
SCG Court: A Crowdsourcing Platform for Scientific
Innovation using Unreliable Scientists

Ahmed Abdelmeged
Northeastern University

mohsen@ccs.neu.com

Karl Lieberherr
Northeastern University
lieber@ccs.neu.edu

ABSTRACT
We apply the Scientific Community Game (SCG, formerly called
the Specker Challenge Game) to crowdsourcing scientific innova-
tion. SCG is the first generic model of the Popperian Scientific
Method on the web and has several applications to improve crowd-
sourcing on the web.

We use the SCG Design Pattern(SGDP) to study variations of
SCG that are useful for learning.

SCG is designed to be both educational for scholars, and to solve
problems that the students don’t know how to solve yet.

Broaden paper: Focus on Call for Papers item: Knowledge, edu-
cation, and scholarship on and through the web.

1/31/2013

Keywords
Human computation, STEM innovation and education, epistemol-
ogy, dialogic games, Karl Popper, mechanism design, social wel-
fare, logic, defense strategies, games and quantifiers, virtual com-
munities.

1. FROM CFP
From call for papers:
Collective intelligence, collaborative production, and social co

mputing
Knowledge, education, and scholarship on and through the Web
People-driven Web technologies, including crowd-sourcing, open

d ata, and new interfaces
Purpose (of a player playing SCG in an educational setting) :

Gain Knowledge about a particular domain. And find out how their
total knowledge compares to their peers. Purpose (of a player play-
ing SCG in an R&D setting) : Participate in advancing science.
Purpose (of a lab designer in an educational setting) : Encourage
students to gain knowledge in a particular domain. Purpose (of a
lab designer in an R&D setting) : foster R&D in a particular do-
main.

To be submitted for review to the ACM Web Science 2013 Conference in
Paris, May 2-4. 10 pages limit. Due Feb. 1, 2013

2. SEMANTIC GAMES FOR PREDICATE
LOGIC

Adapted from SEP
@InCollectionsep-logic-if, author = Tulenheimo, Tero, title = In-

dependence Friendly Logic, booktitle = The Stanford Encyclopedia
of Philosophy, editor = Edward N. Zalta, howpublished = http:
//plato.stanford.edu/archives/sum2009/entries/
logic-if/, year = 2009, edition = Summer 2009,

In addition to two players P1 and P2, there are two roles: verifier
and falsifier. Initially, P1 is falsifier and P2 is verifier. For every
predicate logic formula φ, model M , and variable assignment g, a
two-player zero-sum game G(φ,M, g) between player P1 and P2
is defined.
refute(c, P1, P2) = G(φ,M, claimParameters, where c =

(φ,M, claimParameters).

1. If φ = R(t1, ..., tn) and M, g |= R(t1, ..., tn), the verifier
wins; otherwise the falsifier wins.

2. If φ =!ψ, the rest of the game is as in G(ψ,M, g), where P1
has the role that P2 had in G(φ,M, g), and vice versa.

3. If φ = (ψ ∧ χ), the falsifier chooses θin{ψ, χ} and the rest
of the game is as in G(θ,M, g).

4. If φ = (ψ ∨ χ), the verifier chooses θin{ψ, χ} and the rest
of the game is as in G(θ,M, g).

5. If φ = ∀xψ, the falsifier chooses an element a from M , and
the rest of the game is as in G(ψ,M, g[x/a]).

6. If φ = ∃xψ, the verifier chooses an element a from M , and
the rest of the game is as in G(ψ,M, g[x/a]).

What is a model? http://plato.stanford.edu/entries/modeltheory-
fo/

K a signature
structure of signature K: ONE domain A

3. THE STRUCTURE OF SCG
We use a standard many-sorted structure to describe the structure

of an SCG game domain.
We reuse standard definitions from predicate logic. A signature

Ω consists of a non-empty set of sorts S together with a set of
function symbolsF and a set of predicate symbolsP . The function
and predicate symbols are equipped with arities from S∗ in the
usual way. For example, if the arity of f ∈ F is S1S2S3, then this
means that the function f takes tuples consisting of an element of
sort S1 and an element of sort S2 as input, and produces an element
of sort S3.

1

http://plato.stanford.edu/archives/sum2009/entries/logic-if/
http://plato.stanford.edu/archives/sum2009/entries/logic-if/
http://plato.stanford.edu/archives/sum2009/entries/logic-if/

For the semantics of a signature, we have a standard notion of an
Ω-structureA, which consists of non-empty and pairwise disjoint
domains AS for every sort S, and A interprets function symbols f
and predicate symbols P by function fA and predicates PA ac-
cording to their arities.

For the SCG-signature Ω we have the sorts Instance, Solution,
InstanceSet, Quality (Rationals in [0, 1]), Claim, Protocol, Role.
The function symbols and their arities are:

quality(Instance,Solution,Quality),
getInstanceSet(Claim, InstanceSet),
getProtocol(Claim,Protocol).
getQuality(Claim,Quality).

The predicate symbols and their arities are:

valid (Instance,Solution),
belongsTo (InstanceSet, Instance),
refuted(Claim,

List(Quad(Role,Instance,Role,Solution))),
wf(Instance),
wf(InstanceSet),
wf(Solution),
wf(Claim).

etc.

wf stands for well-formed.

4. REDIRECT PAPER TO CROWDSOURC-
ING

New title: SCG Court: A Crowd Sourcing Platform for Scientific
Innovation using Unreliable Scholars

We use game semantics as the foundation of our crowdsourcing
approach. Game semantics is used as a voting by justification ap-
proach. You can’t just vote: the claim is true but you must also
successfully defend the claim in the role of verifier.

Origins of GTS (Game Theoretical Semantics):
In the late 1950s Paul Lorenzen was the first to introduce a game

semantics for logic. At almost the same time as Lorenzen, Jaakko
Hintikka developed a model-theoretical approach known in the lit-
erature as GTS. We use Hintikka’s approach. cite this

http://plato.stanford.edu/entries/logic-if/
and this:
Hintikka (1968), Language-Games for Quantifiers, in American

Philosophical Quarterly Monograph Series 2: Studies in Logical
Theory, Oxford: Basil Blackwell, pp. 46-72; reprinted in Hintikka
1973b, Ch. III.

In http://www.logic.rwth-aachen.de/pub/graedel/backandforth.pdf
Back and Forth Between Logic and Games
The idea that logical reasoning can be seen as a dialectic game,

where a proponent attempts to convince an opponent of the truth
of a proposition is very old. Indeed, it can be traced back to the
studies of Zeno, Socrates, and Aristotle on logic

In http://plato.stanford.edu/entries/logic-games/ BacForGam
There is also a kind of back-and-forth game that corresponds

to our modal semantics above in the same way as Ehrenfeucht-
Fraisse games correspond to Hintikka’s game semantics for first-
order logic.

4.1 Substantiation Game (SG)
A key contribution of our crowdsourcing approach is the sub-

stantiation game which allows us to evaluate scholars reliably. We
define the SG in extensive form.

We assume a claim c is proposed, either by a scholar or the plat-
form.

RG(c,P1,P2) is a refutation game played based on the formula
of the claim. The second position denotes the verifier role and the
third the falsifier role. Refutation game r returns the winner: P1 or
P2.

When a scholar is blamed it ran into a contradiction of the fol-
lowing two kinds: The scholar s wants to be (1) verifier and s pre-
dicts a win, but s lost (VerifierLost) or (2) falsifier and s predicts a
win, but s lost (FalsifierLost).

- means no blame.
There are two kinds of substantiation games: either the two schol-

ars conflict in their view on a claim or they agree. If they conflict, a
conflict resolution game will be played as defined by the following
table (game tree):

• Conflict Resolution Games

P1 P2 ref game winner contradiction
v f RG(c,P1,P2) P1 P2
v f RG(c,P1,P2) P2 P1
f v RG(c,P2,P1) P1 P2
f v RG(c,P2,P1) P2 P1

v: wants to play verifier role. f: wants to play falsifier role.

If the two scholars agree, two testing games will be played
as defined by the following two tables. If P1 and P2 agree
(on being the verifier or falsifier), they play RG(c,P1,P2)
and RG(c,P2,P1). If P1 is the verifier, P1 is under test in
RG(c,P1,P2). If P2 is the falsifier, P2 is under test in RG(c,P1,P2).

• Testing Games

P1 P2 ref game winner contradiction
v v RG(c,P1,P2) P1 -
v v RG(c,P1,P2) P2 P1
v v RG(c,P2,P1) P1 P2
v v RG(c,P2,P1) P2 -

P1 P2 ref game winner contradiction
f f RG(c,P1,P2) P1 P2
f f RG(c,P1,P2) P2 -
f f RG(c,P2,P1) P1 -
f f RG(c,P2,P1) P2 P1

The scholar who wins gets +1 point while the player who loses
gets -1 point. The game is zero-sum. When there is agreement and
nobody gets blamed, nobody gets a point. We call this the standard
payoff function. The only way to make a point is to push the other
scholar into a contradiction where the scholar does not substantiate
its decision of being verifier or falsifier. The game is very much
based on refutation in the spirit of Popper.

SCG has the following broad and diverse applications: 1. Crowd-
sourcing in Formal Science 2. Teaching Formal Science 3. Soft-
ware Development Process for Computational Problems 4. (Poten-
tial) Automation Gaps in Theorem Provers An important contribu-
tion is to step from the traditional refutation games of classical and
independence-friendly logic to binary games which extend the refu-
tation games with claim assertions to detect contradictory behavior
of the scholars. This allows us to rank the scholars reliably and
gives us better evidence about which claims are true. The contra-
dictory behavior that we can detect, is based on clever mechanism
design. The essence of SCG is to make assertions about claims:

2

either true or false. But each assertion needs to be substantiated
constructively. If it is not substantiated, the scholar is blamed for
reaching a contradiction. The game is designed in such a way that
a super perfect player can always avoid running into a contradic-
tion. A super perfect player is a player that makes always correct
decisions and who can substantiate all its decisions.

A strategy for a clever scholar might be to always make the same
assertion as the opponent. And then to go easy with the substantia-
tion by tacit agreement with the opponent. Nobody will be blamed
but also nobody will win a point with this strategy. You can only
win a point by driving the opponent into a contradiction.

Is it easy to come up with the substantiating constructions? Yes,
we illustrate 4 interesting binary game designs below and many
more are possible.

5. UNRELIABLE SCHOLARS
Managing unreliable workers is a standard problem in crowd-

sourcing systems. Many solutions have been proposed [16] and
significant worker resources are used to detect and control unreli-
able workers. However, SCG has special properties which we can
exploit to come up with a better solution. A clever mechanism de-
sign based on SG allows us to reliably evaluate workers.

A standard approach in crowdsourcing is to use a gold standard
for labeling (if it is available) and to measure the performance of
a worker on the gold standard (objective ground truth) [13, ?, ?].
In SCG it is best to reverse the standard approach: We have a di-
rect way to measure the quality of a worker. We use this quality to
assign labels to claims (true or false or optimum). We assume in
this section that the claims are independent. If there are implica-
tion relationships between claims we have additional information
regarding the truth of the claims.

In SCG we can reliably measure the number of contradictions
produced by a scholar. The more contradictions, the weaker the
scholar. The art is to define the concept of contradiction properly.
These are two attempts which don’t work: a scholar is contradic-
tory (1) if it proposes a false claim. (2) if it disputes a true claim.
The reason is that we don’t know whether the claim is true or false.

The right way to define the concept of contradictory scholar
is as follows: A scholar s is contradictory if one of the two con-
tradictory states are reached during a binary game: VerifierLost or
FalsifierLost.

These two states are exactly the ones where scholar s gets blamed
in SCG. Using the standard payoff function, these are the states
where there is a negative payoff for s.

5.1 Risk of Blame for Unreliability
How is this changed now in the new game. What is now condi-

tional blame?
A scholar s is unreliable, if s performs one of the following

actions: New: If s is the verifier of a false claim, s risks VerifierLost.
If s is the falsifier of s true claim, s risks FalsifierLost.

This is the primary mechanism used by SCG to deal with unre-
liable scholars. The secondary mechanism is that most game out-
comes lead to blame and the outcomes which do not lead to blame
require successful support of the claim or successful refutation of
the claim.

Because an unreliable scholar risks to be blamed, SCG discour-
ages wrong information.

Fact: unreliable scholars risk to be blamed.
of course: contradictory scholars are blamed.
In summary, decisions/actions that contribute wrong information

are potentially blamed, and decisions/actions that are contradictory
are blamed.

5.2 Avoiding Contradictions
It is important that those two contradictory states FalsifierLost,

VerifierLost can be avoided in principle by a perfect scholar. A
simple case analysis shows that this property holds:

• FalsifierLost: If c is true, be the Verifier and defend c. If c is
false, refute the claim.

• VerifierLost: If c is true, defend the claim. If c is false, be the
Falsifier and refute c.

So we know that we can never be forced into a contradiction if
we play well.

SCG is a blame avoiding game. You make all your decisions
according to the game tree in such a way that you don’t contradict
yourself and therefore you will not be blamed. If you are blamed,
your reputation goes down and you will have less influence in de-
ciding the truth of claims. If you are not blamed, your reputation
goes up or stays the same and you will have more influence in de-
ciding the truth of claims.

reputation -> reliability
During binary games we accumulate evidence about the reputa-

tion of the scholars and the truth of the claims. We do this in the
presence of unreliable scholars.

5.3 Perfect Scholars
A scholar s is perfect, if it never shows contradictory behavior.
A perfect scholar can be used to decide whether a claim is true

or false. Put the perfect scholar into the Opponent role and Propo-
nent proposes a claim c. The Opponent will decide a or d correctly
because otherwise it could be forced to show contradictory behav-
ior. The perfect scholar can be used to defend a true claim it agreed
with and to refute a claim it disputed.

!s is the "other" scholar. If s is P then !s is O and if s is O then
!s is P .

5.4 Rating Systems for Scholars
Our plan for collecting evidence about a claim c is as follows.

We assign to every scholar S a reliability r(S) in [0,1]. Then we let
S vote with justification in its game behavior for true or false. We
assign a weight r(S) to its vote.

We now get into the domain of rating systems for games with
wins, losses and draws. A good survey is given in [5]. rating mea-
sure actual skill of scholars grade of scholar This is a controversial
subject and there are many algorithms that can be used unweighted
weighted means using the last n results

measure of performance measure of ability

5.4.1 From Contradictions to Game Actions
With the reliability rel(s) of scholar s we measure how reliable

the scholar is to avoid contradictions. To avoid contradictions, a
scholar must be good at the following subtasks: (1) proposing true
claims, (2) correctly judging claims (agree or dispute) and (3) reli-
ably refuting claims it disputed and (4) reliably defending claims it
agreed with. We cannot easily measure how well the scholar does
on the above subtasks but only on the overall task to avoid con-
tradictions. But we know that to avoid contradictions, the scholar
must do well on all the above subtasks. Therefore, if a scholar is
reliable on the overall task it must be reliable on the subtasks as
well.

5.4.2 Limitations of Rating Systems
[5] is very critical of the value of player rating systems:

3

A grade is merely a general measure of a player’s per-
formance relative to that of certain other players over
a particular period. It is not an absolute measure of
anything at all.

In SCG we are interested in correctly classifying the claims into
true and false claims and in the “clever constructions” that are
needed to defend the true claims and to refute the false claims.
The “clever constructions” are most likely owned by the reliable
scholars who know how to avoid contradictions.

5.4.3 Two Proposals for Player Rating Computation
We present two ways to compute a player rating.

• Order Dependent Rating.

The first approach is sequential and depends on the order of
the binary games. We first compute a reputation for each
player which is then turned into a strength which is normal-
ized between 0 and 1.

Initially, all scholars s have the same initial reputation rep(s) =
1. The reputation of a scholar s is updated as follows: For all
three possible contradictions,

rep(!S) = rep(!S) + rep(S).

The higher the reputation of a scholar the better it is to avoid
contradictory behavior.

We generalize the reputation computation to take positive
payoff functions into account: We assume the payoff func-
tion payoff(s) to be non-negative. We update the reputa-
tion of P and O after a binary game as follows:

rep(O) = rep(O) + payoff (O) ∗ rep(P)

rep(P) = rep(P) + payoff(P) ∗ rep(O)

Consider the simple payoff function Spayoff(s) defined
by: when s not blamed, then Spayoff(s) = 1 and when
s is blamed, then Spayoff(s) = 0. If we use Spayoff ,
then rep(s) is of the simple form introduced above: if s is
not blamed then rep(s) = rep(s) + rep(!s). rep(s) stays
the same when s is blamed.

We define the likelihood that a scholar s is strong: strength(s).
We consider all scholars and compute their maximum reputa-
tion rmax. The likelihood that scholar s is strong is given by
strength(s) = rep(s)/rmax. Note that strength(s) = 1
does not imply that s is perfect because it is possible that s
got into a contradiction and has not accumulated the maxi-
mum possible reputation. strength(s) = 1 means that s is
among the best in the given set of scholars.

• Order Independent Rating.

Ahmed’s fixpoint computation for reliability. rel(s) =

We prefer the second approach and use rel(s) for the rest of the
paper.

5.4.4 Alternative Scholar Rating
Count Bad(s) how many s-NDA, s-NDP and s-NRD outcomes

(contradictions) scholar s achieved. Count Good(s) how many no
blame outcomes s achieved where s successfully supported a claim.
Good(s)/(Good(s) +Bad(s)) is the reliability of scholar s. Note
that a perfect scholar s can force Bad(s) = 0.

5.5 Voting with Justification
How should we accumulate evidence about the truth of a claim?

We use a voting with justification approach. You cannot just vote
"yes, this claim is true" but you must support your vote with your
actions in the refutation game.

Voting with justification All voting by a scholar is influenced by
the scholar’s reputation. The higher the reputation, the more weight
has the vote.

We have two scholars s = P or s = O.
We use the terminology from Figure 3 of [22]:

• asO agreement followed by support by O (no blame)

• arP agreement followed by refutation by P (O-NDA)

• drO dispute followed by refutation by O (P-NDP)

• dsP dispute followed by support by P (O-NRD)

stronger means: higher reputation

5.5.1 Simple Voting for Claims
We accumulate information about whether a claim is true or

false. Each claim c has a positive real number cT and cF asso-
ciated with it. The higher cT the more likely c is true. The higher
cF the more likely c is false. If cT > cF then

L(c) = (cT − cF)/cT

is the likelihood that c is true. And 1−L(c) the likelihood that c is
false. If cF ≥ cT then

L(c) = (cF − cT)/cF

is the likelihood that c is false. and 1 − L(c) the likelihood that c
is true.

• The claim is supported. Scholar s votes claim c to be true
because s defended it against !s. Support happens for asO
and dsP and we update cT as follows:

cT = cT + rel(O) + rel(P).

The stronger P or O the more likely c is true.

• The claim is refuted. Scholar s votes claim c to be false
because s refuted it. Refutation happens for arP and drO
and we update cF as follows:

cF = cF + rel(O) + rel(P).

The stronger P or O the more likely c is false.

5.5.2 Better 3-Component Voting for Claims
There is a better way of voting for the truth of claims which

takes more context into account than just the fact whether a claim
was refuted or defended.

The 3-Component voting is based on the 3 levels of the binary
game:

1. The proponent P votes the claim to be true. Weight of vote:
rel(P).

2. If O decides a (agree), it votes for the claim to be true. If O
decides d (dispute), it votes for the claim to be false. Weight
of vote: rel(O).

3. The game makes a vote based on the outcome as follows (we
used only this above): If *ss (support by s), the game votes
the claim to be true. if *rs (refute by s), the game votes claim
to be false. Weight of vote: rep(!s).

4

For the four cases we get:

• asO: cT = cT + rel(P) + rel(O) + rel(P), cF unchanged

• arP: cT = cT + rel(P) + rel(O), cF = cF + rel(O)

• drO: cT = cT + rel(P), cF = cF + rel(O) + rel(P)

• dsP: cT = cT + rel(P) + rel(O), cF = cF + rel(O)

compare to: http://www.ccs.neu.edu/home/lieber/papers/SCG-Paper/main.pdf
Questions:
1. Is the above an application of Dempster-Shafer theory:
Combination of Evidence in Dempster-Shafer Theory by Kari

Sentz: http://www.sandia.gov/epistemic/Reports/SAND2002-0835.pdf
We have epistemic uncertainty because our uncertainty results from
the lack of knowledge.

2. Does Dempster-Shafer Theory suggest a better solution for
computing the likelihood that a claim is true?

http://www.umiacs.umd.edu/labs/cvl/pirl/vikas/publications/raykar_JMLR_2010_crowds.pdf
Learning from Crowds

Paper should be ready one week
before due date: Jan. 25, 2013
and will be sent to Magy on
that date or sooner.

Ahmed’s task (Jan. 8):
Write section:
Mechanism Design for Crowdsourcing
(Formerly: The SCG Design Pattern
with Applications)
Four subsections:
1. Optimization Labs
2. Agreement with two refutations
3. Perfect Labs
4. Less Competition (to support brainstorming)
(formerly less competitive payoff ...)

Ahmed proposes a good way to deal with implied games.
(games where some of the decisions
have been made)

Ahmed proposes a good way to deal
with Lab decompositions.
What is the difference between lab decompositions
and problem decompositions.
In lab decompositions we don’t DIVIDE
AND CONQUER? We TRANSFORM AND CONQUER?

Karl works out three examples of lab decompositions.

A very important property of our approach to crowdsourcing is
that we take good care of the crowdsourcing workers.

• feedback: when points get deducted there is a demonstrated
reason.

• examples: see knowledge base of claims and history of claims

• get rewarded for breakthroughs

Crowd Sourcing to Distinguish Good from Bad
The Scientific Community Game as A Crowdsourcing Platform

to Distinguish Good from Bad

Domain of requests (instances) and responses (solutions). Re-
sponses are checked against valid(request,response). Claims are
about the relationship between requests and responses. Claims are
divided into good and bad claims. Good claims are claims that are
predominantly defended. Bad claims are claims that are predom-
inantly refuted. Refutation is the complement of defense and is
based on the requests and responses exchanged.

Want to build artifact: good claims. And the corresponding tech-
niques to defend them.

Definition from Communications of the ACM: A CS system en-
lists a crowd of users to explicitly collaborate to build a long lasting
artifact that is beneficial to the community.

Also CACM: enlists a crowd of humans to help solve a problem
defined by the system owners.

The White Paper Version: Crowdsourcing is the act of taking a
job traditionally performed by a designated agent (usually an em-
ployee) and outsourcing it to an undefined, generally large group
of people in the form of an open call.

Four challenges:
(How to recruit and Retain Users?)
What contributions can users make? provide requests and re-

sponses, propose and oppose claims about requests and responses
How to combine user contributions to solve the target problem.
Describe in detail how this is done in SCG: bottom-up or top-

down. lab decompositions and meta claims (subject to refutations).
strengthening, correcting mistakes.

Break down a lab into simpler labs. Extend basic game:
How to evaluate users and their contributions. breakthroughs

learning activity how many contradictions
Describe in detail how this is done in SCG
Related Work:
Group organization. Warren Bennis in his book: Organizing Ge-

nius, The Secrets of Creative Collaboration, says: "you create an
atmosphere of stress, creative stress, everyone competing to solve
one problem."

Crowd IQ: measuring the intelligence of crowd sourcing plat-
forms Web Science 2012

we have our own way of measuring crowdIQ: count contradic-
tions.

The CrowdLang paper by Abraham Bernstein at Web Science
2012

CrowdForge: Crowdsourcing complex work (2011) ACM from
CMU http://ra.adm.cs.cmu.edu/anon/usr/ftp/anon/hcii/CMU-HCII-
11-100.pdf

We identify the coordination requirements necessary to crowd-
source complex tasks, and describe a framework to support a va-
riety of task types. The framework systematically breaks complex
problems down into simpler tasks by creating subtasks that define
and create other subtasks and distributes these tasks to workers.
Output from subtasks can be evaluated and consolidated via addi-
tional outsourced tasks.

6. FUZZINESS
http://jcr.sagepub.com/content/50/1/28.full.pdf+html
contains interesting references

7. NEGATION
It is important to have negation for claims and a refutation-based

treatment of negation. For example, the set of claims of a lab should
be closed under negation using the standard negation operator (!).
We need to define what it means to refute !c in terms of what it
means to refute c.

5

So far we have not explicitly defined negation, but implicitly it
is used in the SCG. Consider the decision to agree with a claim.
In this case the proponent (P) and opponent (O) play the refutation
game refute(c,O,P). This has intuitively the intention that O can-
not bluff and it must defend the claim against P to substantiate the
agreement. In other words, we could say that O must refute the
negation of c: refute(!c,P,O).

The refute function has two argument positions for the players.
The second position is for the verifier role and the third one for
the falsifier role. The player in the verifier role is trying to make
the refutation predicate true while the player in the falsifier role is
trying to make it false.

The following two situations are equivalent: refute(c,O,P), O
wins (O “verifies” c to be true), and refute(!c,P,O), O wins (O “fal-
sifies” !c to be false).

Therefore the rule for negation is a role switch, similar to the
role switch as originally proposed by Hintikka in 1968 for Inde-
pendence Friendly Logic [34].

In the future we talk about negated claims. A useful lab is a
bivalent lab with two claims: c and !c and the purpose of the lab is
to determine which of the two claims is true.

8. STANDARD BINARY GAMES
To simplify the work of a lab designer, We have standard refu-

tation protocols to choose from. For the same reason, we offer
standard binary games.

I am not sure about the name: binary game. It is an important
part of a binary game.

The substantiation part says what needs to be done constructively
to support the assertion.

8.1 Binary Game 1
P is given claim c.

• assertion T

P asserts assertTrue(c).

Substantiation: P defends c against O, i.e., P wins refute(c,P,O).

• assertion F

P asserts: assertFalse(c)

Substantiation: P refutes c against O, i.e., P wins refute(c,O,P).

8.2 Binary Game 2
P is given a claim c.

• assertion Lopt

P asserts: c is locally optimum.

Substantiation: P defends c against O, i.e., it wins refute(c,P,O).
P proposes a stronger c, called c’, and refutes c’ against O,
i.e., P wins refute(c’,O,P).

• assertion !Lopt

P asserts: c is true but not locally optimum.

Substantiation: P defends c against O, i.e., it wins refute(c,P,O).
P proposes a stronger c, called c’, and defends c’ against O,
i.e., P wins refute(c’,P,O).

• assertion T

• assertion F

8.3 Binary Game 3
P is given a claim c.

• assertion indet

P asserts that claim c is indeterminate.

Substantiation: If refute(c,O,P) is played n times, the proba-
bility that O wins n times is 2−n.

• assertion T (see above)

• assertion F (see above)

8.4 Binary Game 4
Consider two labs Lab1, Lab2 and the mapping T from Lab1 to

Lab2. Instances, solutions, claims are all mapped by T. Consider
the image claim T(c) in Lab2 for claim c in Lab1.

• assertion 1

P asserts that if claim T(c) is true in Lab2 then c is true in
Lab1.

Substantiation: If P is given a defense of T(c) in Lab2, P can
construct a corresponding (under T) defense history of c in
Lab1.

• assertion 2

P asserts that if claim T(c) is false in Lab2 then c is false in
Lab1.

Substantiation: If I am given a refutation of T(c) in Lab2, I
can construct a corresponding (under T) refutation history of
c in Lab1.

9. OUR THESIS
Gamification of innovation in formal sciences has a formal foun-

dation with useful applications.
Contributions of this paper:
Formulation of SCG Design Patternand illustration with 3 exam-

ples: optimization, different agreement, master scholar.
Concept of blame strength and how it translates to payoff.
Concept of lab reductions and how they contribute to problem

solving.
Convergence to optimum claim. What are the necessary precon-

ditions?
intrinsically motivating instruction by Tom Malone http://mailer.fsu.edu/ jkeller/EDP5217/Library/Curiosity

10. POSITIVE TERMINOLOGY APPROACH
TO SCG

Terminology change: opponent -> partner.
Create learning opportunities for partner by creating outcomes

where the partner is contradictory. Contradictory bevavior is a seed
for learning. conditionally or absolutely.

Goal of game: create learning opportunities?

11. NEGATION
We introduce a negation operator for labs that maps claims to

claims union negated(claims). Given a claim c, the negation of c is
the claim where ... switch P and O negate refutation predicate. A
lab is closed under negation if for every claim c, the claim not(c) is
also in the lab.

Protocol with refutation predicate (P,O,predicate) (O,P,!predicate)

6

The simple rule for claim negation is: the domain stays the same
and, in the protocol, the roles of Alice and Bob are reversed and a
defense is changed into a refutation.

In the following we assume that all labs are closed under nega-
tion.

refute(c,P,O)) = defend(!c,O,P) Defending a claim c has the same
difficulty as refuting its complement !c.

negation is needed agree(c) dispute(c) agree(!c) strengthen(c,c’)
agree(!c) = dispute(c) ??
Negation in IF logic:
Hintikka proposed to interpret negation in terms of role shift.

When semantic games are formulated for arbitrary first-order for-
mulas, in addition to the two players there are two roles to be con-
sidered: ÂŚverifierÂŠ and ÂŚfalsifier.ÂŠ In the beginning, player
1 occupies the role of ÂŚfalsifierÂŠ and player 2 that of ÂŚveri-
fier.ÂŠ Negation is then interpreted by transposing the roles: the
player whose current role is ÂŚverifierÂŠ assumes the role of ÂŚ-
falsifier,ÂŠ and vice versa.

Negation. By clause (1) of the syntax, the negation sign may
only appear as prefixed to an atomic formula. Conceptually there is
no reason for this restriction; clause (1) may be replaced by a clause
laying it down that any formula f of FO[t] is a formula of IF first-
order logic; while the rest of the clauses are kept intact (cf. Sandu
1994, 1996). Let us refer to the syntax with arbitrary occurrences
of the negation sign as liberalized syntax.

It remains to be told how such negation signs are interpreted in
GTS. Two roles must be added as a new ingredient in the spec-
ification of the games: those of ÂŚverifierÂŠ and ÂŚfalsifier.ÂŠ
Initially player 1 has the role of ÂŚfalsifierÂŠ and player 2 that of
ÂŚverifier.ÂŠ The roles may get switched, but only for one rea-
son: when negation is encountered. Due to the introduction of
the roles, all clauses defining semantic games must be rephrased
in terms of roles instead of players. More specifically, it is the
player whose role is ÂŚverifierÂŠ who makes a move for tokens
of (?/?y1,ÂĚ,?yn) and (?x/?y1,ÂĚ,?yn), and similarly the player
whose role is ÂŚfalsifierÂŠ who moves for the tokens of (?/?y1,ÂĚ,?yn)
and (?x/?y1,ÂĚ,?yn). When a formula ? is encountered, the play-
ers change roles and the game continues with ?. Finally, if the
encountered atomic formula is true, ÂŚverifierÂŠ wins and ÂŚ-
falsifierÂŠ loses, otherwise the payoffs are reversed. For a more
detailed description, see the supplementary document. The nega-
tion works as one would expect: the sentence f is false in M iff its
negation f is true therein. Similarly, a sentence f is true in a model
M iff its negation f is false in M (cf. Sandu 1993).

The negation is variably referred to as strong negation, dual
negation, or game-theoretical negation.[33] Due to the failure of
bivalence, the logical law of excluded middle fails as well: if f is a
sentence non-determined in a model M, then M ? (f ? f). In what
follows, the original syntax and semantics given in Subsections 3.1
and 3.2 will be applied, unless otherwise stated.

12. THE SCG Design Pattern WITH APPLI-
CATIONS

In paper [22] we use the following game design pattern called
SCG Design Pattern.

Using Game Goal and Blame Assignment to systematically De-
sign the Payoff Function

In our game design problems (1) there is a game design goal that
defines what the game should achieve (2) there are blamable moves
that are considered non-productive with respect to the design goal.

The design goal is then translated into a blame assignment that
matches the design goal.

Finally, the blame assignment is translated into a payoff func-
tion that is fair, sound and competitive with respect to the blame
assignment.

Fairness means that if S is not blamed, payoff(S)>=payoff(!S).
(!S is the other scholar.)

Soundness means that if S is blamed then payoff(S)<payoff(!S).
Or soundness means that if S is blamed then there is a chance that S
will have a negative payoff. (There are different variants of sound-
ness depending on the different kinds of blamable moves.)

Competitiveness means that the payoff is higher for the winner.
The first important goal in SCG is not to contradict yourself.

You contradict yourself, if you make a decision which has an im-
plied assumption but then you don’t satisfy that assumption. For
example, if you decide to dispute a claim, the implied assumption
is that you will refute it successfully. If you don’t, you contradict
yourself. See Figure 7 for all 5 ways to contradict yourself in SCG
with Optimization.

A second important goal is not to propose false claims. You risk
being caught when you do.

12.1 Application to Optimization Labs
Useful for learning: want to converge to optimum claim.

12.1.1 Blame and Payoff Table
10 explains the issues described in the following paragraph:
Regarding blame, blame is a technical term that we carried over

from PL. The point is that we want to formally verify that our game
design isn’t futile especially that a part of the final game tree is pro-
vided by lab designers. Our approach consists of labeling certain
edges / nodes of the game tree with additional properties (for ex-
ample that an edge represents a blamable action or that we cannot
distinguish between actions taken at a particular node). Then assert
certain generic properties (that involve those newly added labels)
about the the overall tree. These generic formal properties define
what makes the game interesting (or non futile). We couldn’t find
such generic definitions of game interestingness in the literature.
And would like to get your input on that. (from Ahmed’s email)

From where come the blamable actions? They are implied by the
decisions made. Each decision has an expected result: When you
are accepted by a PhD program, people expect that you get your
PhD. When you agree with a claim, you are expected to defend it
successfully. When you propose a claim, you are expected to de-
fend it successfully or to refute a stronger claim. When you dispute
a claim, you are expected to refute it. When you strengthen a claim,
you are expected to defend the strengthened claim.

If you fail to meet the expectation, you are called contradictory
and you get blamed.

If you fail to meet the expectation, you get blamed. Your goal
in the game is to teach your opponent by bringing him or her into
a situation where it gets blamed absolutely (column oB) or condi-
tionally (columns fB and nB).

In Figure 10, in columns fB and nB we give a row number which
indicates how to translate conditional blame into a positive payoff
for the opposer. The table has 3*6+1=19 rows. If a false claim
is proposed, the best action is to dispute it and to successfully re-
fute it (row 8: the header row is row 1). If a non-optimal claim
is proposed, the best action is to strengthen it and to defend the
strengthened claim (row 15).

add a new decision possibility for dec: s = strengthen
update blame justification
size of table: Consider the table 7 which describes the general-

ization for optimization.
This table seems very useful as we see all the information in one

7

table not spread out between a game tree and a table.
A claim is either true or false. A true claim should be optimum.
Figure 11 describes all learning opportunities. There are two lev-

els of learning opportunities: level 1 in column 1B and level 2 in
column 2B. Blame is not only assigned for claim choices (propos-
ing a false or non-optimal claim, level 1) but also for decisions (e.g.,
disputing an optimal claim, level 2).

1B: row number that blames choice by forcing loss
2B: row number that blames decision by showing better decision

that avoids loss. We show the line number for the case where there
is an improvement if a better decision is made.

Column 2B:
Ta is blamed because TssO (row 15)is guaranteeing a win for O.
Td is blamed because TssO is guaranteeing a win for O.
T-optd is blamed because T-OptasO is avoiding a loss for O.
T-opts is blamed because T-OptasO is avoiding a loss for O.
Ahmed talks about CTL expressible properties that tree must

have. Can they be expressed with such row numbers?
What are the constraints that must hold? They are in Figure 8.

12.2 Application to Agreement with two Refu-
tation Games

Has first the flavor of a regular dispute.

12.2.1 Blame and Payoff Table
add a second out2 column used for agreement only.
see Figure 9. The agreement protocol consists of two applica-

tions of the refutation protocol with the provision that all solutions
are only revealed at the end of the protocol.

advantages
Two applications of the refutation protocol with reversed roles

leads to more testing of claims and scholars. The game is more
balanced: P and O are blamed in the oB* columns on two outcomes
while before only O could be blamed in the oB column.

disadvantages
The cost is higher.
Casper: no negative payoff. Exception both get a negative pay-

off:

0 0
1 -1
-1 1
-1 -1

becomes
0 0
1 0
0 1
a a
where a = -1/4.

12.3 Application to Perfect Labs
We call a lab perfect if the lab designers know which claims

are true and which are false. In this case the blame can be targeted
more directly because there is no uncertainty about whether a claim
is true or false. This applies often during learning where the lab
designer (teacher) has more knowledge than the students.

See Figure 12. Is the payoff fair and sound? Complete the ta-
ble. There is a need to have a weight on the blame (strength of the
learning opportunity).

12.3.1 Blame and Payoff Table

13. LESS COMPETITIVE PAYOFF FOR LEARN-
ING

Figure 1: SCG Binary Game Tree.

Figure 2: SCG Structure.

Is this the correct translation from paper [?].
refute()? (pdsp,odsp):(parp,oarp) agree()? (paso,oaso):(pdro,odro)
Depending on the application, many meaningful payoff func-

tions can be defined. For example, if SCG is used for creating
student interaction in a MOOC, I recommend the following low
competition payoff function (see Figure 4. The values after / are
for learning. The competitive payoff function is shown before /):

1. refute: p(c, ...)?(0, 0) : (0, 1). If the predicate is true, no-
body gets a point because we want the Opponent to learn
from the Proponent through the refutation protocol. If the
predicate is false, the Opponent has won and gets a point.

2. strengthen c to c’: p(c′, ...)?(0, 1) : (0, 0). If the predicate is
true, the Opponent gets rewarded with one point because he
successfully defended the stronger claim. If the predicate is

8

Figure 3: Blame and Payoff Table

Figure 4: Blame and Payoff Table (Learning)

false, the Proponent has won but does not get a point because
we want the Opponent to have cheap opportunities to attack
and learn.

3. agree: p(c, ...)?(0, 1) : (0, 0). If the predicate is true, the
Opponent has successfully defended the claim and nobody
gets a point. If the predicate is false, the Opponent has failed
to defend the claim but has gained information to learn. The
Proponent earns a point.

The motivation is that it should be penalty free for students to learn
from other students. Not succeeding in refuting a claim is free to
the Opponent, while successfully refuting gives a point to the Op-
ponent. Failing to strengthen a claim is free to the Opponent, while
successfully strengthening gives a point to the Opponent. Failing
to agree with a claim is free to the Opponent, while successfully
agreeing gives a point to the Opponent This low competition pay-
off function has the flavor of a soccer game where only the goals
count.

The competitive payoff and the low competition payoff are two

Figure 5: Blame and Payoff Table (Optimization)

Figure 6: Blame and Payoff Table (with Game Tree)

examples of payoff functions that promote good behavior in the lab.
Other payoff functions are possible.

Instances are only available when they are needed. For example,
in the spirit of the Renaissance mathematical competitions between
Tartaglia and Fior, if the protocol asks that the Proponent and Op-
ponent deliver each 10 instances, followed by the solution activity.
The instances are secret until they are solved.

14. GAME HISTORY
Use it to measure learning.
Discuss learning from previous games. In game G1 you disputed

claim c and successfully refuted it. In a future game G2 should you
dispute it again?

Not necessarily, because you could fail to refute the claim c in
G2.

Reasons could be:
1. The proponent has improved and found a defense strategy for

its claim c.
2. Although the claim is false, you lack a systematic refutation

9

Figure 7: Blame and Payoff Table (with Optimization)

Figure 8: Constraints Payoff Design (with Optimization)

strategy and in a second try you might fail to refute.

15. MEASURE LEARNING

15.1 Student Assessment with SCG
SCG has an natural assessment approach implied by the Scien-

tific Method.

15.1.1 A perfect master teacher is available
input: claim; output: true, false, optimal
input: true claim; output: instance that leads to defense
input: true claim, instance; output: does instance lead to de-

fense?
input: true claim, instance; output: solution that defends claim
MAKE GENERIC
input: false claim. output: first step in refute(c,P,O) that leads to

refutation.
input: false claim. Partial elaboration of refute(c,P,O) with next

step to be made by O. output: step by O that leads to refutation.

Figure 9: Improved Agreement

Figure 10: Complete Table for Optimization

input: true claim. Partial elaboration of refute(c,P,O) with next
step to be made by P. output: step by P that leads to defense.

The above perfect master teacher capabilities can be used to
guide and assess the student.

15.1.2 No perfect master teacher
We still have the blame assigned based on the refutation protocol

outcome (oB column in Figure 8.
reason for loss (e.g., proposed claim refutation) not easy to find

claim could be false and properly attacked (error in propose) claim
could be false and improperly attacked and improperly defended
(error in propose,provide and solve) claim could be true but not
properly defended (error in provide or solve)

don’t know in which situation we are. How does SCG help?
Yes, SCG helps: reason: (oB column in Figure 8.

15.2 Learning Science and SCG
I understand your concerns about incorporating learning scien-

tists. I believe, SCG has very good learning science built in. Below
is a description how learning happens and how it is measured in

10

Figure 11: All Learning Opportunities

Figure 12: With Master Scholar

SCG.
In an SCG lab, learning happens during the elaboration of the

refutation protocol for a claim. When a claim is defended or re-
futed, there is a sequence S of instances and solutions which has
been produced by the refutation protocol. If the claim is defended,
the claim predicate evaluates to true for S. The sequence S contains
a surprise for the opponent of the claim because the opponent’s
intention was to make the predicate false. This surprise is the crys-
tallization point for learning. The student playing the role of the
opponent is encouraged to ask and answer the following questions:
(O1) Why is my prediction wrong that I will successfully refute?
(O2) What is the general pattern behind the clever construction that
my partner used to defend the claim? Can I interfere with the clever
construction? Can I reconstruct it from S? (O3) Can I defend the
claim against a partner, successfully? (O4) Can I improve my ap-
proach to trying to refute the claim in a second attempt? (O5) Do I
still believe that I can refute the claim? (O6) Did I make a mistake?
Was there a second or third mistake? Do a blame assignment.

The proponent of the claim is pleased with winning but is not

off the hook: (P1) Did I win by accident? Has the opponent made
a mistake which made me win this time but not against a better
partner? (P2) How do I repeat my success even when the opponent
plays differently? (P3) Have I a systematic defense strategy? (P4)
Works my systematic defense strategy in all cases?

Emotions of the proponent when she wins: joy, I found a clever
construction to defend. Emotions of the opponent when he loses:
disappointment, I will try to figure out your clever construction and
maybe change my mind about trying to refute.

SCG offers the following approach to measure learning in a lab
for a given student: [unsuccessful => successful] Defense attempts
are unsuccessful (dau)=> defense attempts are successful (das).
Student learned to recognize, correctly, defensible claims. Refu-
tation attempts are unsuccessful (rau) => refutation attempts are
successful (ras). Student learned to recognize, correctly, refutable
claims. Agreement attempts are unsuccessful (aau) => agreement
attempts are successful (aas). Student learned to recognize, cor-
rectly, optimal claims. Amount learned: dau-das + rau-ras + aau-
aas

[change of mind] Claim C was unsuccessfully defended => claim
C is successfully refuted consistently Claim C was unsuccessfully
refuted => claim C is successfully defended consistently Amount
learned: number of claims where a change of mind happened.

16. SMALL LABS
Labs with c and !c.

17. LABS WITH PERFECT AVATARS
Useful for learning. Always have perfect answers. But costly to

produce.

18. INTERESTING PAYOFF FUNCTIONS
Looking at Figure 8, there are two blame justifications where O

did not do anything wrong. It would be natural to give a higher
payoff to O in these two cases: odro = 2, osso = 2.

If O is blamed in oB, P might also have contributed misinforma-
tion: P might have proposed a false claim. It makes sense to give a
lower payoff to P: parp = 1, pdsp = 1, psrp = 1.

19. PROBLEM SOLVING
An important goal of the SCG is to make the learners better prob-

lem solvers. The problems to be solved: Find good claims (true or
optimal claims) and find good provideInstance and solveInstance
functions.

Lab Reductions are a useful tool in this process. Lab L1 is a
reduction of lab L2 if a winning strategy for L1 implies a winning
strategy for L2.

======from slides
With the next example we show the usefulness of lab reductions.

A lab L1 reduces to a lab L2 (L1 < L2) if a defense strategy for
the claims in L2 guarantees a defense strategy for the claims in L1.
Ideally, the claims in L2 are simpler.

L1 reduces to L2 if we can use a black box for L2 to solve L1.
The black box makes all perfect decisions, including claims it can
defend.

A mapping from L1 to L2 is a computable function f Domain
Claim such that for any L1.Domain L2.Domain L1.Claim L2.Claim
propose oppose/agree provideInstance solveInstance refute

=========
Incremental approach A successful refutation of claim c is viewed

as a small step towards a proof of the negation of c. If the proponent

11

is perfect, the successful refutation counts as a proof of !c because
the perfect proponent would have found a way to defend if such a
defense of !c exists.

A successful defense of claim c is viewed as a small step to-
wards a proof of c. If the opponent is perfect, the successful de-
fense counts as a proof of c because the perfect opponent would
have found a way to refute if such a refutation of c exists. Restric-
tion: if the opponent is not perfect, it is possible that c is false and
the defense happened because the opponent made a mistake.

19.1 Convergence
When no blame is assigned during a binary game in an optimiza-

tion lab, the optimum claim will eventually be found.
Theorem [Convergence]: Consider a setC of claims c(t),where

t is a real number between 0 and 1. c(0) is true, and c(1) is false
and there is an optimal value t0 of t where the truth value of c(t0)
switches from true to false. If a sequence of binary games is played
using claims in C and binary search without faulty actions, the op-
timal claim c(t0) will be found.

19.2 Indeterminate Claims
SCG can express indeterminate claims that are neither true nor

false. Such claims were studied in Independence Friendly Logic
[34], an extension of first-order logic.

Consider the following lab: Instance = the set of positive real
numbers = InstanceSet. Solution = the set of real numbers. The
valid(i, s) function checks that the solution s is the square root of
instance i. The protocol is: P : i[0], O : s[1] of i[0], P : s[2] of
i[0]. The protocol predicate is: s[1] = s[2]. According to the SCG
rules, s[1] is not known when s[2] is computed. The lab contains
only one claim which is neither true nor false: it is indeterminate.
Notice the similarity to the "at least as good as" claim discussed
earlier.

Theorem [ExistIndeterminateClaims]: There are indeterminate
SCG claims.

20. ACCIDENTAL DEFENSES

20.1 Avoidable Accidental Defenses
Detected by game rules. Instance must be in instance set. solu-

tion must be valid.
False claim would be defended because Bob is careless. Bob is

kicked.

20.2 Skill-related Accidental Defenses

21. PROBLEM SOLVING COURSES
http://www.ccs.neu.edu/home/lieber/evergreen/specker/SCG-Teach/teach.html

22. RULES FOR REPUTATION COMPUTA-
TION

We have developed a computational model for scientific commu-
nities to foster better innovation and better education. Central to a
scientific community is refutation and how it affects reputation of
the scholars. The following rules define the reputation mechaism
of SCG.

There is some redundancy in those rules but I believe no contra-
diction.

Scholars propose and oppose claims and agree on claims. Op-
pose means (refute | strengthen). Refute is determined by a refuta-
tion protocol. Strengthening is reduced to refutation. Agreement is
also reduced to refutation.

Strengthening: When claim C is strengthened by Bob to C’, Al-
ice must try to refute C’ and the strengthening holds only if Bob
defends C’. strengthenP(C,C’) must hold. When scholar Bob suc-
cessfully strengthens a claim of Alice, Bob wins reputation: Bob
+ ClaimConfidence + |quality(C)-quality(C’)| When scholar Alice
successfully defends her own claim against Bob, Alice wins repu-
tation. Alice + ClaimConfidence

There is a gray zone with strengthening. Let’s assume we have
quality(C) < q < quality(C’) and q is the quality achieved by the
solution. Then both Alice and Bob have lost because Bob did not
achieve what he claimed and Alice claim was shown not to be op-
timal. We make the simplifying assumption that Bob only wins if
he defends C’.

Agreement: When Bob agrees on claim C with Alice, (1) Bob
must defend C against Alice (if not, Bob loses) (2) Bob must refute
C’ = C minimally strengthened along quality dimension (using the
configuration file constant minStrengthen) with Alice as defender
(if not, Bob loses). Then Alice must do the same: (1) Alice must
defend C against Bob (if not, Alice loses) (2) Alice must refute
C’ with Bob as defender (if not, Alice loses) If all those protocols
produce the result as described, the claim goes into the social wel-
fare set (the knwledge base of claims believed to hold and having
maximum strength).

All scholars start with reputation 100. Reputation is zero sum.
Alice proposes, Bob opposes.

When scholar Bob successfully refutes a claim of Alice, Bob
wins reputation: Bob + ClaimConfidence

When scholar Alice successfully defends her own claim against
Bob, Alice wins reputation. Alice + ClaimConfidence

summary: Bob: + ClaimConfidence * result Alice: - ClaimCon-
fidence * result

When scholar Bob successfully strengthens a claim C of scholar
Alice to claim C’, Bob wins reputation: Bob + ClaimConfidence +
|quality(C)-quality(C’)|

Checking of instances and solutions:
0. An InstanceSet must be valid. 1. All instances are in Instance.

2. A solution s in Solution for instance i in Instance must satisfy:
valid(i,s). 3. When an instance i in Instance is provided, Instance-
Set.belongsTo(i) holds.

In one domain, multiple InstanceSet are allowed. In one play
ground, multiple claims are allowed.

Some rules are enforced syntactically by the structure of a game
definition. Only one domain definition. Multiple different claim
languages are allowed, e.g., claims and negated claims.

Avatars with a negative reputation are kicked from the game.
The constants in the configuration file are enforced.
Axioms
Scholars gain reputation either by opposing (refuting or strength-

enin) other scholars’ claims or by having their claims defended
against other agents. Scholar’s gain from their claim is proportional
to both the confidence of their claim and the result of the refutation
protocol (a value in [-1,1]).

One scholar’s reputation gain is another scholar’s reputation loss.
The sum of all agent’s reputation is preserved.

Arguments (instances and solutions obtained from the refuta-
tion protocol) recognize claims by a recognition factor in [-1,1]. A
recognition factor of 1 means that the other scholar Bob has com-
pletely failed to discount Alice’ claim. We say that Alice has de-
fended the claim. A recognition factor of -1 means that the other
scholar has completely succeeded to refute the claim. We say that
Bob has successfully refuted the claim.

Claims have a confidence in [0,1].
The scholar’s confidence reflects the amount of effort made by

12

the scholar to refute the claim. If it is a mathematical claim, it is the
amount of effort spent to try to prove the claim (i.e. turning it into a
theorem). Scholar’s reputation is the accumulation of the scholar’s
initial reputation and its reputation gains and losses; thus reflecting
the past performance of the scholar.

Those axioms define a family of mechanisms that can be used to
implement the game.

23. EXAMPLE
Homework 3 Algorithms and Data Spring 2012 Karl Lieberherr
Due date: Feb. 2, 2012, beginning of class.
Read Chapter 3 in the text book. By now you should have cov-

ered chapters 1 through 3.
We are going to put the proposer of a claim into the claim: claim

XYZ(Name, ...) where Name is the name of the team, e.g., Griffin-
Schneider+Christopher-Souvey or if you work by yourself, Kevin-
Castaglia.

PART 1: Proposed by Ahmed Abdelmeged =======
In this homework, we study an existing algorithm, the Gale-

Shapley algorithm, and we want to find out how slow or how fast it
runs depending on the input.

Given an algorithm A:X -> Y and some input size n, our goal
is to find the worst input x so that some resource function: A-
resource(x): X -> PositiveRational is maximum over all inputs of
the same size n. Below we consider a decision variant of this opti-
mization question.

We consider claims of this form: Given an algorithm A: X ->
Y and an input size n, there exists an input x of size n so that A-
resource(x) is >= c. A-resource is defined by an instrumentation of
the algorithm and we assume that it returns a value in [0,1]. We
abbreviate this claim as MAX-RES(Name,A,n,c). Similarly, we
define claim MIN-RES(Name,A,n,c).

Example: A = Gale-Shapley: Gale-Shapley-resource(p) is

the number of iterations of the while loop for preference p / n^2,

where n is the number of men = number of women. Gale-Shapley-
resource(p) is a rational number between 0 and 1.

We define the JSON notation for defining a preference p as fol-
lows:

"n":3, "manPref" : [[2,1,0],[1,0,2],[0,1,2]], "womanPref : [[2,1,0],[1,3,2],[3,1,2]]

This notation is matching Ahmed’s Java program presented in
class and here:

http://www.ccs.neu.edu/home/lieber/courses/algorithms/cs4800/sp12/lectures/GaleShapley
Claims are of the form: MAX-RES(Name, Gale-Shapley, n, 0.8)

or MIN-RES(Name,Gale-Shapley, n, 0.1), where n is the number
of men = number of women and Name is the student/team name.
What are the optimum claims? About 5 teams should post an opti-
mum claim on Piazza. When a claim is challenged, the preference
(i.e., the input) must be given. Each proposed claim on Piazza must
be either agreed, refuted or strengthened.

What to turn in: The protocols of the quantifier games you played
with your partner. A description of your approach to find optimum
claims and a description of your defense strategy for your optimum
claims.

PART 2:
This homework part is about determining the asymptotic behav-

ior of the functions we computed in hw 2: HSR(n,k) = q and M(k,q)
= n. We define HSR(n,k) to be the smallest number of questions
needed in the worst-case for a ladder with rungs 0..n-1 and a jar
budget of k. M(k,q) is the maximum number of rungs we can han-
dle with k jars to break and q questions.

We play again the quantifier game.
The scholars make claims of the form:
Landau(Name, HSR(n,k), O(exp)) meaning HSR(n,k) in O(exp).
Landau(Name, M(k,q), O(exp)) meaning M(k,q) in O(exp).
Landau(Name, NOT, HSR(n,k), O(exp)) meaning HSR(n,k) !in

O(exp) (negative claim)
Landau(Name, NOT, M(k,q), O(exp)) meaning M(k,q) !in O(exp)
where exp is an expression using powers (including fractional

exponents), logarithms and exponential functions.
The same for Big Omega and Big Theta in addition to Big O.

Example claims:
HSR(n,2) in O(n^(1/2))
or
Landau(Karl,HSR(n,2), O(n^(1/2)))

HSR(n,2) in O(n) Landau(Karl,HSR(n,2), O(n))
HSR(n,2) in O(n) or Landau(Karl,HSR(n,2),O(n))
What to turn in:
1. Game history: List all claims proposed, refuted and strength-

ened in the order they happened in the quantifier game with your
partner. The class should put about 5 claims on Piazza to illustrate
how refutations and defenses work in this case.

2. Your asymptotic bounds for HSR(n,k) and M(k,q).

24. RELATED WORK
The SCG has not grown in a vacuum. We make connections to

several related areas.

24.1 ToDo
Paper by Sebastian Deterding: From Game Design Elements to

Gamefulness: Defining Gamification. MindTrek 11, ACM. Aug-
mented reality games that use digital devices to overlay game rep-
resentations over the environment [50].

From Wikipedia: Education and AR:
Augmented reality applications can complement a standard cur-

riculum. Text, graphics, video and audio can be superimposed
into a studentÂŠs real time environment. Textbooks, flashcards
and other educational reading material can contain embedded ÂŞ-
markersÂŤ that, when scanned by an AR device, produce supple-
mentary information to the student rendered in a multimedia for-
mat.[59][60][61] Students can participate interactively with com-
puter generated simulations of historical events, exploring and learn-
ing details of each significant area of the event site.[62] AR can aide
students in understanding chemistry by allowing them to visualize
the spatial structure of a molecule and interact with a virtual model
of it that appears, in a camera image, positioned at a marker held in
their hand.[63] Augmented reality technology also permits learning
via remote collaboration, in which students and instructors not at
the same physical location can share a common virtual learning en-
vironment populated by virtual objects and learning materials and
interact with another within that setting.[64]

[64] Collaborative Augmented Reality in Education by Hannes
Kaufmann

Connection between augmented reality and SCG. For learning:
Students pose problems to each other and solve them. Structured
scientific discourse.

intrinsically motivating instruction by Tom Malone http://mailer.fsu.edu/ jkeller/EDP5217/Library/Curiosity
which book by Dan Pink should we reference? If what he says is

right, SCG will be a big thing when little or no monetary rewards
are offered.

Dan Pink’s three principles Purpose, Mastery, and Autonomy. I
think there could be several ways to map these three principles onto
SCG. Here is my shot:

13

Mastery : of knowledge about a particular problem solving do-
main (i.e. how to find (good) solutions to problem instances, what
are the hard instances?) Mastery is manifested by the ability to pro-
vide harder to falsify claims about players ability to solve problem
instances as well as the ability to spot problems in other players
claims.

Autonomy : Players are free to choose the claims they propose.
There are several restrictions on autonomy imposed by the game as
well. For example, players don’t choose the claims they want to
dispute. Players do not choose their action time. Claims proposed
by the players are restricted by the lab designer.

BUT: the players choose the lab they want to play in (out of
thousands of labs).

Also players should have a way to interact with lab designers to
propose modified labs.

==================
SCHECHTER, S. E. How to buy better testing: using competi-

tion to get the most security and robustness for your dollar
BACON, D., CHEN, Y., PARKES, D., AND RAO, M. A market-

based approach to software evolution. OOPSLA ÃĆ9: Proceeding
of the 24th ACM SIGPLAN conference companion on Object ori-
ented programming systems languages and applications (2009).

24.2 Crowd Sourcing and Human Computa-
tion

There are several websites that organize competitions. What is
common to many of those competitions? We believe that the SCG
provides a foundation to websites such as TopCoder.com or kag-
gle.com.

The SCG makes a specific, but incomplete proposal of a pro-
gramming interface to work with the global brain [6]. What is cur-
rently missing is a payment mechanism for scholars and an algo-
rithm to split workers into pairs based on their background.

The SCG is a generic version of the “Beat the Machine” ap-
proach for improving the performance of machine learning systems
[4].

Scientific discovery games, such as FoldIt and EteRNA, are vari-
ants of the SCG. [8] describes the challenges behind developing
scientific discovery games. [3] argues that complex games such as
FoldIt benefit from tutorials. This also applies to the SCG, but a
big part of the tutorial is reusable across scientific disciplines.

24.3 Logic and Imperfect Information Games
Logic has long promoted the view that finding a proof for a claim

is the same as finding a defense strategy for a claim.
Logical Games [26], [12] have a long history going back to Socrates.

The SCG is an imperfect information game which builds on Paul
Lorenzen’s dialogical games [17].

24.4 Foundations of Digital Games
A functioning game should be deep, fair and interesting which

requires careful and time-consuming balancing. [14] describes tech-
niques used for balancing that complement the expensive playtest-
ing. This research is relevant to SCG lab design. For example, if
there is an easy way to refute claims without doing the hard work,
the lab is unbalanced.

24.5 Architecting Socio-Technical Ecosystems
This area has been studied by James Herbsleb and the Center

on Architecting Socio-Technical Ecosystems (COASTE) at CMU
http://www.coaste.org/. A socio-technical ecosystem supports straight-
forward integration of contributions from many participants and al-
lows easy configuration.

The SCG has this property and provides a specific architecture
for building knowledge bases in (formal) sciences. Collaboration
between scholars is achieved through the scientific discourse which
exchanges instances and solutions. The structure of those instances
and solutions gives hints about the solution approach. An interest-
ing question is why this indirect communication approach works.

The NSF workshop report [30] discusses socio-technical inno-
vation through future games and virtual worlds. The SCG is men-
tioned as an approach to make the scientific method in the spirit
of Karl Popper available to CGVW (Computer Games and Virtual
Worlds).

24.6 Online Judges
An online judge is an online system to test programs in program-

ming contests. A recent entry is [28] where private inputs are used
to test the programs. Topcoder.com includes an online judge ca-
pability, but where the inputs are provided by competitors. This
dynamic benchmark capability is also expressible with the SCG:
The claims say that for a given program, all inputs create the cor-
rect output. A refutation is an input which creates the wrong result.

24.7 Educational Games
The SCG can be used as an educational game. One way to create

adaptivity for learning is to create an avatar that gradually poses
harder claims and instances. Another way is to pair the learner with
another learner who is stronger. [2] uses concept maps to guide
the learning. Concept maps are important during lab design: they
describe the concepts that need to be mastered by the students for
succeeding in the game.

24.8 Formal Sciences and Karl Popper
James Franklin points out in [11] that there are also experiments

in the formal sciences. One of them is the ‘numerical experiment’
which is used when the mathematical model is hard to solve. For
example, the Riemann Hypothesis and other conjectures have re-
sisted proof and are studied by collecting numerical evidence by
computer. In the SCG experiments are performed when the refuta-
tion protocol is elaborated.

Karl Popper’s work on falsification [29] is the father of non-
deductive methods in science. The SCG is a way of doing science
on the web according to Karl Popper.

24.9 Scientific Method in CS
Peter Denning defines CS as the science of information processes

and their interactions with the world [9]. The SCG makes the sci-
entific method easily accessible by expressing the hypotheses as
claims. Robert Sedgewick in [31] stresses the importance of the sci-
entific method in understanding program behavior. With the SCG,
we can define labs that explore the fastest practical algorithms for
a specific algorithmic problem.

24.10 Games and Learning
Kevin Zollman studies the proper arrangement of communities

of learners in his dissertation on network epistemology [35]. He
studies the effect of social structure on the reliability of learners.

In the study of learning and games the focus has been on learning
known, but hidden facts. The SCG is about learning unknown facts,
namely new constructions.

24.11 CSP-based Game Design
CSP is increasingly being used in the procedural content gen-

eration (PCG) community, although not in industry. For example,
Tanagra[32] uses a numerical constraint solver to guarantee level

14

playability. In addition, Magy El-Nasr used constraint solving for
lighting and adaptive systems for games [10].

24.12 Origins of SCG
A preliminary definition of the SCG was given in a keynote paper

[23]. [21] gives further information on the Scientific Community
Game. The original motivation for the SCG came from the two
papers with Ernst Specker: [24] and the follow-on paper [25]. Re-
naissance competitions are another motivation: the public problem
solving duel between Fior and Tartaglia, about 1535, can easily be
expressed with the SCG protocol language.

25. FUTURE WORK
We see a significant potential in putting the refutation-based Sci-

entific Method into the cyberinfrastructure and make it widely avail-
able. We plan to, iteratively, improve our current implementation
based on user feedback.

We see an interesting opportunity to mine the game histories and
make suggestions to the scholars how to improve their skills to pro-
pose and defend claims. If this approach is successful, the SCG will
make contributions to computer-assisted problem solving.

26. SUMMARY AND CONCLUSIONS
The SCG provides a simple interface to a community that uses

the (Popperian) Scientific Method. The SCG provides for effective
customization of the generic scientific machinery by using lab def-
initions. Since the SCG models a scientific community it is a broad
enabling tool for innovation and learning and deserves a central
place in the world’s cyberinfrastructure and serious games world.
We believe that the game design approach we outline in this paper
has many applications to other games. We start with a game goal
and translate it into a blame assignment for moves that are incon-
sistent with the design goal. Then we derive a payoff function that
is fair, sound and competitive. Such a systematic approach elimi-
nates a lot of game testing because we know that many properties
are formally guaranteed.

Acknowledgments: We would like to thank Bryan Chadwick,
Magy Seif El-Nasr, David Lazer, Rory Smead, Abraham Bernstein
and Gillian Smith for their input and feedback on the paper.

27. EXPERIENCE WITH THE SCG
The SCG has evolved since 2007. We have used the SCG in soft-

ware development courses at both the undergraduate and graduate
level and in several algorithm courses. Detailed information about
those courses is available from the second author’s teaching page.

27.1 Software Development
The most successful graduate classes were the ones that devel-

oped and maintained the software for SCG Court [1] as well as
several labs and their avatars to test SCG Court. Developing labs
for avatars has the flavor of defining a virtual world for artificial
creatures. At the same time, the students got detailed knowledge of
some problem domain and how to solve it. A fun lab was the High-
est Safe Rung lab from [19] where the best avatars needed to solve
a constrained search problem using a modified Pascal triangle.

27.2 Algorithms
The most successful course (using [19] as textbook) was in Spring

2012 where the interaction through the SCG encouraged the stu-
dents to solve difficult problems. Almost all homework problems
were defined through labs and the students posted both their ex-
ploratory and performatory actions on piazza.com. We used a mul-

tiplayer version of the SCG binary game which created a bit of an
information overload. Sticking to binary games would have been
better but requires splitting the students into pairs. The informal use
of the SCG through Piazza (piazza.com) proved successful. All ac-
tions were expressed in JSON which allowed the students to use a
wide variety of programming languages to implement their algo-
rithms.

The students collaboratively solved several problems such as the
problem of finding the worst-case inputs for the Gale-Shapley al-
gorithm (see the section Example above).

We do not believe that, without the SCG, the students would have
created the same impressive results. The SCG effectively focuses
the scientific discourse on the problem to be solved.

The SCG proved to be adaptive to the skills of the students. A
few good students in a class become effective teachers for the rest
thanks to the SCG mechanism.

28. RELATED WORK
The SCG has not grown in a vacuum. We make connections to

several related areas.

28.1 Crowd Sourcing and Human Computa-
tion

28.1.1 Dealing with Unreliable Workers
Most crowdsourcing systems must devise schemes to increase

confidence in the worker’s solutions to tasks, typically by assigning
each task multiple times [16]. Karger et al. present a general model
for crowdsourcing tasks. In SCG, because workers need to justify
their answers in a game against another worker, unreliable workers
will run into many contradictions and get a low rating. This means
that their votes will minimally affect the final result, the knowledge
base of true claims.

[7] is related to SCG scholar ranking. The algorithm is an ex-
tended Bradley-Terry model called Crowd-BT. The paper focuses
on finding the quality of annotators in a crowdsourced setting. They
study the exploration-exploitation tradeoff which is also relevant to
SCG for labeling claims as true or false.

The "Evaluating the Crowd with Confidence" paper [15] has a
title that seems very applicable to SCG. However, they use a model
which is too simple for SCG. In particular, in SCG the errors de-
pend on task difficulty, and worker erros are not independent of
each other because they play a game.

28.1.2 Rating Systems
We use a rating system for games with wins, losses and draws.

This subject has been studied for a long time and there are many ap-
plications of rating systems. For example, in chess and other sports,
the Elo rating system is used. A good survey and critique of rating
systems is given in [5]. Rating systems are a controversial subject
and there are many algorithms that can be used. TopCoder [33]
uses an Algorithm Competition Rating System to rank the coders.

28.1.3 Combining Worker’s Contributions
In SCG, we use two approaches to combine scholar contribu-

tions: (1) During the refutation games, the scholars give each other
feedback by trying to drive each other into a contradiction. This is
a collaboration which leads potentially to new ideas and knowledge
fusion. (2) We combine the votes with justifications into an overall
vote for whether a claim is true. Related work is [7] and [16] which
was already discussed above.

28.1.4 Competitions

15

There are several websites that organize competitions. What is
common to many of those competitions? We believe that the SCG
provides a foundation to websites such as TopCoder.com or kag-
gle.com.

The SCG makes a specific, but incomplete proposal of a pro-
gramming interface to work with the global brain [6]. What is cur-
rently missing is a payment mechanism for scholars and an algo-
rithm to split workers into pairs based on their background.

The SCG is a generic version of the “Beat the Machine” ap-
proach for improving the performance of machine learning systems
[4].

Scientific discovery games, such as FoldIt and EteRNA, are vari-
ants of the SCG. [8] describes the challenges behind developing
scientific discovery games. [3] argues that complex games such as
FoldIt benefit from tutorials. This also applies to the SCG, but a
big part of the tutorial is reusable across scientific disciplines.

28.1.5 Crowdsourcing complex tasks
[18] describes a general-purpose framework for solving complex

problems through micro-task markets. Engaging in the scientific
dialogs of FSCP could be done through a micro-task market. [27]
proposes a language to define crowdsourcing systems. Our lab def-
inition approach provides a declarative description of what needs
to be crowdsourced.

[20] provides an interesting analysis of several issues relevant
to FSCP: how incorrect responses should affect worker reputations
and how higher reputation leads to better results.

28.2 Logic and Imperfect Information Games
Logic has long promoted the view that finding a proof for a claim

is the same as finding a defense strategy for a claim.
Logical Games [26], [12] have a long history going back to Socrates.

The SCG is an imperfect information game which builds on Paul
Lorenzen’s dialogical games [17].

28.3 Foundations of Digital Games
A functioning game should be deep, fair and interesting which

requires careful and time-consuming balancing. [14] describes tech-
niques used for balancing that complement the expensive playtest-
ing. This research is relevant to SCG lab design. For example, if
there is an easy way to refute claims without doing the hard work,
the lab is unbalanced.

28.4 Architecting Socio-Technical Ecosystems
This area has been studied by James Herbsleb and the Center

on Architecting Socio-Technical Ecosystems (COASTE) at CMU
http://www.coaste.org/. A socio-technical ecosystem supports straight-
forward integration of contributions from many participants and al-
lows easy configuration.

The SCG has this property and provides a specific architecture
for building knowledge bases in (formal) sciences. Collaboration
between scholars is achieved through the scientific discourse im-
plied by the refutation game. The information exchanged gives
hints about how to play the game better next time. An interesting
question is why this indirect communication approach works.

The NSF workshop report [30] discusses socio-technical inno-
vation through future games and virtual worlds. The SCG is men-
tioned as an approach to make the scientific method in the spirit
of Karl Popper available to CGVW (Computer Games and Virtual
Worlds).

28.5 Online Judges

An online judge is an online system to test programs in program-
ming contests. A recent entry is [28] where private inputs are used
to test the programs. Topcoder.com [33] includes an online judge
capability, but where the inputs are provided by competitors. This
dynamic benchmark capability is also expressible with the SCG:
The claims say that for a given program, all inputs create the cor-
rect output. A refutation is an input which creates the wrong result.

28.6 Educational Games
The SCG can be used as an educational game. One way to create

adaptivity for learning is to create an avatar that gradually poses
harder claims and makes the scientific discourse more challeng-
ing. Another way is to pair the learner with another learner who
is stronger. [2] uses concept maps to guide the learning. Concept
maps are important during lab design: they describe the concepts
that need to be mastered by the students for succeeding in the game.

28.7 Formal Sciences and Karl Popper
James Franklin points out in [11] that there are also experiments

in the formal sciences. One of them is the ‘numerical experiment’
which is used when the mathematical model is hard to solve. For
example, the Riemann Hypothesis and other conjectures have re-
sisted proof and are studied by collecting numerical evidence by
computer. In the SCG experiments are performed when the game
associated with a claim is elaborated.

Karl Popper’s work on falsification [29] is the father of non-
deductive methods in science. The SCG is a way of doing science
on the web according to Karl Popper.

28.8 Scientific Method in CS
Peter Denning defines CS as the science of information processes

and their interactions with the world [9]. The SCG makes the sci-
entific method easily accessible by expressing the hypotheses as
claims. Robert Sedgewick in [31] stresses the importance of the sci-
entific method in understanding program behavior. With the SCG,
we can define labs that explore the fastest practical algorithms for
a specific algorithmic problem.

28.9 Games and Learning
Kevin Zollman studies the proper arrangement of communities

of learners in his dissertation on network epistemology [35]. He
studies the effect of social structure on the reliability of learners.

In the study of learning and games the focus has been on learning
known, but hidden facts. The SCG is about learning unknown facts,
namely new constructions.

28.10 CSP-based Game Design
CSP is increasingly being used in the procedural content gen-

eration (PCG) community, although not in industry. For example,
Tanagra[32] uses a numerical constraint solver to guarantee level
playability. In addition, Magy El-Nasr used constraint solving for
lighting and adaptive systems for games [10].

28.11 Origins of SCG
A preliminary definition of the SCG was given in a keynote paper

[23]. [21] gives further information on the Scientific Community
Game. The original motivation for the SCG came from the two
papers with Ernst Specker: [24] and the follow-on paper [25].

[22] describes an earlier version of SCG. The key difference is
that the old SCG was targeted at evalauation of the scholars while
FSCP is targeted at crowdsourcing true claims. FSCP is cleaner:
there is a simple concept of self-contradiction and there is no longer
a need to have the concept of strengthening a claim explicitly.

16

29. FUTURE WORK
We want to extend our model so that we can make claims about

claims. For example, we want to have a "macro" for a claim to be
optimal. We want to leverage claim relationships across labs and
work with lab reductions as a useful problem solving tool.

We see a significant potential in putting the refutation-based Sci-
entific Method into the cyberinfrastructure and make it widely avail-
able. We plan to, iteratively, improve our current implementation
based on user feedback.

We see an interesting opportunity to mine the game histories and
make suggestions to the scholars how to improve their skills to pro-
pose and defend claims. If this approach is successful, the SCG will
make contributions to computer-assisted problem solving.

30. CONCLUSIONS
The SCG provides a simple interface to a community that uses

the (Popperian) Scientific Method. The SCG provides for effective
customization of the generic scientific machinery by using lab def-
initions. Since the SCG models a scientific community it is a broad
enabling tool for innovation and learning and deserves a central
place in the world’s cyberinfrastructure and serious games world.

31. ABSTRACT
Crowdsourcing contests have received a lot of attention in recent

years. We study the general problem how to use crowdsourcing to
build knowledge bases and to collect the know-how to defend the
claims in the knowledge base. We express claims in a knowledge
base as predicate logic formulas. To challenge the crowd and dis-
courage weak participants, all assertions of the form: "This claim
is true" must be substantiated by one or more games to be won. All
these substantiation games are refutation games associated with the
formula of the claim.

We define a generator of crowdsourcing systems which is para-
materized by labs that focus the crowd on a specific task. We men-
tion key properties of our system and we report on our experience
in using the approach in teaching.

32. ACKNOWLEDGEMENTS
We would like to thank Magy Seif El-Nasr, Casper Harteveld,

Thomas Wahl and Tugba Koc for their input to the paper.

33. REFERENCES
[1] A. Abdelmeged and K. J. Lieberherr. SCG Court: Generator

of teaching/innovation labs on the web. Website, 2011.
http://sourceforge.net/p/generic-scg/
code-0/110/tree/GenericSCG/ .

[2] E. Andersen. Optimizing adaptivity in educational games. In
Proceedings of the International Conference on the
Foundations of Digital Games, FDG ’12, pages 279–281,
New York, NY, USA, 2012. ACM.

[3] E. Andersen, E. O’Rourke, Y.-E. Liu, R. Snider,
J. Lowdermilk, D. Truong, S. Cooper, and Z. Popovic. The
impact of tutorials on games of varying complexity. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’12, pages 59–68, New York, NY,
USA, 2012. ACM.

[4] J. Attenberg, P. Ipeirotis, and F. Provost. Beat the machine:
Challenging workers to find the unknown unknowns. In
Workshops at the Twenty-Fifth AAAI Conference on Artificial
Intelligence, 2011.

[5] J. Beasley. The Mathematics of Games. Dover Books on
Mathematics. Dover Publications, 2006.

[6] A. Bernstein, M. Klein, and T. W. Malone. Programming the
global brain. Commun. ACM, 55(5):41–43, May 2012.

[7] X. Chen, P. N. Bennett, K. Collins-Thompson, and
E. Horvitz. Pairwise ranking aggregation in a crowdsourced
setting. In WSDM, Rome, Italy, 2013.

[8] S. Cooper, A. Treuille, J. Barbero, A. Leaver-Fay, K. Tuite,
F. Khatib, A. C. Snyder, M. Beenen, D. Salesin, D. Baker,
and Z. Popović. The challenge of designing scientific
discovery games. In Proceedings of the Fifth International
Conference on the Foundations of Digital Games, FDG ’10,
pages 40–47, New York, NY, USA, 2010. ACM.

[9] P. J. Denning. Is computer science science? Commun. ACM,
48(4):27–31, Apr. 2005.

[10] M. S. El-Nasr and I. Horswill. Automating lighting design
for interactive entertainment. Comput. Entertain.,
2(2):15–15, Apr. 2004.

[11] J. Franklin. The formal sciences discover the philosophers’
stone. Studies in History and Philosophy of Science,
25(4):513–533, 1994.

[12] W. Hodges. Logic and games. In E. N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Spring 2009 edition,
2009.

[13] P. Ipeirotis, F. Provost, V. Sheng, and J. Wang. Repeated
labeling using multiple noisy labelers. This work was
supported by the National Science Foundation under
GrantNo. IIS-0643846, by an NSERC P, Vol, 2010.

[14] A. Jaffe, A. Miller, E. Andersen, Y.-E. Liu, A. Karlin, and
Z. Popovic. Evaluating competitive game balance with
restricted play, 2012.

[15] M. Joglekar, H. Garcia-Molina, and A. Parameswaran.
Evaluating the crowd with confidence. Technical report,
Stanford University, 2012.

[16] D. R. Karger, S. Oh, and D. Shah. Iterative learning for
reliable crowdsourcing systems. In J. Shawe-Taylor, R. S.
Zemel, P. L. Bartlett, F. C. N. Pereira, and K. Q. Weinberger,
editors, NIPS, pages 1953–1961, 2011.

[17] L. Keiff. Dialogical logic. In E. N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Summer 2011 edition, 2011.

[18] A. Kittur, B. Smus, S. Khamkar, and R. E. Kraut.
Crowdforge: crowdsourcing complex work. In Proceedings
of the 24th annual ACM symposium on User interface
software and technology, UIST ’11, pages 43–52, New York,
NY, USA, 2011. ACM.

[19] J. Kleinberg and E. Tardos. Algorithm Design.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2005.

[20] M. Kosinski, Y. Bachrach, G. Kasneci, J. V. Gael, and
T. Graepel. Crowd iq: measuring the intelligence of
crowdsourcing platforms. In WebSci’12, pages 151–160,
2012.

[21] K. Lieberherr. The Scientific Community Game. Website,
2009. http://www.ccs.neu.edu/home/lieber/
evergreen/specker/scg-home.html.

[22] K. J. Lieberherr and A. Abdelmeged. The Scientific
Community Game. In CCIS Technical Report
NU-CCIS-2012-19, October 2012.
http://www.ccs.neu.edu/home/lieber/
papers/SCG-definition/
SCG-definition-NU-CCIS-2012.pdf.

17

 http://sourceforge.net/p/generic-scg/code-0/110/tree/GenericSCG/
 http://sourceforge.net/p/generic-scg/code-0/110/tree/GenericSCG/
http://www.ccs.neu.edu/home/lieber/evergreen/specker/scg-home.html
http://www.ccs.neu.edu/home/lieber/evergreen/specker/scg-home.html
 http://www.ccs.neu.edu/home/lieber/papers/SCG-definition/SCG-definition-NU-CCIS-2012.pdf
 http://www.ccs.neu.edu/home/lieber/papers/SCG-definition/SCG-definition-NU-CCIS-2012.pdf
 http://www.ccs.neu.edu/home/lieber/papers/SCG-definition/SCG-definition-NU-CCIS-2012.pdf

[23] K. J. Lieberherr, A. Abdelmeged, and B. Chadwick. The
Specker Challenge Game for Education and Innovation in
Constructive Domains. In Keynote paper at Bionetics 2010,
Cambridge, MA, and CCIS Technical Report
NU-CCIS-2010-19, December 2010. http:
//www.ccs.neu.edu/home/lieber/evergreen/
specker/paper/bionetics-2010.pdf .

[24] K. J. Lieberherr and E. Specker. Complexity of Partial
Satisfaction. Journal of the ACM, 28(2):411–421, 1981.

[25] K. J. Lieberherr and E. Specker. Complexity of Partial
Satisfaction II. Elemente der Mathematik, 67(3):134–150,
2012. http:
//www.ccs.neu.edu/home/lieber/p-optimal/
partial-sat-II/Partial-SAT2.pdf.

[26] M. Marion. Why Play Logical Games. Website, 2009.
http://www.philomath.uqam.ca/doc/
LogicalGames.pdf.

[27] P. Minder and A. Bernstein. Crowdlang - first steps towards
programmable human computers for general computation. In
Proceedings of the 3rd Human Computation Workshop,
AAAI Workshops, pages 103–108. AAAI Press, 2011.

[28] J. Petit, O. Giménez, and S. Roura. Jutge.org: an educational
programming judge. In Proceedings of the 43rd ACM
technical symposium on Computer Science Education,
SIGCSE ’12, pages 445–450, New York, NY, USA, 2012.
ACM.

[29] K. R. Popper. Conjectures and refutations: the growth of
scientific knowledge, by Karl R. Popper. Routledge, London,
1969.

[30] W. Scacchi. The Future of Research in Computer Games and
Virtual Worlds: Workshop Report. Technical Report
UCI-ISR-12-8, 2012. http://www.isr.uci.edu/
tech_reports/UCI-ISR-12-8.pdf.

[31] R. Sedgewick. The Role of the Scientific Method in
Programming. Website, 2010. http://www.cs.
princeton.edu/~rs/talks/ScienceCS.pdf.

[32] G. Smith, J. Whitehead, and M. Mateas. Tanagra: a
mixed-initiative level design tool. In Proceedings of the Fifth
International Conference on the Foundations of Digital
Games, FDG ’10, pages 209–216, New York, NY, USA,
2010. ACM.

[33] TopCoder. The TopCoder Community. Website.
http://www.topcoder.com/.

[34] T. Tulenheimo. Independence friendly logic. In E. N. Zalta,
editor, The Stanford Encyclopedia of Philosophy. Summer
2011 edition, 2011.

[35] K. J. S. Zollman. The communication structure of epistemic
communities. Philosophy of Science, 74(5):574–587, 2007.

18

http://www.ccs.neu.edu/home/lieber/evergreen/specker/paper/bionetics-2010.pdf
http://www.ccs.neu.edu/home/lieber/evergreen/specker/paper/bionetics-2010.pdf
http://www.ccs.neu.edu/home/lieber/evergreen/specker/paper/bionetics-2010.pdf
http://www.ccs.neu.edu/home/lieber/p-optimal/partial-sat-II/Partial-SAT2.pdf
http://www.ccs.neu.edu/home/lieber/p-optimal/partial-sat-II/Partial-SAT2.pdf
http://www.ccs.neu.edu/home/lieber/p-optimal/partial-sat-II/Partial-SAT2.pdf
 http://www.philomath.uqam.ca/doc/LogicalGames.pdf
 http://www.philomath.uqam.ca/doc/LogicalGames.pdf
 http://www.isr.uci.edu/tech_reports/UCI-ISR-12-8.pdf
 http://www.isr.uci.edu/tech_reports/UCI-ISR-12-8.pdf
 http://www.cs.princeton.edu/~rs/talks/ScienceCS.pdf
 http://www.cs.princeton.edu/~rs/talks/ScienceCS.pdf
 http://www.topcoder.com/

	1 From CfP
	2 Semantic Games for Predicate Logic
	3 The Structure of SCG
	4 Redirect paper to Crowdsourcing
	4.1 Substantiation Game (SG)

	5 Unreliable Scholars
	5.1 Risk of Blame for Unreliability
	5.2 Avoiding Contradictions
	5.3 Perfect Scholars
	5.4 Rating Systems for Scholars
	5.4.1 From Contradictions to Game Actions
	5.4.2 Limitations of Rating Systems
	5.4.3 Two Proposals for Player Rating Computation
	5.4.4 Alternative Scholar Rating

	5.5 Voting with Justification
	5.5.1 Simple Voting for Claims
	5.5.2 Better 3-Component Voting for Claims

	6 Fuzziness
	7 Negation
	8 Standard Binary Games
	8.1 Binary Game 1
	8.2 Binary Game 2
	8.3 Binary Game 3
	8.4 Binary Game 4

	9 Our thesis
	10 Positive Terminology Approach to SCG
	11 Negation
	12 The SCG Design Pattern with Applications
	12.1 Application to Optimization Labs
	12.1.1 Blame and Payoff Table

	12.2 Application to Agreement with two Refutation Games
	12.2.1 Blame and Payoff Table

	12.3 Application to Perfect Labs
	12.3.1 Blame and Payoff Table

	13 Less competitive Payoff for learning
	14 Game history
	15 Measure learning
	15.1 Student Assessment with SCG
	15.1.1 A perfect master teacher is available
	15.1.2 No perfect master teacher

	15.2 Learning Science and SCG

	16 Small Labs
	17 Labs with Perfect Avatars
	18 Interesting Payoff Functions
	19 Problem Solving
	19.1 Convergence
	19.2 Indeterminate Claims

	20 Accidental Defenses
	20.1 Avoidable Accidental Defenses
	20.2 Skill-related Accidental Defenses

	21 Problem Solving Courses
	22 RULES FOR REPUTATION COMPUTATION
	23 Example
	24 Related Work
	24.1 ToDo
	24.2 Crowd Sourcing and Human Computation
	24.3 Logic and Imperfect Information Games
	24.4 Foundations of Digital Games
	24.5 Architecting Socio-Technical Ecosystems
	24.6 Online Judges
	24.7 Educational Games
	24.8 Formal Sciences and Karl Popper
	24.9 Scientific Method in CS
	24.10 Games and Learning
	24.11 CSP-based Game Design
	24.12 Origins of SCG

	25 Future Work
	26 Summary and Conclusions
	27 Experience with the SCG
	27.1 Software Development
	27.2 Algorithms

	28 Related Work
	28.1 Crowd Sourcing and Human Computation
	28.1.1 Dealing with Unreliable Workers
	28.1.2 Rating Systems
	28.1.3 Combining Worker's Contributions
	28.1.4 Competitions
	28.1.5 Crowdsourcing complex tasks

	28.2 Logic and Imperfect Information Games
	28.3 Foundations of Digital Games
	28.4 Architecting Socio-Technical Ecosystems
	28.5 Online Judges
	28.6 Educational Games
	28.7 Formal Sciences and Karl Popper
	28.8 Scientific Method in CS
	28.9 Games and Learning
	28.10 CSP-based Game Design
	28.11 Origins of SCG

	29 Future Work
	30 Conclusions
	31 Abstract
	32 Acknowledgements
	33 References

