If the predicate is true, the Opponent has successfully de-
fended the claim and nobody gets a point. If the predicate
is false, the Opponent has failed to defend the claim but
has gained information to learn. The Proponent earns a
point.

The competitive payoff and the low competition payoff are
two examples of payoff functions that promote good behav-
ior in the lab. Other payoff functions are possible.

Instances are only available when they are needed. For ex-
ample, in the spirit of the Renaissance mathematical compe-
titions between Tartaglia and Fior, if the protocol asks that
the Proponent and Opponent deliver each 10 instances, fol-
lowed by the solution activity. The instances are secret until
they are solved.

Rules
The rules for the SCG binary game are natural: follow the
extensive-form representation of the game definition. A scholar
loses immediately, if he or she delivers an element that is not
in the specified set, or if he or she does otherwise not follow
the refutation protocol.

All moves must be completed within the given resource (time,
space, etc.) limit.

The winner of a binary game is the scholar which achieves
the highest payoff. The scholars are egoistic but they will
create social welfare (a knowledge base) when we engage
them in a competition.

LABS
Labs play a central role in SCG. They define a domain to be
investigated and require great care in their definition. A lab
definition can be viewed as a declarative program to define a
human computation [5].

We distinguish between standard labs and optimization labs.

• Standard lab
Claims in a standard lab are either true, false or indeter-
minate. The stronger relation for claims is always false.

• Optimization lab
In an optimization lab we have a family of claims parame-
terized by quality: C(q), q ∈ [0, 1]. The stronger relation
is based on comparing qualities. Bivalence holds: a claim
is either true or false.
An optimization lab may contain a union of such families
of optimization claims.

Failure of bivalence: imperfect information
SCG can express indeterminate claims that are neither true
nor false. Such claims were studied in Independence Friendly
Logic [20], an extension of first-order logic.

Consider the following lab: Instance = positive real num-
bers. Solution = real numbers. The protocol

instance from Proponent
solution of 0 from Opponent //sO
solution of 0 from Proponent //sP

The predicate is: sO = sP . According to the SCG rules,
sO is not known when sP is computed. The lab contains
only one claim where the quality is irrelevant. This claim is
neither true nor false: bivalence fails. Notice the similarity
to the ”at least as good as” claim discussed earlier.

Therefore we also distinguish between bivalent labs (all claims
are either true or false) and non-bivalent labs (some claims
are indeterminate).

Open publication
When a lab gets into a stable state (a sub-optimal equilib-
rium), it is time

Scholar role
So far we used the generic scholar role to talk about lab de-
sign. Some labs are simple enough to expect that there is an
algorithm to act as a scholar: to propose and oppose claims
and to provide instances and solve instances during the refu-
tation protocol.

Therefore, two instantiations of SCG: SCG Human and SCG
Avatar. In SCG Human, a human will control the propose
and oppose activity, maybe by using a program to facilitate
the task. In SCG Avatar, a program will control the pro-
pose/oppose activity. In SCG Avatar the primary interest is
in the solve function. The winning avatar is likely to have the
better solve function, although providing difficult instances
is also important to winning.

• SCG Human

For hard problems. An algorithm is not known (yet).

We have to be careful with the time of the scholars.

The knowledge is in the head of the scholars.

• SCG Avatar

For problems that are solvable by an algorithm.

The scholars are cheap and can work all night when the
cloud is not busy.

The knowledge is encoded in the avatar software.

We find SCG Avatar to be a useful software development
process model to develop software for computational tasks
using competitions.

COMPETITIONS
For SCG Avatar it makes sense to organize full round-robin
competitions where each avatar plays against each other avatar
using a binary game. If the lab is inhabited by n avatars, we
get n·(n−1) binary games. The avatars are ranked according
to their accumulated payoff. The highest ranked avatar most
likely contains the best solve method which can be further
polished and put into a product.

4



For SCG Scholar it makes sense to organize Swiss style
competitions which require fewer binary games than full round-
robin competitions.

The competitions will create a knowledge base of claims that
are mostly defended. This is the social welfare created by the
egoistic scholars.

Open publication
When a lab gets into a stable state (a sub-optimal equilib-
rium), it is time to publish the current, maybe imperfect refu-
tation and defense strategies. If the scholars are avatars, their
software is published. If the scholars are humans, an infor-
mal description of their techniques is published.

This levels the playing field and sets the stage for the next
advancements. But it is important to reward the scholars
for their previous investment and not force them too early to
publish their techniques.

Timing
Being the first in a scientific community is crucial for the
reputation of a scholar. Therefore, the SCG as a faithful
model of a scientific community, also deals with being the
first.

The being-the-first metric is computed after a competition
or a series of competitions as a retrospective. For each im-
portant event, a time stamp is stored. Important events are:
defend, refute, strengthen. We assume that we have the set
of claims believed to be true (BelievedTrue) or false (Be-
lievedFalse) or optimal (BelievedOptimal).

For each claim in BelievedTrue or BelievedOptimal, we find
the first scholar who proposed the claim and defended it.
TimingReputation +1.

For each claim in BelievedFalse, we find the first scholar
who refuted the claim. TimingReputation +1.

For each claim in BelievedTrue, but not in BelievedOpti-
mal, we find the first scholar who strengthened the claim
and defended the strengthened claim. TimingReputation +1
+ amount of strengthening.

The reputation of a scholar consists of two components: The
payoff points collected and the timing reputation points col-
lected.

EXAMPLE
We give an example of lab definitions to illustrate the con-
cept. We developed a Lab Designer Guide [13] which con-
tains many more examples of labs (formerly called play-
grounds). A widely applicable way to define a lab is to
use alternating quantifier predicate logic expressions, such
as ForAllExists or ExistsForAll. Consider the fundamental
theorem of arithmetic, which states that every integer greater
than 1 is either prime itself or is the product of prime num-
bers. This claim is of the form ForAllExists (for all non-
prime natural numbers there exists ...) and it is easy to create

a lab to practice the fundamental theorem of arithmetic.

Worst-case input lab
The goal of this lab is to find worst-case inputs to an algo-
rithm. As a concrete example, we use the Gale-Shapley al-
gorithm (GS) for stable matchings. GS consists of one while
loop and the goal is to find the worst-case input for n men
and n women that produces the most number iterations.

Instance: The parameter is n = number of men = number of
women. An instance contains the number of executions of
the while-loop for a worst-case input.

Solution: An input to Gale-Shapley (the set of preferences
for men and women).

valid(i,s): the GS input s achieves the desired number of
iterations i.

quality(i,s): the number of iterations of the while loop gen-
erated by s.

Claim: a claim has the form GS(n,u), where n is the number
of men (and women) and u is the number of iterations for
worst input for n men and women. stronger(c1,c2): if c1 has
more iterations than c2.

GS(10,30) says that for 10 men and women, there is an input
that achieves 30 iterations. GS(10,40) is a stronger claim.

The protocol is:

0 instance from Proponent
//iP: iterations

1 instance from Opponent
//iO: iterations

2 solution of 0 from Proponent
//GS input creating iP iterations

3 solution of 1 from Opponent
//GS input with iO iterations

The protocol predicate is iP > iO. The rationale for this
protocol design is that the GS inputs need to be hidden from
the two competitors until the game is over. The reason is that
seeing the worst GS input would reveal too much informa-
tion to the other party. In SCG, solutions are only revealed
at the end of a binary game. Note that each scholar solves its
own instance.

PROPERTIES
We list basic properties of SCG. The first two are formal and
we give a short proof.

Egalitarian
When you make a mistake, you might be caught.

There are 7 different mistakes (one per line, the * lines are
for optimization labs):

P = Proponent

5



O = Opponent

propose(P,c),c=false
* propose(P,c),c=not optimum, c=true

refute(P,O,c),c=true
* strengthen(P,O,c,cs),c=optimum

strengthen(P,O,c,cs),c=false
agree(P,O,c),c=false
* agree(P,O,c),c=not optimum, c=true

Theorem [Egalitarian] For all labs and for mistake made in a
lab there exists a reaction that leads to a negative payoff for
the competitive payoff function.

For formal sciences, SCG is not sound in the following sense:
It is possible that during a binary game faulty decisions are
made, e.g., a true claim is refuted or a false claim is de-
fended. But SCG has the property that faulty decisions might
lead to a negative payoff (under the competitive payoff func-
tion). If a faulty action was made there exists an exposing
reaction that blames the bad action.

The proof of the egalitarian theorem is by case analysis. It is
based on the following facts: For a true claim there exists a
strategy to defend it. For a false claim there exists a strategy
to refute it.

Of course, there are many other ”faulty” moves but they are
all caught by the rules of SCG and the violating scholar has
lost.

For each of the seven cases there is a path in the game tree
that leads to a negative payoff for the cholar who made the
faulty decision. In SCG it is impossible that a strong scholar
is ignored by other scholars as it might happen in a real sci-
entific community.

Convergence
There is a second simple property of SCG: When no mis-
takes are made in an optimization lab, the optimum claim
will eventually be found.

Theorem [Convergence]: Consider a set C of claims c(t),
where t is rational between 0 and 1. c(0) is true and c(1)
is false and there is an optimal value t0 of t where the truth
value of c(t0) switches from true to false. If a sequence of
binary games is played using claims in C and binary search
without mistakes, the optimal claim c(t0) will be found.

Equilibria
A lab can have several equilibria which correspond to in-
creasingly better levels of knowledge.

Social production
Social Production is the creation of artefacts, by combining
the input from contributors with weak ties without predeter-
mining the way to do this. Integration of new and innovative
contributions is achieved by trading winning for bug reports
that contradict the claims being made. The innovative contri-
butions are kept secret to foster competition. When you win

you must release a bug report that might give a hint about
the clever approach you use.

EXPERIENCE WITH THE Scientific Community Game
The Scientific Community Game has evolved since 2007.
We have used SCG in software development courses at both
the undergraduate and graduate level and in several algo-
rithm courses. Detailed information about those courses is
available from the first author’s teaching page.

Software Development
The most successful graduate classes were the ones that de-
veloped and maintained the software for SCG Court [1] as
well as several labs and their avatars to test SCG Court. De-
veloping labs for avatars has the flavor of defining a virtual
world for artificial creatures. At the same time the students
got detailed knowledge of some problem domain and how to
solve it. A fun lab was the Highest Safe Rung lab from [10]
where the best avatars need to solve a constrained search
problem using a modified Pascal triangle.

Algorithms
The most successful course (using [10] as textbook) was in
Spring 2012 where the interaction through SCG encouraged
the students to solve difficult problems. Almost all home-
work problems were defined through labs and the students
posted both their exploratory and performatory actions on
piazza.com. We used a multiplayer version of the SCG bi-
nary game which created a bit of an information overload.
Sticking to binary games would have been better but requires
splitting the students into pairs. The informal use of SCG
through Piazza (piazza.com) proved successful. All actions
were expressed in JSON which allowed the students to use a
wide variety of programming languages to implement their
algorithms.

The students collaboratively solved several problems such
as the problem of finding the worst-case inputs for the Gale-
Shapley algorithm (see the section Example above).

Without SCG I don’t believe that the students would have
created the same impressive results. SCG effectively focuses
the scientific discourse on the problem to be solved.

SCG proved to be adaptive to the skills of the students. A
few good students in a class become effective teachers for
the rest thanks to the SCG mechanism.

SCIENTIFIC COMMUNITY
The informal model behind our scientific communities is de-
scribed by the following list. Scholars are encouraged to (1)
propose claims that are not easily improved. (2) propose
claims that they can successfully defend. (3) quote related
claims and show how they improve on previous claims. (4)
prove claims if the current state of the art allows. (5) stay
active and propose new claims or oppose current claims. (6)
be well-rounded: solve posed instances and pose difficult
instances for others. (7) become famous! (maximizing their
payoff and be the first to propose and defend a true or opti-
mal claim)

6



RELATED WORK
SCG has not grown in a vacuum. We make connections to
several related areas.

Crowd Sourcing and Human Computation
There are several websites that organize competitions. What
is common to many of those competitions? We believe that
SCG provides a foundation to websites such as TopCoder
[21] or the more specialized kaggle.com.

SCG makes a specific, but incomplete proposal of a pro-
gramming interface to work with the global brain [5]. What
is currently missing is a payment mechanism for the schol-
ars and an algorithm to split workers into pairs based on their
background.

SCG is a generic version of the “Beat the Machine” approach
for improving the performance of machine learning systems
[4].

Scientific discovery games, such as FoldIt and EteRNA, are
variants of SCG. [6] describes the challenges behind devel-
oping scientific discovery games. [3] argues that complex
games such as FoldIt benefit from tutorials. This also ap-
plies to SCG but a big part of the tutorial is reusable across
scientific disciplines.

Logic and Imperfect Information Games
Logic and Games has long promoted the view that finding
a proof for a claim is the same as finding a defense strategy
for a claim.

Logical Games [18], [7] have a long history. SCG is an im-
perfect information game builds on Paul Lorenzen’s dialog-
ical games [9].

Foundations of Digital Games
According to Jonas Linderoth [17] games challenge two as-
pects of human nature: our ability to choose appropriate ac-
tions and our ability to perform appropriate actions. [17]
views gaming as a cycle between interrelated exploratory
and performatory actions.

What are the exploratory and performatory actions in SCG?
Exploratory actions are: (1) proposing a claim which means
choosing from a set of claims. (2) choosing an action: refute,
agree or strengthen a given claim. Performatory actions are:
(1) the proponent should defend the proposed claim, (2) a
claim for which the refute action was chosen should refute
the claim, etc. In SCG we also have a cycle of interrelated
exploratory and performatory actions.

A functioning game should be deep, fair and interesting which
requires careful and time-consuming balancing. [8] describes
techniques used for balancing that complement the expen-
sive playtesting. This research is relevant to SCG lab design.
For example, if there is an easy way to refute claims with-
out doing hard work, the lab is unbalanced. SCG has the
interesting property that if a “clever procedure” is know to
scholar Alice, but not to scholar Bob, Alice can easily win

over Bob. If both know the clever procedure, the game is
a tie. The goal of an SCG lab is to discover such a clever
procedure.

Architecting Socio-Technical Ecosystems
This area has been studied by James Herbsleb and the Center
on Architecting Socio-Technical Ecosystems (COASTE) at
CMU http://www.coaste.org/. A socio-technical ecosystem
supports straightforward integration of contributions from
many participants and allows easy configuration.

SCG has this property and provides a specific architecture
for building knowledge bases in (formal) sciences. Collab-
oration between scholars is achieved through the scientific
discourse which exchanges instances and solutions. The struc-
ture of those instances and solutions gives hints about the so-
lution approach. An interesting question is why this indirect
communication approach works so well.

Online Judges
An online judge is an online system to test programs in pro-
gramming contests. A recent entry is [19] where private in-
puts are used to test the programs. [21] includes an online
judge capability but where the inputs are provided by com-
petitors. This dynamic benchmark capability is also express-
ible with SCG: The claims say that for a given program that
all inputs create the correct output. A refutation is an input
which creates the wrong result.

Educational Games
SCG can be used as an educational game. One way to create
adaptivity for learning is to create an avatar that poses grad-
ually harder claims and instances. Another way is to pair the
learner with another learner who is stronger. [2] uses con-
cept maps to guide the learning. Concept maps are impor-
tant during lab design: they describe the concepts that need
to be mastered by the students for succeeding in the game.

Origins of the Scientific Community Game
A preliminary definition of SCG was given in a keynote pa-
per [14]. [12] gives further information on the Scientific
Community Game.

The original motivation for SCG came from the two papers
with Ernst Specker: [15] and the follow-on paper [16].

Renaissance competitions: the public problem solving duel
between Fior and Tartaglia, about 1535, can easily be ex-
pressed with the SCG protocol language.

SUMMARY AND CONCLUSIONS
SCG provides a simple interface to a scientific community
that uses the Scientific Method. SCG provides for effective
customization of the generic scientific machinery by using
lab definitions. Since SCG models a scientific community
it is widely applicable and deserves a central place in the
world’s cyberinfrastructure.

REFERENCES

7



1. A. Abdelmeged and K. J. Lieberherr. SCG Court:
Generator of teaching/innovation labs. Website, 2011.
http://sourceforge.net/p/generic-scg/
code-0/110/tree/GenericSCG/ .

2. E. Andersen. Optimizing adaptivity in educational
games. In Proceedings of the International Conference
on the Foundations of Digital Games, FDG ’12, pages
279–281, New York, NY, USA, 2012. ACM.

3. E. Andersen, E. O’Rourke, Y.-E. Liu, R. Snider,
J. Lowdermilk, D. Truong, S. Cooper, and Z. Popovic.
The impact of tutorials on games of varying
complexity. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’12,
pages 59–68, New York, NY, USA, 2012. ACM.

4. J. Attenberg, P. Ipeirotis, and F. Provost. Beat the
machine: Challenging workers to find the unknown
unknowns. In Workshops at the Twenty-Fifth AAAI
Conference on Artificial Intelligence, 2011.

5. A. Bernstein, M. Klein, and T. W. Malone.
Programming the global brain. Commun. ACM,
55(5):41–43, May 2012.

6. S. Cooper, A. Treuille, J. Barbero, A. Leaver-Fay,
K. Tuite, F. Khatib, A. C. Snyder, M. Beenen,
D. Salesin, D. Baker, and Z. Popović. The challenge of
designing scientific discovery games. In Proceedings of
the Fifth International Conference on the Foundations
of Digital Games, FDG ’10, pages 40–47, New York,
NY, USA, 2010. ACM.

7. W. Hodges. Logic and games. In E. N. Zalta, editor,
The Stanford Encyclopedia of Philosophy. Spring 2009
edition, 2009.

8. A. Jaffe, A. Miller, E. Andersen, Y.-E. Liu, A. Karlin,
and Z. Popovic. Evaluating competitive game balance
with restricted play, 2012.

9. L. Keiff. Dialogical logic. In E. N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Summer 2011
edition, 2011.

10. J. Kleinberg and E. Tardos. Algorithm Design.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2005.

11. K. Leyton-Brown and Y. Shoham. Essentials of game
theory: A concise multidisciplinary introduction.
Synthesis Lectures on Artificial Intelligence and
Machine Learning, 2(1):1–88, 2008.

12. K. Lieberherr. The Scientific Community Game.
Website, 2009.
http://www.ccs.neu.edu/home/lieber/
evergreen/specker/scg-home.html.

13. K. J. Lieberherr. Scientific Community Game Lab
Designer Guide. Website, 2011. http://www.ccs.
neu.edu/home/lieber/courses/
se-courses/cs5500/sp11/projects/
playground-designer-user-guide.html.

14. K. J. Lieberherr, A. Abdelmeged, and B. Chadwick.
The Specker Challenge Game for Education and
Innovation in Constructive Domains. In Keynote paper
at Bionetics 2010, Cambridge, MA, and CCIS
Technical Report NU-CCIS-2010-19, December 2010.
http://www.ccs.neu.edu/home/lieber/
evergreen/specker/paper/
bionetics-2010.pdf .

15. K. J. Lieberherr and E. Specker. Complexity of Partial
Satisfaction. Journal of the ACM, 28(2):411–421, 1981.
http://www.ccs.neu.edu/home/lieber/
p-optimal/JACM1981.pdf .

16. K. J. Lieberherr and E. Specker. Complexity of Partial
Satisfaction II. Elemente der Mathematik,
67(3):134–150, 2012. http://www.ccs.neu.
edu/home/lieber/p-optimal/
partial-sat-II/Partial-SAT2.pdf.

17. J. Linderoth. Why gamers don’t learn more: An
ecological approach to games as learning
environments. In L. Petri, T. A. Mette, V. Harko, and
W. Annika, editors, Proceedings of DiGRA Nordic
2010: Experiencing Games: Games, Play, and Players,
Stockholm, January 2010. University of Stockholm.

18. M. Marion. Why Play Logical Games. Website, 2009.
http://www.philomath.uqam.ca/doc/
LogicalGames.pdf.

19. J. Petit, O. Giménez, and S. Roura. Jutge.org: an
educational programming judge. In Proceedings of the
43rd ACM technical symposium on Computer Science
Education, SIGCSE ’12, pages 445–450, New York,
NY, USA, 2012. ACM.

20. T. Tero. Independence friendly logic. In E. N. Zalta,
editor, The Stanford Encyclopedia of Philosophy.
Summer 2011 edition, 2011.

21. TopCoder. The TopCoder Community. Website, 2009.
http://www.topcoder.com/.

8

 http://sourceforge.net/p/generic-scg/code-0/110/tree/GenericSCG/ 
 http://sourceforge.net/p/generic-scg/code-0/110/tree/GenericSCG/ 
http://www.ccs.neu.edu/home/lieber/evergreen/specker/scg-home.html
http://www.ccs.neu.edu/home/lieber/evergreen/specker/scg-home.html
 http://www.ccs.neu.edu/home/lieber/courses/se-courses/cs5500/sp11/projects/playground-designer-user-guide.html 
 http://www.ccs.neu.edu/home/lieber/courses/se-courses/cs5500/sp11/projects/playground-designer-user-guide.html 
 http://www.ccs.neu.edu/home/lieber/courses/se-courses/cs5500/sp11/projects/playground-designer-user-guide.html 
 http://www.ccs.neu.edu/home/lieber/courses/se-courses/cs5500/sp11/projects/playground-designer-user-guide.html 
http://www.ccs.neu.edu/home/lieber/evergreen/specker/paper/bionetics-2010.pdf
http://www.ccs.neu.edu/home/lieber/evergreen/specker/paper/bionetics-2010.pdf
http://www.ccs.neu.edu/home/lieber/evergreen/specker/paper/bionetics-2010.pdf
http://www.ccs.neu.edu/home/lieber/p-optimal/JACM1981.pdf
http://www.ccs.neu.edu/home/lieber/p-optimal/JACM1981.pdf
http://www.ccs.neu.edu/home/lieber/p-optimal/partial-sat-II/Partial-SAT2.pdf
http://www.ccs.neu.edu/home/lieber/p-optimal/partial-sat-II/Partial-SAT2.pdf
http://www.ccs.neu.edu/home/lieber/p-optimal/partial-sat-II/Partial-SAT2.pdf
 http://www.philomath.uqam.ca/doc/LogicalGames.pdf 
 http://www.philomath.uqam.ca/doc/LogicalGames.pdf 
 http://www.topcoder.com/ 

	Introduction
	SCG users

	Binary Game Definition
	Instance and Solution
	Claim
	Refutation protocol
	Rules

	Labs
	Failure of bivalence: imperfect information
	Open publication
	Scholar role

	Competitions
	Open publication
	Timing

	Example
	Worst-case input lab

	Properties
	Egalitarian
	Convergence
	Equilibria
	Social production

	Experience with the Scientific Community Game
	Software Development
	Algorithms

	Scientific Community
	Related Work
	Crowd Sourcing and Human Computation
	Logic and Imperfect Information Games
	Foundations of Digital Games
	Architecting Socio-Technical Ecosystems
	Online Judges
	Educational Games
	Origins of the Scientific Community Game

	Summary and Conclusions
	REFERENCES 

