
FSCP: A Platform for Crowdsourcing Formal Science

Ahmed Abdelmeged
Northeastern University

mohsen@ccs.neu.com

Karl Lieberherr
Northeastern University
lieber@ccs.neu.edu

ABSTRACT
We present the Formal Science Crowdsourcing Platform (FSCP).
FSCP represents claims as interpreted predicate logic formulas.
FSCP-based crowdsourcing systems focus a crowd of scholars on
examining a family of claims to separate the true claims from false
ones. Scholars examine a claim through participating in a substan-
tiation game. Substantiation games are built on top of Hintikka’s
Game Theoretical Semantics (GTS). Furthermore, FSCP collects
the defense and attack strategies on claims.

We also present an approach to evaluate scholars that we believe
is new. We also present two approaches to estimate the truth likeli-
hood of claims. We report on our experience with using an earlier
version of FSCP in class.

Keywords
Crowdsourcing, Human computation, STEM innovation and ed-
ucation, epistemology, dialogic games, Karl Popper, mechanism
design, social welfare, logic, defense strategies, games and quanti-
fiers, virtual communities.

1. INTRODUCTION
Crowdsourcing contests have received a lot of attention in recent

years. A crowdsourcing system is a generic system that enlists a
crowd of users to help solve a problem defined by the system own-
ers [11].

This paper presents the Formal Science Crowdsourcing Platform
(FSCP), a highly configurable platform for constructing crowd-
sourcing systems for formal scientific knowledge. FSCP represents
formal scientific knowledge as a set of claims. A claim is a pred-
icate logic formula where all nonlogical symbols (i.e. constants,
functions and predicates) are interpreted in a particular domain.
Logical connectives are interpreted using the Game Theoretic Se-
mantics (GTS) of Hintikka to yield two-person, zero-sum games,
called refutation games (a.k.a semantical games). The two players
are called the verifier and the falsifier. The existence of a winning
strategy for the verifier means that the formula is true, the existence
of a winning strategy for the falsifier means that the game is false.

To be submitted for review to the ACM Web Science 2013 Conference in
Paris, May 2-4. 10 pages limit. Due Feb. 1, 2013

In FSCP, owners specialize the platform by creating labs. A lab is
a crowdsourcing system that focuses a crowd of scholars on exam-
ining a family of claims to separate the true claims from false ones.
Claim families are constructed by partially interpreting nonlogi-
cal symbols of a predicate logic formulas in a particular domain.
Individual claims are obtained by completing the interpretation in
the same domain. Scholars contribute to the lab by participating
in refutation games that are syntactically derived from claims. By
doing so, scholars provide evidence to the truth likelihood of indi-
vidual claims in the lab. Furthermore, playing those games helps
building the knowledge and intuition of individual scholars regard-
ing the critical constructions of examples and counter examples
embedded in the current winning strategies. The FSCP evaluates
the performance of individual scholars as well as the truth like-
lihood of individual claims based on the history of all refutation
games played in a particular lab.

1.1 FSCP Applications
FSCP has several applications, including:

1. problem solving and research in formal science. Funding
agencies, such as NSF, define, in collaboration with inter-
ested researchers, labs that define the problem to be solved.
Through playing the game, NSF builds a knowledge base of
refutable claims and refutation attempts. Furthermore, the
self-evaluating nature of FSCP will fairly evaluate the con-
tributions of scholars and the collaborative nature will lead
to productive team work. Newcomers can contribute by par-
ticipating in a long-running lab (dozens of years).

2. teaching (traditional, online and massively open online) courses
in STEM areas. To teach a particular problem solving skill,
we design a lab for the problem. Playing FSCP challenge
the students’ self-image about their ability to solve the lab’s
problem. Thus, encouraging students to acquire the desired
problem solving skill. The self-evaluating nature of FSCP
helps lifting much of the evaluation from the teacher and al-
lows stronger students to give precisely targeted feedback to
weaker students.

3. software development for computational problems. A com-
putational task is defined by a lab where the role of a scholar
is played by an avatar (software). Competitions are held, and
the winning avatars will contain the best (within this group
of competing avatars) algorithms for the computational task.

1.2 Organization
This paper is organized as follows: In section 2 we present FSCP

while in section 3 we present a novel approach for evaluating schol-
ars and an approach for computing the truth likelihood of claims. In

1

section 5, we present our experience with SCG, a very close prede-
cessor of FSCP. In section 6, we present some of the related work.
Section 7 concludes the paper.

2. THE FSCP PLATFORM
A lab in FSCP consists of a claim family and a number of schol-

ars. We begin by describing how claim families are specified in
FSCP. Then we describe how refutation games and substantiation
games are derived from claim families. Then we describe how
scholars interact with the FSCP. Finally, we describe few approaches
to derive scholar interactions in a lab.

2.1 Claim Families
A claim family consists of a logical formula and a model that

provides an interpretation of all predicates mentioned in the for-
mula. A claim consists of an assignment of values from the model
to all free variables in the formula. Figure 1 shows theClaimFamily
and Claim structures.

f i n a l c l a s s ClaimFamily {
f i n a l Formula f ;
f i n a l Model m;

f i n a l c l a s s Claim {
f i n a l Assignment g ;
. . .

}
}

Figure 1: ClaimFamily Structure

2.1.1 Formulas
A Formula is either a simple Predicate, a Compound formula,

a Negated formula, or a Quantified formula. A Compound for-
mula consists of two subformulas, left and right and a Connective
which is either an And or an Or connective. A Quantified formula
consists of a Quantification and a subformula. A Quantification
consists of a Quantifier, two identifiers representing the quanti-
fied variable name and type, and an optional Predicate further re-
stricting the values the quantified variable can take. A Quantifier
can be either a ForAll, an Exists, or Free which we use to de-
clare free variables in a formula. Figure 2 shows the grammar for a
formula expressed using the class dictionary notation [7].

2.1.2 Models
Models are used to interpret the types and predicates in a given

formula. Figure 3 shows the Model interface. It has three methods.
wellFormedTypeName checks whether a given type name is sup-
ported by the model. wellFormed checks whether a given value is a
well formed value of a given type in the model. executePredicate
executes a predicate provided by the model.

An example of a model is the SaddlePointModel shown in Fig-
ure 4. SaddlePointModel provides one type z1 which is a floating
point number between 0 and 1 inclusive. wellFormedTypeName
returns true only for “z1” . wellFormed returns true for well formed
values of type z1. The code for executePrediate supports a single
predicate p(z1 x,z1 y,z1 q). This model can be used to interpret
for the formula (free q in z1) (forall x in z1) (exists y in z1)
p(x,y,q).

Formula = P r e d i c a t e | Compound | Negated |
Q u a n t i f i e d .

P r e d i c a t e = <name> i d e n t " (" < a rgs >
CommaList (i d e n t) ") " .

Compound = " (" < l e f t > Formula < c o n n e c t i v e >
C o n n e c t i v e < r i g h t > Formula ") " .

C o n n e c t i v e = And | Or .
And = " and " .
Or = " o r " .
Negated = " (" " n o t " < formula > Formula ") " .

Q u a n t i f i e d = < q u a n t i f i c a t i o n > Q u a n t i f i c a t i o n
< formula > Formula .

Q u a n t i f i c a t i o n = " (" < q u a n t i f i e r > Q u a n t i f i e r
<var > i d e n t " i n " < type > i d e n t <

o p t i o n a l Q u a n t i f i c a t i o n P r e d i c a t e > Opt ion (
Q u a n t i f i c a t i o n P r e d i c a t e) ") " .

Q u a n t i f i c a t i o n P r e d i c a t e = " where " <pred >
P r e d i c a t e .

Q u a n t i f i e r = F o r A l l | E x i s t s | F r ee .
F o r A l l = " f o r a l l " .
E x i s t s = " e x i s t s " .
F ree = " f r e e " .

Figure 2: Formula Language

i n t e r f a c e Model {
boolean e x e c u t e P r e d i c a t e (Ass ignment g ,

P r e d i c a t e p red) ;
boolean wellFormed (S t r i n g va lue , S t r i n g

t y p e) ;
boolean wellFormedTypeName (S t r i n g t y p e) ;

}

Figure 3: Model Structure

2

c l a s s S a d d l e P o i n t M o d e l implements Model{
p u b l i c boolean wellFormedTypeName (S t r i n g

t y p e) {
re turn t y p e . e q u a l s (" z1 ") ;

}
p u b l i c boolean wellFormed (S t r i n g va lue ,

S t r i n g t y p e) {
t r y {

f l o a t v = F l o a t . p a r s e F l o a t (v a l u e) ;
re turn v>=0 && v <=1;

} catch (E x c e p t i o n e) {
re turn f a l s e ;

}
}
boolean e x e c u t e P r e d i c a t e (Ass ignment g ,

P r e d i c a t e p red) {
i f (p r ed . getName () . getName () . e q u a l s (" p "))

{

f l o a t x = . . .
f l o a t y = . . .
f l o a t q = . . .

re turn (x∗y + (1−x) ∗(1−y∗y)) >= q ;

} e l s e {
throw new Run t imeExcep t ion (" Unknown

p r e d i c a t e "+ p red . t o S t r i n g ()) ;
}

}
}

Figure 4: Sample Model

2.2 Scholars
The Scholar interface describes the inputs that FSCP collects

from the crowd. The method decide is used to collect a decision
from a scholar regarding whether (s)he wants to verify or falsify the
given formula under the given model and assignment. Typically, a
scholar would want to be the verifier of claims (s)he believes are
true and be the falsifier of claims (s)he believes false. The method
choose is used to collect an object from the given model for the
quantification variable. Finally, the method propose is used to col-
lect an assignment for free variables in the given formula other than
the excluded assignments. It is possible to implement the Scholar
interface such that it forwards requests to human scholars via email
or a web interface for example. It is also possible to provide a self
sufficient implementation that does not rely on human scholars. We
call such Scholar implementations, avatars.

p u b l i c i n t e r f a c e S c h o l a r {
p u b l i c enum Role {

VERIFIER ,
FALSIFIER

}
S t r i n g getName () ;
Role d e c i d e (Formula f , Model m, Ass ignment

g) ;
S t r i n g choose (Q u a n t i f i e d f , Model m,

Ass ignment g) ;
Ass ignment p r o p o s e (Formula f , Model m,

C o l l e c t i o n <Assignment > e x c l u d e d) ;
}

Figure 5: Scholar Interface

2.3 Scholar Interaction
In FSCP, the interaction between scholars is centered around

claims. Two scholars can interact by participating in a substanti-
ation game. Substantiation games build on refutation games which
we start explaining before we move to substantiation a refutation
game or a substantiation game.

2.3.1 Refutation Games
Two scholars taking opposite positions on a specific claim c can

participate in a refutation game denoted as c.RG(verifier, falsifier)
where verifier is the scholar trying to support c and falsifier is the
scholar disputing c.

Given a claim c and two scholars, a verifier ver and a falsifier
fal. Let φ be the formula and M be the model of c’s enclosing
ClaimFamily. Let g be c’s assignment to the free variables in φ.
We define the refutation game of ver and fal centered around c
c.RG(ver, fal) to be G(φ,M, g, ver, fal) which is a two-player,
zero-sum game defined as follows:

1. If φ = R(t1, ..., tn) and M, g |= R(t1, ..., tn), ver wins;
otherwise fal wins.

2. If φ =!ψ, the rest of the game is as in G(ψ,M, g, fal, ver).

3. If φ = (ψ ∧ χ), fal chooses θ ∈ {ψ, χ} and the rest of the
game is as in G(θ,M, g, ver, fal).

4. If φ = (ψ ∨ χ), ver chooses θ ∈ {ψ, χ} and the rest of the
game is as in G(θ,M, g, ver, fal).

3

s1 s2 ref game tested
v v c.RG(s1, s2) s1
v v c.RG(s2, s1) s2
f f c.RG(s1, s2) s2
f f c.RG(s2, s1) s1

Table 1: Scholar Under Test

5. If φ = (∀x : p(x))ψ, fal chooses an element a from M
such that p(a) holds, and the rest of the game is as in
G(ψ,M, g[x/a], ver, fal). If fal fails to do so, it loses.

6. If φ = (∃x : p(x))ψ, ver chooses an element a from M
such that p(a) holds, and the rest of the game is as in
G(ψ,M, g[x/a], ver, fal). If ver fails to do so, it loses.

The definition of G is adopted from the Game Theoretic Se-
mantics (GTS) of Hintikka [21], [34]. We slightly modified Hin-
tikka’s original definition to handle the quantification predicate in
our language. The result of a refutation game consists of a record
RGHistory of the two scholars verifier and falsifier, the winner,
the assignment g, and a timestamp.

2.3.2 Substantiation Games
FSCP further extend the potential for interaction between schol-

ars by allowing scholars to participate in test games even if they are
taking the same positions on a specific claim c. Two scholars s1
and s2 taking two, not necessarily contradictory, positions r1 and
r2 on claim c can participate in a substantiation game c.SG(s1,
r1, s2, r2). If the two scholars hold contradictory positions on c,
the substantiation game reduces to a refutation game. Otherwise,
the substantiation game reduces to two refutation games c.RG(s1,
s2) and c.RG(s2, s1) in which the two scholars teach each other.
Given the two positions and the game, Table 1 can be used to iden-
tify the scholar being tested. It is important to identify the scholar
under test for scholar evaluation purposes. The result of a sub-
stantiation game is a list of either one RGHistory record or two
TestHistory records. A TestHistory extends RGHistory records
with a underTest field.

2.4 Labs
An FSCP lab is a crowdsourcing system that consists of a

ClaimFamily and a number of Scholars. Furthermore, based on
its goal, a lab also provides:

1. system wide interaction mechanisms for scholars,

2. an evaluation mechanism for its scholars,

3. a mechanism for combining scholars’ contributions.

We discuss system wide interaction mechanisms below and dis-
cuss scholar evaluation and combination of scholar contributions in
Section 3.

It is possible to build several system wide interaction mecha-
nisms on top of substantiation games and the Scholar interface.
We give here three examples:

2.4.1 Battleship
Scholars independently propose claims to the system. When two

scholars propose the same claim, the system collects their position
and then engages them in a substantiation game.

2.4.2 Guided Search
The system chooses a claim and two scholars, then it collects

their positions on that claim and engages them in a substantiation
game. The system repeats until it reaches its goal. For example,
suppose that we are building a crowdsourcing system to find the
critical point of some free variable (from an ordered domain) in
a formula. This is the value such that all claims above it are, for
example, false. The system can effectively perform a binary search
on the domain of that free variable. At each step in the binary
search, the system creates a claim and chooses two scholars and
engage them in a substantiation game.

2.4.3 Scientific Community Game
The Scientific Community Game (SCG) is a precursor to FSCP.

The focus of SCG was educational. In SCG, scholars play a soccer-
like tournament of binary matches. A match consists of an even
number of rounds where scholars participate in binary games with
alternating roles. SCG binary games are a precursor to substantia-
tion games. In an SCG binary game, a scholar called the proponent
proposes a claim. By doing so, the proponent is implicitly tak-
ing the verifier position on the claim it proposed. Then the other
scholar, called the opponent, is asked to decide whether it agrees
or disputes the claim. In either case, both scholars participated in a
refutation game.

Eventually, a scholar ranking is produced as well as a trace of all
refutation games. The intent was that scholars learn from the traces
and the ranking is used to motivate them.

3. SCHOLAR EVALUATION
In a platform like FSCP, there are many qualities that we can

measure and evaluate scholars based on. For example, we can mea-
sure the scholar’s activity by counting the number of games it had
played. We can measure the scholar’s originality by counting the
number of breakthroughs such as being the first to propose and ver-
ify a particular claim or being the first to falsify a claim. We can
measure the scholar’s learning during a particular period of time by
comparing its rank at the beginning and at the end of that period.

Since the purpose of FSCP labs is to accurately classify claims.
We are interested in measuring scholar’s reliability which we define
as scholar’s likelihood of deciding to be the verifier of true claims
and the falsifier of false claims. One approach to measure relia-
bility is through testing the scholar’s performance against a gold
standard.

Instead, we measure scholar’s strength which we define as the
scholar’s ability to push its opponent into self-contradiction. In
Table 2, column “cont." provides an extensive list of the situations
in which a scholar becomes self-contradictory. These situations can
be summarized as losing a refutation game that is not played for
testing as well as losing a refutation game while being the scholar
under test. In both situations, the scholar contradicts its original
position on the claim.

We prefer to measure strength instead of reliability because:

• strength is highly correlated to reliability. In order to increase
their strength, scholars need to push their opponents into self-
contradiction. To do so under the zero-sum nature of the
game, scholars need to avoid falling intro self-contradiction
themselves. To do so, scholars need to be reliable because
unreliable scholars risk falling into self-contradictions. Es-
pecially, in the presence of other strong scholars. This can be
seen from Table 2.

• It is free to accurately measure strength while it can be ex-
pensive to measure reliability. To directly measure reliability,

4

s1 s2 ref game tested winner cont. s1 s2
v v c.RG(s1, s2) s1 s1 - 0 0
v v c.RG(s1, s2) s1 s2 s1 0 1
v v c.RG(s2, s1) s2 s1 s2 1 0
v v c.RG(s2, s1) s2 s2 - 0 0
f f c.RG(s1, s2) s2 s1 s2 1 0
f f c.RG(s1, s2) s2 s2 - 0 0
f f c.RG(s2, s1) s1 s1 - 0 0
f f c.RG(s2, s1) s1 s2 s1 0 1
v f c.RG(s1, s2) - s1 s2 1 0
v f c.RG(s1, s2) - s2 s1 0 1
f v c.RG(s2, s1) - s1 s2 1 0
f v c.RG(s2, s1) - s2 s1 0 1

Table 2: Payoff Matrix

we need to either higher experts to provide a gold standard or
have some claims redundantly examined by several scholars.

We designed the payoff matrix so that it only rewards a scholar
with a point when the scholar successfully pushes its opponent into
self-contradiction. This can be seen from Table 2.

4. MEASURING SCHOLAR STRENGTH
We present an algorithm to measure the strength of scholars that

is independent of the order of the games based on the payoffs that
scholars received. The function Payoff(Si, Sj) returns the num-
ber of times scholar Si has pushed scholar Sj into self-contradiction.
Str(−1)(Si) = 1

Wins(k)(Si) =
P
Payoff(Si, Sj) ∗ Str(k−1)(Sj)

Losses(k)(Si) =
P
Payoff(Sj , Si) ∗ (1− Str(k−1)(Sj))

Str(k)(Si) = Wins(k)(Si)/(Wins(k)(Si) + Losses(k)(Si))

The algorithm starts with an estimate of 1 for the strength of all
scholars. Then it computes the weighted wins and losses for each
player based on the payoffs and the strength of their opponents.
Then it computes strength as the fraction of weighted wins divided
by the sum of weighted wins and losses. The last two steps are
iterated to a fixpoint.

The proposed algorithm has the following attractive properties:

• A scholar that never looses will have a strength of 1.

• A scholar that looses at least a single game, will have his/her
strength hanging on the strength of other scholars.

• Loosing a game against a scholar with low strength will pro-
duce a large -ve impact, while loosing a game against a scholar
with a high strength will have a small -ve impact.

• (The dual) Winning a game against a scholar with high strength
will produce a large +ve impact, while winning a game against
a scholar with low strength will have a small +ve impact.

• Order independence.

4.1 Truth Likelihood of Claims
The basic idea is to accumulate evidence about the truth and

falseness of claims. Scholars provide evidence through picking
positions on claims as well as through winning refutation games.
Scholar strength is used to weigh their evidences.

For each claim c we associate two positive real numbers cT and
cF with it. The higher cT the more likely c is true. The higher cF

the more likely c is false. If cT > cF then

L(c) = (cT − cF)/cT

is the likelihood that c is true. And 1−L(c) the likelihood that c is
false. If cF ≥ cT then

L(c) = (cF − cT)/cF

is the likelihood that c is false. and 1 − L(c) the likelihood that c
is true.

At the beginning of a substantiation game for claim c, we adjust
cT and cF as follows: For each scholar s taking the position of
a verifier of c we add str(s) to cT . Similarly, for each scholar s
taking the position of a falsifier of c we add str(s) to cF .

After a refutation game in which the verifier scholar ver loses,
we add str(ver) to cF . Similarly, after a refutation game in which
the falsifier scholar fal loses, we add str(fal) to cT . The intuition
is that the losing player must have done its best to avoid the loss
while the winning scholar might not have done its best to win.

5. EXPERIENCE WITH THE SCG
The SCG has evolved since 2007. We have used the SCG in soft-

ware development courses at both the undergraduate and graduate
level and in several algorithm courses. Detailed information about
those courses is available from the second author’s teaching page.

5.1 Software Development
The most successful graduate classes were the ones that devel-

oped and maintained the software for SCG Court [1] as well as
several labs and their avatars to test SCG Court. Developing labs
for avatars has the flavor of defining a virtual world for artificial
creatures. At the same time, the students got detailed knowledge of
some problem domain and how to solve it. A fun lab was the High-
est Safe Rung lab from [19] where the best avatars needed to solve
a constrained search problem using a modified Pascal triangle.

5.2 Algorithms
The most successful course (using [19] as textbook) was in Spring

2012 where the interaction through the SCG encouraged the stu-
dents to solve difficult problems. Almost all homework problems
were defined through labs and the students posted both their ex-
ploratory and reformatory actions on piazza.com. We used a multi
player version of the SCG binary game which created a bit of an
information overload. Sticking to binary games would have been
better but requires splitting the students into pairs. The informal use
of the SCG through Piazza (piazza.com) proved successful. All ac-
tions were expressed in JASON which allowed the students to use
a wide variety of programming languages to implement their algo-
rithms.

The students collaboratively solved several problems such as the
problem of finding the worst-case inputs for the Gale-Shapely al-
gorithm (see the section Example above).

We do not believe that, without the SCG, the students would have
created the same impressive results. The SCG effectively focuses
the scientific discourse on the problem to be solved.

The SCG proved to be adaptive to the skills of the students. A
few good students in a class become effective teachers for the rest
thanks to the SCG mechanism.

6. RELATED WORK

6.1 Crowd Sourcing and Human Computation

5

6.1.1 Dealing with Unreliable Workers
Most crowdsourcing systems must devise schemes to increase

confidence in the worker’s solutions to tasks, typically by assign-
ing each task multiple times [16]. Larger et AL. present a general
model for crowdsourcing tasks. In FSCP, because workers need to
justify their answers in a game against another worker, unreliable
workers will run into many contradictions and get a low rating.
This means that their votes will minimally affect the final result,
the knowledge base of true claims.

[8] is related to FSCP scholar ranking. The algorithm is an ex-
tended Bradley-Terry model called Crowd-BTU. The paper focuses
on finding the quality of annotators in a crowdsourced setting. They
study the exploration-exploitation tradeoff which is also relevant to
FSCP for labeling claims as true or false.

The "Evaluating the Crowd with Confidence" paper [15] has a
title that seems very applicable to FSCP. However, they use a model
which is too simple for FSCP. In particular, in FSCP the errors
depend on task difficulty, and worker errors are not independent of
each other because they play a game.

6.1.2 Rating Systems
We use a rating system for games with wins, losses and draws.

This subject has been studied for a long time and there are many ap-
plications of rating systems. For example, in chess and other sports,
the Elo rating system is used. A good survey and critique of rating
systems is given in [5]. Rating systems are a controversial subject
and there are many algorithms that can be used. TopCoder [33]
uses an Algorithm Competition Rating System to rank the coders.

6.1.3 Combining Worker’s Contributions
In FSCP, we use two approaches to combine scholar contribu-

tions: (1) During the refutation games, the scholars give each other
feedback by trying to drive each other into a contradiction. This
is a collaboration which leads potentially to new ideas and knowl-
edge fusion. (2) In FSCP, scholars vote on the truth or falseness of
claims when deciding to verify or falsify claims. Furthermore, it
is not enough for scholar to just vote but also it is important that
they justify their votes through their actions in refutation games.
We combine the votes with justifications into an overall vote for
whether a claim is true. Related work is [8] and [16] which was
already discussed above.

6.1.4 Competitions
There are several websites that organize competitions. What is

common to many of those competitions? We believe that the FSCP
provides a foundation to websites such as TopCoder.com or kag-
gle.com.

The FSCP makes a specific, but incomplete proposal of a pro-
gramming interface to work with the global brain [6]. What is cur-
rently missing is a payment mechanism for scholars and an algo-
rithm to split workers into pairs based on their background.

The FSCP is a generic version of the “Beat the Machine” ap-
proach for improving the performance of machine learning systems
[4].

Scientific discovery games, such as FoldIt and EteRNA, are vari-
ants of the FSCP. [9] describes the challenges behind developing
scientific discovery games. [3] argues that complex games such as
FoldIt benefit from tutorials. This also applies to the FSCP, but a
big part of the tutorial is reusable across scientific disciplines.

6.1.5 Crowdsourcing complex tasks
[18] describes a general-purpose framework for solving complex

problems through micro-task markets. Engaging in the scientific

dialogs of FSCP could be done through a micro-task market. [28]
proposes a language to define crowdsourcing systems. Our lab def-
inition approach provides a declarative description of what needs
to be crowdsourced.

[20] provides an interesting analysis of several issues relevant
to FSCP: how incorrect responses should affect worker reputations
and how higher reputation leads to better results.

6.2 Logic and Imperfect Information Games
Logic has long promoted the view that finding a proof for a claim

is the same as finding a defense strategy for a claim.
Logical Games [27], [13] have a long history going back to Socrates.

The FSCP is an imperfect information game which builds on Paul
Lorenzen’s dialogical games [17].

6.3 Foundations of Digital Games
A functioning game should be deep, fair and interesting which

requires careful and time-consuming balancing. [14] describes tech-
niques used for balancing that complement the expensive playtest-
ing. This research is relevant to FSCP lab design. For example, if
there is an easy way to refute claims without doing the hard work,
the lab is unbalanced.

6.4 Architecting Socio-Technical Ecosystems
This area has been studied by James Herbsleb and the Center

on Architecting Socio-Technical Ecosystems (COASTE) at CMU
http://www.coaste.org/. A socio-technical ecosystem supports straight-
forward integration of contributions from many participants and al-
lows easy configuration.

The FSCP has this property and provides a specific architecture
for building knowledge bases in (formal) sciences. Collaboration
between scholars is achieved through the scientific discourse im-
plied by the refutation game. The information exchanged gives
hints about how to play the game better next time. An interesting
question is why this indirect communication approach works.

The NSF workshop report [31] discusses socio-technical inno-
vation through future games and virtual worlds. The FSCP is men-
tioned as an approach to make the scientific method in the spirit
of Karl Popper available to CGVW (Computer Games and Virtual
Worlds).

6.5 Online Judges
An online judge is an online system to test programs in program-

ming contests. A recent entry is [29] where private inputs are used
to test the programs. Topcoder.com [33] includes an online judge
capability, but where the inputs are provided by competitors. This
dynamic benchmark capability is also expressible with the FSCP:
The claims say that for a given program, all inputs create the correct
output. A refutation is an input which creates the wrong result.

6.6 Educational Games
The FSCP can be used as an educational game. One way to

create adaptivity for learning is to create an avatar that gradually
poses harder claims and makes the scientific discourse more chal-
lenging. Another way is to pair the learner with another learner who
is stronger. [2] uses concept maps to guide the learning. Concept
maps are important during lab design: they describe the concepts
that need to be mastered by the students for succeeding in the game.

6.7 Formal Sciences and Karl Popper
James Franklin points out in [12] that there are also experiments

in the formal sciences. One of them is the ‘numerical experiment’
which is used when the mathematical model is hard to solve. For

6

example, the Riemann Hypothesis and other conjectures have re-
sisted proof and are studied by collecting numerical evidence by
computer. In the FSCP experiments are performed when the game
associated with a claim is elaborated.

Karl Popper’s work on falsification [30] is the father of non-
deductive methods in science. The FSCP is a way of doing science
on the web according to Karl Popper.

6.8 Scientific Method in CS
Peter Denning defines CS as the science of information processes

and their interactions with the world [10]. The FSCP makes the
scientific method easily accessible by expressing the hypotheses as
claims. Robert Sedgewick in [32] stresses the importance of the sci-
entific method in understanding program behavior. With the FSCP,
we can define labs that explore the fastest practical algorithms for
a specific algorithmic problem.

6.9 Games and Learning
Kevin Zollman studies the proper arrangement of communities

of learners in his dissertation on network epistemology [35]. He
studies the effect of social structure on the reliability of learners.

In the study of learning and games the focus has been on learning
known, but hidden facts. The FSCP is about learning unknown
facts, namely new constructions.

6.10 SCG
SCG [24], [22], [23] is a close predecessor of FSCP. The orig-

inal motivation for the SCG came from the two papers with Ernst
Specker: [25] and the follow-on paper [26].

The key difference between FSCP and SCG is that SCG was tar-
geted at evaluation of the scholars while FSCP is targeted at crowd-
sourcing true claims. FSCP is cleaner: there is a simple concept of
self-contradiction and there is no longer a need to have the concept
of strengthening a claim explicitly.

7. CONCLUSION AND FUTURE WORK
We presented FSCP, a crowdsourcing platform for formal sci-

ence. FSCP provides a simple interface to a community that uses
the (Popperian) Scientific Method.

We want to extend our model so that we can make claims about
claims. For example, we want to have a "macro" for a claim to be
optimal. We want to leverage claim relationships across labs and
work with lab reductions as a useful problem solving tool.

We see a significant potential in putting the refutation-based sci-
entific method into the cyberinfrastructure and make it widely avail-
able. We plan to, iteratively, improve our current implementation
based on user feedback.

We see an interesting opportunity to mine the game histories and
make suggestions to the scholars how to improve their skills to pro-
pose and defend claims. If this approach is successful, FSCP will
make contributions to computer-assisted problem solving.

8. ACKNOWLEDGMENTS
We would like to thank Magy Seif El-Nasr, Casper Harteveld,

Thomas Wahl and Tugba Koc for their input to the paper.

9. REFERENCES
[1] A. Abdelmeged and K. J. Lieberherr. SCG Court: Generator

of teaching/innovation labs on the web. Website, 2011.
http://sourceforge.net/p/generic-scg/code-0/110/
tree/GenericSCG/ .

[2] E. Andersen. Optimizing adaptivity in educational games. In
Proceedings of the International Conference on the
Foundations of Digital Games, FDG ’12, pages 279–281,
New York, NY, USA, 2012. ACM.

[3] E. Andersen, E. O’Rourke, Y.-E. Liu, R. Snider,
J. Lowdermilk, D. Truong, S. Cooper, and Z. Popovic. The
impact of tutorials on games of varying complexity. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’12, pages 59–68, New York, NY,
USA, 2012. ACM.

[4] J. Attenberg, P. Ipeirotis, and F. Provost. Beat the machine:
Challenging workers to find the unknown unknowns. In
Workshops at the Twenty-Fifth AAAI Conference on Artificial
Intelligence, 2011.

[5] J. Beasley. The Mathematics of Games. Dover Books on
Mathematics. Dover Publications, 2006.

[6] A. Bernstein, M. Klein, and T. W. Malone. Programming the
global brain. Commun. ACM, 55(5):41–43, May 2012.

[7] B. Chadwick. DemeterF: The functional adaptive
programming library. Website, 2008.
http://www.ccs.neu.edu/home/chadwick/demeterf/.

[8] X. Chen, P. N. Bennett, K. Collins-Thompson, and
E. Horvitz. Pairwise ranking aggregation in a crowdsourced
setting. In WSDM, Rome, Italy, 2013.

[9] S. Cooper, A. Treuille, J. Barbero, A. Leaver-Fay, K. Tuite,
F. Khatib, A. C. Snyder, M. Beenen, D. Salesin, D. Baker,
and Z. Popović. The challenge of designing scientific
discovery games. In Proceedings of the Fifth International
Conference on the Foundations of Digital Games, FDG ’10,
pages 40–47, New York, NY, USA, 2010. ACM.

[10] P. J. Denning. Is computer science science? Commun. ACM,
48(4):27–31, Apr. 2005.

[11] A. Doan, R. Ramakrishnan, and A. Y. Halevy.
Crowdsourcing systems on the world-wide web. Commun.
ACM, 54(4):86–96, Apr. 2011.

[12] J. Franklin. The formal sciences discover the philosophers’
stone. Studies in History and Philosophy of Science,
25(4):513–533, 1994.

[13] W. Hodges. Logic and games. In E. N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Spring 2009 edition,
2009.

[14] A. Jaffe, A. Miller, E. Andersen, Y.-E. Liu, A. Karlin, and
Z. Popovic. Evaluating competitive game balance with
restricted play, 2012.

[15] M. Joglekar, H. Garcia-Molina, and A. Parameswaran.
Evaluating the crowd with confidence. Technical report,
Stanford University.

[16] D. R. Karger, S. Oh, and D. Shah. Iterative learning for
reliable crowdsourcing systems. In J. Shawe-Taylor, R. S.
Zemel, P. L. Bartlett, F. C. N. Pereira, and K. Q. Weinberger,
editors, NIPS, pages 1953–1961, 2011.

[17] L. Keiff. Dialogical logic. In E. N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Summer 2011 edition, 2011.

[18] A. Kittur, B. Smus, S. Khamkar, and R. E. Kraut.
Crowdforge: crowdsourcing complex work. In Proceedings
of the 24th annual ACM symposium on User interface
software and technology, UIST ’11, pages 43–52, New York,
NY, USA, 2011. ACM.

[19] J. Kleinberg and E. Tardos. Algorithm Design.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2005.

7

 http://sourceforge.net/p/generic-scg/code-0/110/tree/GenericSCG/
 http://sourceforge.net/p/generic-scg/code-0/110/tree/GenericSCG/
http://www.ccs.neu.edu/home/chadwick/demeterf/

[20] M. Kosinski, Y. Bachrach, G. Kasneci, J. V. Gael, and
T. Graepel. Crowd iq: measuring the intelligence of
crowdsourcing platforms. In WebSci’12, pages 151–160,
2012.

[21] J. Kulas and J. Hintikka. The Game of Language: Studies in
Game-Theoretical Semantics and Its Applications. Synthese
Language Library. Springer, 1983.

[22] K. Lieberherr. The Scientific Community Game. Website,
2009. http://www.ccs.neu.edu/home/lieber/evergreen/
specker/scg-home.html.

[23] K. J. Lieberherr and A. Abdelmeged. The Scientific
Community Game. In CCIS Technical Report
NU-CCIS-2012-19, October 2012.
http://www.ccs.neu.edu/home/lieber/papers/
SCG-definition/SCG-definition-NU-CCIS-2012.pdf .

[24] K. J. Lieberherr, A. Abdelmeged, and B. Chadwick. The
Specker Challenge Game for Education and Innovation in
Constructive Domains. In Keynote paper at Bionetics 2010,
Cambridge, MA, and CCIS Technical Report
NU-CCIS-2010-19, December 2010.
http://www.ccs.neu.edu/home/lieber/evergreen/
specker/paper/bionetics-2010.pdf .

[25] K. J. Lieberherr and E. Specker. Complexity of Partial
Satisfaction. Journal of the ACM, 28(2):411–421, 1981.

[26] K. J. Lieberherr and E. Specker. Complexity of Partial
Satisfaction II. Elemente der Mathematik, 67(3):134–150,
2012. http://www.ccs.neu.edu/home/lieber/
p-optimal/partial-sat-II/Partial-SAT2.pdf .

[27] M. Marion. Why Play Logical Games. Website, 2009. http:
//www.philomath.uqam.ca/doc/LogicalGames.pdf .

[28] P. Minder and A. Bernstein. Crowdlang - first steps towards
programmable human computers for general computation. In
Proceedings of the 3rd Human Computation Workshop,
AAAI Workshops, pages 103–108. AAAI Press, 2011.

[29] J. Petit, O. Giménez, and S. Roura. Jutge.org: an educational
programming judge. In Proceedings of the 43rd ACM
technical symposium on Computer Science Education,
SIGCSE ’12, pages 445–450, New York, NY, USA, 2012.
ACM.

[30] K. R. Popper. Conjectures and refutations: the growth of
scientific knowledge, by Karl R. Popper. Routledge, London,
1969.

[31] W. Scacchi. The Future of Research in Computer Games and
Virtual Worlds: Workshop Report. Technical Report
UCI-ISR-12-8, 2012. http:
//www.isr.uci.edu/tech_reports/UCI-ISR-12-8.pdf .

[32] R. Sedgewick. The Role of the Scientific Method in
Programming. Website, 2010. http:
//www.cs.princeton.edu/~rs/talks/ScienceCS.pdf .

[33] TopCoder. The TopCoder Community. Website, 2009.
http://www.topcoder.com/.

[34] T. Tulenheimo. Independence friendly logic. In E. N. Zalta,
editor, The Stanford Encyclopedia of Philosophy. Summer
2009 edition, 2009.

[35] K. J. S. Zollman. The communication structure of epistemic
communities. Philosophy of Science, 74(5):574–587, 2007.

8

http://www.ccs.neu.edu/home/lieber/evergreen/specker/scg-home.html
http://www.ccs.neu.edu/home/lieber/evergreen/specker/scg-home.html
 http://www.ccs.neu.edu/home/lieber/papers/SCG-definition/SCG-definition-NU-CCIS-2012.pdf
 http://www.ccs.neu.edu/home/lieber/papers/SCG-definition/SCG-definition-NU-CCIS-2012.pdf
http://www.ccs.neu.edu/home/lieber/evergreen/specker/paper/bionetics-2010.pdf
http://www.ccs.neu.edu/home/lieber/evergreen/specker/paper/bionetics-2010.pdf
http://www.ccs.neu.edu/home/lieber/p-optimal/partial-sat-II/Partial-SAT2.pdf
http://www.ccs.neu.edu/home/lieber/p-optimal/partial-sat-II/Partial-SAT2.pdf
 http://www.philomath.uqam.ca/doc/LogicalGames.pdf
 http://www.philomath.uqam.ca/doc/LogicalGames.pdf
 http://www.isr.uci.edu/tech_reports/UCI-ISR-12-8.pdf
 http://www.isr.uci.edu/tech_reports/UCI-ISR-12-8.pdf
 http://www.cs.princeton.edu/~rs/talks/ScienceCS.pdf
 http://www.cs.princeton.edu/~rs/talks/ScienceCS.pdf
 http://www.topcoder.com/

	1 Introduction
	1.1 FSCP Applications
	1.2 Organization

	2 The FSCP Platform
	2.1 Claim Families
	2.1.1 Formulas
	2.1.2 Models

	2.2 Scholars
	2.3 Scholar Interaction
	2.3.1 Refutation Games
	2.3.2 Substantiation Games

	2.4 Labs
	2.4.1 Battleship
	2.4.2 Guided Search
	2.4.3 Scientific Community Game

	3 Scholar Evaluation
	4 Measuring Scholar Strength
	4.1 Truth Likelihood of Claims

	5 Experience with the SCG
	5.1 Software Development
	5.2 Algorithms

	6 Related Work
	6.1 Crowd Sourcing and Human Computation
	6.1.1 Dealing with Unreliable Workers
	6.1.2 Rating Systems
	6.1.3 Combining Worker's Contributions
	6.1.4 Competitions
	6.1.5 Crowdsourcing complex tasks

	6.2 Logic and Imperfect Information Games
	6.3 Foundations of Digital Games
	6.4 Architecting Socio-Technical Ecosystems
	6.5 Online Judges
	6.6 Educational Games
	6.7 Formal Sciences and Karl Popper
	6.8 Scientific Method in CS
	6.9 Games and Learning
	6.10 SCG

	7 Conclusion and Future Work
	8 Acknowledgments
	9 References

