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An efficient approximation algorithm generator for the generalized maximum
y-satisfiability problem is presented which produces an efficient approximation
algorithm y-MAXMEAN* for each finite set ¢ of relations. The algorithms y~
MAXMEAN* are shown to be best-possible in the class of polynomial algorithms (if
P % NP), in both absolute and relative terms. The algorithms are of wide applicabil-
ity, because of the central position of the generalized maximum satisfiability
problem among the class of combinatorial optimization problems.

1. INTRODUCTION

Many combinatorial optimization problems, especially those which are
NP-equivalent, are hard to solve exactly. A wealth of heuristics (efficient
approximation algorithms) have been proposed to solve these problems
approximately. [1] Here a new class of heuristics is analyzed, which is
best-possible in a precise sense.

These heuristics perform a “background” optimization, which is based on
the following idea: Let m, be the expected value of the “objective” function
for a class M, of random solutions. k € PAR is a “natural” parameter of
the problem. Pick k., such that m, = max,p.gm, and find a solu-
tion, so that the “objective” function is =m, . We call this method MPR
(for: Maximize among expected values of Parametrized Random solutions).

The MPR method will be discussed in connection with the generalized
maximum satisfiability problem, an extension to the one defined in [2].

" The main result of this paper establishes a beautiful link between certain
mathematical and algorithmic extremal problems. Let ¢ be a finite set of
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relations and let I' be a class of y-formulas. (The definitions are given in
Section 2.) Consider the extremal problems:

M1: Which fraction 1 of the clauses in a y-formula § € T can always
be satisfied?

Al: Which fraction 7 of the clauses in a y-formula S € I" can be
satisfied in polynomial time?

The main result implies that the solutions to these two problems are
identical. Furthermore, the set of y~formulas S € I" which have an assign-
ment satisfying at least the fraction =’ > 7. of the clauses (7' rational), is
shown to be NP-complete. Hence the fundamental constant 7. (an algebraic
number, in general) turns out to be a complexity class separator.

The present paper gives a connected and detailed exposition of this
theory of algorithmic extremal problems, improving and considerably ex-
panding earlier work. [3-6]

The paper is organized as follows: The definitions are summarized in
Section 2, which should be used as a reference section. In Section 3 several
main ideas of the paper are used to derive the MPR method. Section 4
contains the main result for the generalized maximum satisfiability problem,
where the variables can assume the values 0, 1. Sections 7 and 8 generalize
the main result to partitioned formulas and to the maximum satisfiability
problem, where the variables can assume the values 0,1,....d (d=1).
Sections 5 and 6 contain the proof of the main result.

In Section 9 the new algorithms are compared to a class of algorithms, a
few of which have appeared before in the literature. It is shown that the
lower bound for the performance bound of the new algorithms is in general
greater than the lower bound on the performance of the old algorithms.

2. DEFINITIONS

Generalized Maximum Satisfiability

We start with an introductory example. Let R(x, y, z) be a 3-place logical
relation whose truth table is {(1,0,0),(0,1,0),(0,0,1)}, i.e,, R(x, y, z) is
true iff exactly one of its three arguments is true. Consider the problem of
deciding whether an arbitrary conjunction of clauses of the form R(x, y, z)
is satisfiable. Following [2], this problem is called the ONE-IN-THREE
SATISFIABILITY problem. For example, the formula R(b,c, d) A
R(b, ¢, a) N\ R(a, b, c) is satisfiable, because it is made true by assigning the
values 0,0,1,0 to the variables a, b, ¢, d rtespectively. The one-in-three
satisfiability problem is NP-complete. [2]

The similarity between this problem and the standard satisfiability prob-
lem for propositional formulas in conjunctive normal form (CNF) leads to
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the generalization which is the subject of this paper. Consider the problem
of deciding whether a given CNF with three literals in each clause is
satisfiable—a well-known NP-complete problem. Since a clause may con-
tain any number of negated variables from 0 to 3, there are four distinct
relations. They are defined by R(a, b, ¢) = a or b or c, Ri(a, b,¢)=nota
orborc, Ry(a, b, c) = notaornothorec, Ry(a, b, ¢) = not a or not b or not
¢. An input to the standard satisfiability problem is Jjust a conjunction of
clauses of the form R,(a, b,c),i € 1.2 3%

This sets the stage for the following generalization. Let ¢ = {Rrgon Rt
be any finite set of logical relations. A logical relation is defined to be any
subset of {0, 1}" for some integer r = 1. The integer r is called the rank of
the relation. Define a y-formula to be any sequence of clauses, each of the
form R($), §5,...), where {,, {,,. .. are distinct, nonnegated variables whose
number matches the rank of R,, i € {1,...,m}. The y-satisfiability problem
is the problem of deciding whether a given y~formula is satisfiable. The
main result in [2] characterizes the complexity of the y-satisfiability problem
for every finite set ¢ of logical relations. An interesting feature of this
characterization is that for any such ¢, the Y-satisfiability problem is either
polynomial-time decidable or NP-complete. The difficulty of approximating
the y-satisfiability problem is the subject of this paper. The MAXIMUM
Y-SATISFIABILITY problem is defined by

Instance: a y-formula S.

Question: Find a (0, 1)-assignment to the variables of S which satisfies
the maximum number of clauses.

Means

LetJ be a set of relations and S a y-formula with » variables. mean Ani(S)
denotes the expected number of satisfied clauses if each variable is assigned
0 or 1 at random, independently of each other and with probability 1.
mean,(S) is the average number of satisfied clauses among all assignments
which set exactly k variables to 1. Let maxmean(S) = max .., ,mean ().
Consider a partition of the n variables into the first n; variables of type 1
and the next n, variables of type 2(n = n, + n,). meany;2(S) is the
average number of satisfied clauses among all assignments, for which k, of
the n, variables and k, of the n, variables are set to 1.

maxmean™ "(S) = max mean2(s).
0=k, =n, W
0=k, =n,

Theddefinition of meany' 205 (S) and maxmean™ """ (8§) is straightfor-
ward.
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Renamings

The renaming of a variable x with respect to value v is a substitution of
e(x,») = (x — v)mod 2 for variable x.

Let J be an assignment for formula S. The renaming of formula S with
respect to J is a substitution of e(x, J(x)) for all variables x in S. The
resulting formula is called the renamed formula with respect to J.

Let R(x,,...,X,) be a relation and let J be an assignment for x,,...,X,.
The renamed relation R with respect to J is the relation L(R, J) defined by

L(R, T)(e(x0, J(x0))s-- (% I(2,))) © R(x15-05%,).
By definition
R(J(x,)s..-,H(x,)) = L(R, T )(0,. sl

A set of relations v is said fo be closed under renaming, if all relations, which
can be generated from relations in ¥ by renaming, are in y. A set of
relations is closed under restriction, if all relations, which can be generated
from relations in ¢ by substituting constants, are in ¢.

Symmetry

Let SA(S, J) be the number of satisfied clauses in formula S under
assignment J. Let =, be the full permutation group on the n variables of S.
For o € m, let 3(S) be the permuted formula, which is the result of
substituting o(») for all variables » in S. A y-formula S is called symmetric if
any permutation of the variables in the formula returns the same formula up
to a permutation of the clauses. If S is a symmetric y-formula, then for all
permutations ¢ in 7, and all assignments J of S: SA(S, J) = SA(a(S), J)
(or equivalently for all permutations o in 7, and all assignments J of S:
SA(S, J) = SA(S, 0*(J)), where the assignment o*(J) is defined by
o*(J)(») = J(o~ '(»)) for all variables » in §.)

A symmetric y-formula which contains a relation of rank r contains at
least (':) clauses. The notion of symmetry is easily generalized, if the
variables are partitioned into classes. Let ® be a partition of the n variables
of S into classes. Then S is said to be ®—symmetric, if any permutation of
the variables, which preserves the classes, returns the same formula up to a
permutation of the clauses.

A logical relation R of rank r is said to be symmetric, if for any
permutation o € m, of r variables: RO Biae = oudp) 86 Rol55)

0(§2)a S :U(g'r))'
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Complexity

Let ¢ be a set of relations. ¢/(S) deno
_ : tes the number of clauses in

xp'-formula S. A ra%nonal number C(0 = C < 1)issaidtobea (relative)P—opEi
umgl t.hreshold with respect to , if (1) there is a polynomial algorithm Q
satisfying at least C - cl(S) clauses for any § € {y-formulas) and (2) the selt
Tcnil[fpzp-form]uIasfhzmng an assignment satisfying at least C’ - c/(S) clauses is

-complete for any rational C’ > C (€' < 1 i i
M iy ( ). Algorithm Q, is also called

A polyr?omi_al time computable function g: {y-formulas} — {rational

nu]mbers_} 1s said to be absolm:e P-optimal with respect to i, if (1) there is a
polynomial algorithm @, satisfying at least ¢(S) clauses for any S & Y-
formulgs and (2) The set of y-formulas S, which have an assignment
satcl;sfymg more than g(S) clauses is NP-complete

f course, there are many trivial absolut pti i

_ Ise, e P-optimal functions, but
consider interesting performance b i , s
1 g p ce bounds defined by closed form expres-
- A decision, search or optimization problem Q is NP-equivalent, whenever
it can be shov&_fn that a polynomial algorithm exists for Q, iff P = NP (by
Turing reducu(_ms). (A NP-equivalent decision problem is by definition
NP-complete with respect to Turing reductions.)

Relations

RY (e xgiest %, )'es B0 2% 8B whe =
{*lfO, 1} andjcoe?ficient]il Il o s ’-_}- o
[ sa/(1 =!=n)are =1 and the first i coefficients

Assume that the varia - artiti i
et bles of y-formula § are partitioned into two classes.

i " ny
R} iy ist{B1s Xgaeea ) & 3 arx; + b a;x; 3b,
=1 =1
where n, +n,=n and the variables {x; |1 =/, <n,} are in class 1 and
the variab.les {x,|1=/,<n,}arein class 2. j, coefficients a,(1 <1, = n,)
are =1 with the first i, of them = + 1, and similar, /. coefficignts a l(l_< }
< n,) ate =1 with the first i, of them = +1, pidild

Further Notation

SA(S, J) is the number of satisfied clauses in formula S under assign-
ment J. Sx.___p( v E {0, 1}) denotes the y-formula which is obtained frorr% h)
after' substituting » for x. Note that S,_, might have clauses containin
_relatlons (even of rank 0) which are always satisfied or never satisfied. J ;
1s the assignment which assigns 0 to all variables. Wit oo
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3. DERIVATION OF METHOD

Let 4 be a finite set of logical relations. Let I' C {y-formulas} and assume
that T is closed under symmetrization, i.e. SYM(I') C T, where SYM(I') is
the class of formulas which are obtained by symmetrizing the formulas
§ & T with the full permutation group on the number of variables of S. The
symmetrization process is only applied to nonsymmetric formulas. Once a
formula is symmetric, it is not symmetrized again. The computation of

A
= inf max —————S (S’ /)

SeT all assignments Cl( S )
Jfor §

leads in a natural way to the MPR method.
LemMa 1. If SYM(T) C T then

T = inf ————SA(S’ J) y

max
SESYM(I') all assignments Cf( S)
J for S

Proof. Let S be ay-formula. Symmetrize § by using the full permutation
group on the n variables of S. The resulting symmetric formula with
n!-cl(S) clauses is called S*. If $* has an assignment satisfying the fraction
g of the clauses, then S has an assignment satisfying at least the fraction g of
the clauses. This is implied by the fact that, if the average of a set of
numbers is g, then at least one number is = g. Therefore it is sufficient to
minimize among the symmetric formulas in order to compute 7p. a

Define mean ,(S) to be the average number of satisfied clauses among all
assignments which set exactly k variables to 1.

LeMMA 2. If S is a symmetric -formula then

max SA(S,J) = max mean,(S).
all assignments 0=k=n
Jfor s

Proof. Since S is symmetric, we have SA(S, J) = mean L(S), if J assigns
1 to exactly k variables. [

Lety = {R,, R,,...,R,} and let trR(l=i= m) be the number of clauses
containing relation R; in a given formula.

LEMMA 3. Let S be a y-formula with n variables. meany(S) is a poly-
nomial in k, the coefficients of which are functions of n and tp (1 =i=m)
which are linear in t (1 < i < m). The degree of the polynomial is bounded by
the highest rank of a relation in .
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Proof. By elementary combinatorial analysis

mean (8)= 3 1xSATI(R),
all relations
RES
where
r(R)

zo(%?—)-m-(f&xfs)

(+(x)) ’

where 5 is the number of clauses containing relation R, r(R) is the rank of

relz_ition R, g(R) is the number of satisfying rows in the truth table of R
which contain s ones. [

SAT(R) =

The above three lemmas imply that

m
& 1 SATHR,)
= lim inf max ‘=
n—oo lg(l=i=m) 0=k=n

m

This problem is considerably simpler and for many sets of relations ¥ and
classes I' it can be solved explicitly. Examples are given in [5, 12, 13].

Note that the MPR method is naturally implied. The parameter k is the
number of variables which are set to one.

4. MAIN RESULT

It turns out, that for the generalized maximum satisfiability problem the

MPR method is best possible in a sense which is made precise by the
following theorem.

THEOREM 1. Let maxmean(S) = max,_,.,mean (S) and assume that T

1:3 not “trivial”, i.e. the maximum \-satisfiability problem for y-formulas in T
is NP-equivalent.

1.1 If SYM(T') C I then there is a polynomial algorithm MAXMEAN,
which satisfies the fraction

= inf  max BAE, /)

SeT all assignments C[( S)
Jof §

of the clauses for a given Y-formula S € T'.
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1.2 If (a) SYM(T) C T, and (b) the y-satisfiability problem for the
formulas in T is NP-complete, and (c¢) I is closed under concatenation
of formulas with disjoint variables, then: For any rational T/ > Ty the set of
Y-formulas in T which have an assignment satisfying the fraction ' of the
clauses is NP-complete.

1.3 Algorithm MAXMEAN satisfies at least maxmean(S) clauses for
S erl.

1.4 If T is closed under renaming, then the problem of finding an
assignment that satisfies > maxmean(S) clauses for S € T, is NP-equivalent.

1.5 The polynomial algorithm MAXMEAN guaranteed by 1.1 can be
computed in polynomial time.

5. ALGORITHMS

First we prepare some tools for deriving the efficient algorithm
MAXMEAN. The basic idea is to derive a recurrence relation for mean (S).

LEmMA 4. If k # 0, then

n—k

mean,(S) ngeank_l(Sx:l) + mean  (S,_q)-

n

meany(S) = meany(S,—g)-

S.—(y = 0,1) denotes the U-formula which is obtained from S after substitul-
ing v for x.

Proof. Consider the symmetrized formula S$* corresponding to S, which
is obtained by using the full permutation group. This formula contains n!
copies of S, which are divided into k - (n — 1)! copies of §,_, and (n —

k)n — 1)! copies of S, Since (7) =(n71)+("7!) and

(2=)/(2) =k/mand ("7 ')/(3) = (a— k)/n,

n'mean,(S) =k - (n— 1)tmean;_(S.=,) + (n — k)(n — 1)lmean,(S,—)-

This implies the above recurrence relation. [
Consider the following algorithm MEAN:
Input: y-formula S, integer k(0 = k = n).
Output: Assignment which satisfies at least mean (S clauses. The num-
ber of variables to which 1 is assigned might be < k.

for all variables x in S do
if mean,_(S.—,) > mean (S,_,)
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thenx:=1; k:=k—-1,5:=8§_,
else x: =0; §: =8,
(mean_ (S is defined to be zero)

The proof of correctness is implied by the above recurrence relation. The
algorithm requires, that mean () is expressed for y'-formulas, where ' is
the set ¢ closed under restriction.

Consider the following algorithm MAXMEAN:

Input: y-formula S.

Output: Assignment which satisfies at least maxmean(S) clauses.

1. Find k(0 = k = n), so that maxmean(S) = mean, (S) by a lin-
ear search.
2 Apply algorithm MEAN to S and & to find an assignment

satisfying at least maxmean(S) clauses.

This algorithm is certainly polynomial in the length | S| of S. It can be
made more efficient, if mean ,(S) is of small degree compared to the number
of variables in S. Step 1 will be executed faster, if the following method is
used. (1) Determine the derivative p of mean,(S) and approximate all roots

ry, Iy,... of p sufficiently. (2) Determine the maximum value of mean «(8)
for

k=0 |m o[ Ll [ 5] senean

If the Galois group of p is not solvable, we can use Sturm’s theorem
combined with binary search. Sturm’s theorem yields a subroutine which
returns the number of zeros in a given interval.

Sturm’s Theorem

Let p be a real polynomial, p not identical to zero, and let p,, p,,....p,,
be the sequence of polynomials generated by the Euclidean algorithm
started with p, = p, p, = p”:

Po(x) = q,(x)p(x) — pa(x),
pi(x) = g2(x)pa(x) — pa(x),
Pi—1(x) = g (x)pe(x) — prsi(x),
pm—l(x) e Qm(x)pm(x)‘
Then for any real interval [a, 8], such that p(e) - p(B) # 0, p has exactly

Y(a) — V(B) distinct zeros in [a, B8], where V(x) denotes the number of
sign changes in the sequence { p,(x), 0 <i =< m}.

Prgof. Se:e, e.g., [7, p. 449]. 1t is well known that the regular Euclidean
algorithm might lead to exponential coefficient growth. However the work
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of Cayley [8] and Collins [9] shows that this exponential growth can be
avoided. Heindel [10] shows that the real zeros of a polynomial can be
found in polynomial time in -lg(¢) and in the size of the polynomial, where €
is the allowed maximal error. Akritas [14] proposes faster algorithms.

The generation of MAXMEAN from the truth tables of the relations in ¢
is implied by the proof of Lemma 3. Of course, this generation can be done
in polynomial time.

6. NP-EQUIVALENCE OF IMPROVING

The key to the proof of part 1.4 of the theorem is this question: Given a
formula S, how difficult is it to find a renaming R, so that

maxmean(R(S)) = meany(R(S))?

A renaming of a variable x is a substitution of 1 — x for x. A renaming R of
a formula is a renaming of some of its variables. The above problem is
solved efficiently by algorithm MAXMEAN®:

Input: Y-formula S.

Output: (a) Renaming R of §, so that (1) maxmean(R(S)) =
meany(R(S)), (2) maxmean(R(S)) = maxmean(S). (b) Interpretation J
satisfying SA(S, J) = maxmean(R(S)).

loop

(1) Apply algorithm MAXMEAN to S, which returns an assignment J
satisfying at least maxmean(S) clauses. (2) If assignment J is no improve-
ment over the previous assignment then exit. (3) Rename S, so that the
assignment J,,, ,, which assigns 0 to all variables, corresponds to assign-
ment J.

end

The renaming R is the composition of all renamings performed in the
loop. J is the interpretation which corresponds to J,; ; , after renaming all
variables which are renamed by R. This loop might be executed several
times, since the polynomials mean,(S) and mean,(R(S)) might be very
different for a given renaming R,.

To prove Theorem 1.4, assume that there is polynomial algorithm &,
which returns an assignment satisfying more than maxmean(S) clauses (if
such an assignment exists). Then the following algorithm RED, is poly-
nomial for the maximum y-satisfiability problem for I'.
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Algorithm RED,

loop

1. Apply MAXMEAN* to §; it returns a renaming R, so that
maxmean(R(S)) = SA(R(S), 411 0); Let S: = R(S);

2. Apply @,: if the assignment 2,(S) does not satisfy more than
maxmean(S) clauses then exit;

3. Rename S, so that the assignment J,, ; , corresponds to the assignment
2,(5).

end

This loop is executed at most ¢/(S) times.

The proof of Theorem 1.2 is a straightforward generalization of the
NP-completeness proof for the 2-satisfiability problem given in [5].

We give a polynomial transformation A, which transforms a J-formula
S €T to a Y-formula A(S) €T, so that S is satisfiable, iff A(S) has an
assignment satisfying at least the fraction ¢’ > 7 of the clauses (¢’ = p/¢
rational). The definition of 7 and the general expression for mean,(S)
guarantee the existence of a symmetric formula S, for which only the
fraction ¢, < ¢’ can be satisfied.

Let S, contain m, clauses, of which only m, can be satisfied.! Let S be a
satisfiable yY-formula containing m clauses. A(S) consists of z, copies of §
and z, copies of S, so that the following conditions hold: If f(r|, z,, z,) =
(r-z; +myz;)/(m-z, +mz,) then (1) f(m — 1,2}, 2,) <" =p/q, (2)
i 21y ) = =04,

It is straightforward to check that both conditions hold, if z; = m,; p —
m,q and z, = m(q — p) and ¢'m <m — 1. The latter inequality may be
assumed without loss of generality.

Note that for this reduction it might be important, that a formula can
contain multiple clauses, since the formula S, might necessarily contain
multiple clauses.

7. GENERALIZATION TO PARTITIONED FORMULAS

Theorem 1 allows a natural generalization. Instead of considering y-for-
mulas S we look at partitioned y-formulas, which have an additional
structure given by a partition of the variables. For simplicity of notation we
only consider partitions into two sets; the generalization to several sets (a
constant number) is straightforward. There are at least two motivations to

1 . T 3 .
S., can be found in finite time, since the formulas in T' are countable.
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study partitioned formulas: (I) It is possible that

. SA(S, J) . SA(S, J)

inf max ———————> inf g

SET all assignments Cl( S) SeSYM(T) all assignmenis CI(S)
Jof S Jof S

if not SYM(I') C T. (II) The approximation behavior of the maximum
Y-satisfiability problem is open. This sets the stage for the generalization of
theorem 1 to partitioned formulas.

Terminology: mean (S is replaced by mean};2(S), where n; + n, is the
number of variables in S. mean}'}*(S) is the average number of satisfied
clauses among all assignments which set k, of the first n, variables and k, of
the next n, variables to 1. Let I, be a set of partitioned y-formulas.
SYM,(T,) denotes the class of “partially” symmetrized formulas in I,. The
symmetrization is done with permutations preserving the partition of the
variables of a given formula.

If T, is a set of partitioned y-formulas, we denote with I the correspond-
ing set of Y-formulas without the partition.

Define

maxmean™"2(S) = max mean}';2(S).
0=k, =n 15
0=k,=n

THEOREM 2. Assume that L, is not “trivial ”, i.e. the maximum -satisfia-
bility problem for y-formulas in T, is NP-equivalent.

2.1 If SYM(T,) CT,, then there is a polynomial algorithm
MAXMEAN™"2, which satisfies the fraction

= inf max Bl 1)
T = Ealah
L T, all assignments cl ( Ay )
Jof S

of the clauses for a partitioned Y-formula S € T,.

22 If (@) SYM(L)E L, and (b) the -satisfiability problem for the
formulas in T, is NP-complete, and if (¢) T is closed under concatenation of
formulas with disjoint variables, then: The set of Y-formulas in I, which have
an assignment satisfying the fraction 7' of the clauses is NP-complete for any
rational 7' > Tp .

2.3 Algorithm MAXMEAN™": satisfies at least maxmean™"*(S) clauses
Jord €L,

24 If T is closed under renaming, then the problem of finding an
assignment that satisfies > maxmean ""*(S) clauses for S € T,, is NP-equiv-
alent.
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2.5 The polynomial algorithm MAXMEAN™"2 guaranteed by 2.1 can be
computed in polynomial time.

The proof of-Theorem 2 is similar to the proof of Theorem 1. However
Fhere are some interesting differences, which are pointed out in the follow-
ing.

1. Algorithm MEAN (for partitioned formulas)

. II}Put: y-formula S with a partition of its n, + n, variables into 2 classes

the first n, are in class 1, the next n, in class 2. Int ’
ok e 2 ntegers k|, k, (0 <k, < n,,

Output: Assignment which satisfies at least mean}'y2(S) clauses

152 )

for all variables x in S in class 1 do
if meany|” 1 32(8,— ) > mean} (S, o)
thenx:=Likj:i=k — 1;8:=8,_,
else x:=0; 5:=§,_,

for all variables y in S in class 2 do
if meanj2~1(S,—,) > mean}2(S,_,)
theny:=1;ky: =k, — 1; 8: = o
elsey:=0,S:=8,_,

(mean™ "z (S') and meany! "2 (S) are defined to be zero)
2. Computation of mean;';2(S) from the truth tables.

meanii(S) = 3 txSATI(R),
all relations =
RES
where
ng) rz(ER) A’i_ f[ kj n; — k]
st o | rRY Y e N VBB — &
1 92 H J g=1 J 5]
s |
SATL(R) = e

j=1 \5(R)
whf:re_: r(R) isAthe rank of relation R in class j, 4,, s{R) is the number of
sat1sf¥ed rows in the partitioned truth table of R which contain exactly s,
ones in class 1 and s, ones in class 2, n ;1s the number of variables in class j,
k; is the number qf variables in class j which are set to 1.
These formulas imply that algorithm MAXMEAN"™" can be generated in
polynomial time.
thj3. The determinat@on of the optimal &, k, with classical methods is in
s case more complicated. Of course, the optimal pair could be determined
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by searching all relevant pairs, but if the degree of meany';2(S) is small
compared to the number of variables in S, then there are considerably faster
methods.

Partitioning in the limit

By partitioning the variables of a given formula into smaller and smaller
sets, we get better and better approximations and finally the optimal
assignment. Of course, the running time increases as the partitions get finer
and finer. A parallel implementation of log,(n) algorithms (n = number of
variables) of type MAXMEAN mna-- 7 geems to exploit in an optimal way
the fact, that already the solution found with a coarse partition might be
optimal.

Let S be a y-formula with n = 29 variables. Let the n variables be
partitioned into ¢ = 2" sets of equal size n/2"(r = log,n = q). The complex-
ity to find maxmean™">" "™(S) is bounded by (n/1 + -0l SFy<g*
0(| S |°) for some constant ¢. This bound even holds, if it is allowed to check
all possible values mean}';2 " ;(S). The algorithms MAXMEAN*,
MAXMEAN™", MAXMEAN™""" ___ can be expected to find better
and better approximations and MAXMEAN™"2" % finds the maximal
assignment, since n, = 1 for 0 =i =n.

It would be interesting to know for the sequence of log(n) = g algorithms
MAXMEAN*, MAXMEAN™"%,. .., MAXMEAN™ """, which one usually
finds the optimum first. For symmetric formulas obviously the first algo-
rithm terminates first.

8. GENERALIZATION TO MAXIMUM v/,~SATISFIABILITY

Let Y, = {R,,...,R,} be any finite set of relations on subsets of
{0,1,...,d}*. A relation R of rank r(R) is an ordered subset of {0, Lizsewangth e
A y,-formula is a sequence of clauses each of the form R ,(x,, x,,...), where
X, X,,... are variables whose number matches the rank of R, {i €
1,...,m)}. The maximum y;,-satisfiability problem is defined by:

Instance: A y,formula S.

Question: Find an assignment to the (d + 1)-valued variables of S that
satisfies the maximum number of clauses.

Theorem 1 directly carries over to the maximum y,-satisfiability problem.

THEOREM 3. For all constants d and for any finite set {, of relations on
{0,1,...,d}* and for any nontrivial set T' of Y, ~formulas the following holds
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3.1 If SYM(T') C T, then there is a polynomial algorithm MAXMEAN
that satisfies the fraction

T = inf max w
SE€T all assignments CI(S)
Jof §

of the clauses for a given {,~formula § € T..

3.2 If (a). SYM(T') C T, and (b) the y,-satisfiability problem for the
formulas in I' is NP-complete, and if (c¢) I is closed under concatenation of
formulas with disjoint variables, then for any rational v' > 1. the set of

Yy ~formulas in T' which have an assignment satisfying the fraction ' of the
clauses is NP-complete.

5 ’3{;‘.3 Algorithm MAXMEAN satisfies at least maxmean(S) clauses for
=g

, 34 If T is closed under renaming, then the problem of finding an
assignment that satisfies > maxmean(S) clauses for S € T, is NP-equivalent.

3.5 The polynomial algorithm MAXMEAN guaranteed by 1.1 can be
computed in polynomial time.

. Agail} the _proof of Theorem 3 is similar to the proof of Theorem 1. The
interesting differences are pointed out in the following. For simplicity of
notation we assume d = 3. The generalization is straightforward.

1. Algorithm MEAN

)Input: yy-formula S with n variables, integers k, k,, k,(k, + k, + k, =

n).

Output: Assignment of 0, 1 or 2 to the variables of S, so that at least
meany, , . (S) clauses are satisfied.

for all variables x in S do
begin
let j € {0,1,2}) be the number of the element in the list

n—1 n—1 = 2 e
(meanuf_l,kl,ﬁ_cl(s_’x=0)! meany i 1,k {Sx=1) meanzo,}c,,kz—l(sx=z)) which is
maximal in this list.

X=j;8=8,.;
end

The correctness of this algorithm is based on the recurrence relation

k
meanzg,k],kl(s) = ?Omeanzo_—ll,k,,kz(Sx:O)
+ ﬁme nl S
" ‘mku,k,ﬂ,kz( )

+££me o Y
¥ anko,}cl,kz—]( AN 8
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2. Computation of meanj ; ., from the truth tables (d = 2)

mean}, ; , (S) = 2 1 84T),  (R),

all relations
RES

where
SA4 Tk’;k,kz( R)

qsosl(R) = kD e kl

05so+§5r(n) (r(R)) _ (r(R) ms(,) ' (kff) (fl) ' (r(R) £l A

8o 8

|

(r(x)

where k, is the number of variables set to v(» =0 ---d— 1, k,=n — k,
—ky = —k4_1)s 4y, .5, (R) is the number of rows in the truth table
of R which contain exactly s, times number » (# =0...d — 1,5, = r(R) —
g e L

These formulas imply that algorithm MAXMEAN can be generated in
polynomial time (for constant d ).

3. The computation of the optimal k,, k,, k, for a given formula § can be
done with methods similar to those used for partitioned formutas. The brute
force approach to compute the optimal k, k&, k,,. ..,k  gets very expensive
as d grows. Let p(n, k) be the number of partitions of n into exactly &
summands. Note that p(n, k) = (l/k!)(z: ‘l) and that the number of
evaluations of mean, , . (S)is = p(n, k), if the brute force approach is
used to compute maxmean(S).

In some special cases (e.g. for approximate graph coloring) the optimal
ko, ky,. ...k, can be computed analytically.

Another way to avoid this problem is to translate the y,-satisfiability
problem to a y,-satisfiability problem. This is very easy, if d + 1 is a power
of 2. However such a translation looses a part of the structure and it might
be that maxmean (translated ¢,-formula) < maxmean(original y,,-formula).
However, mean ,, ;(translated y,-formula) = mean ,, ;(original y,-formula).

4. The generalization of MAXMEAN* to the maximum y;,-satisfiability
problem requires a generalization of renamings. Let ¢, be a finite set of
relations, i.e. a finite collection of subsets of {0, 1,...,d}*. A renaming of a
variable of value » is a substitution of e,(x, ») = (x — »)mod(d + 1) for
variable x. If 4> 1, then linear inequalities are not mapped into linear
inequalities under such renamings.
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9. COMPARISONS AND SUMMARY

Let mean ,;,(S) be the average number of satisfied clauses among all
(d + 1)" assignments of a y,-formula S with n variables. How can we
efficiently find an assignment satisfying at least mean 42.2(S) clauses for a
given y,-formula §? One could try a randomized algorithm which generates
ranFlom assignments, but it is not clear how many assignments are needed
until we get one which satisfies at least mean arr(S) clauses. The following
algor:ithm MEANALL is deterministic and fast. For special sets i, of
relations algorithm MEANALL has already appeared i the literature (e.g.,

in [4] for the satisfiability problem or in [11] for the graph coloring
problem).

Algorithm MEANALL
Input: A y,-formula S containing n variables.
Output: An assignment j which satisfies mean , £.r(S) clauses.
for all variables x in S do J
begin
Compute j.. such that

max = »
0=j=d mean 1 Sy=;) = mean 4 (S, )

A= b= 8§

X=jmax
end

IRgmarks: (1) The correctness of this algorithm is based on the recurrence
relation

1
mean 4, ,(S) = m(mea",qu(sx:o) W4 3 +meanALL(Sx=d))'

(2) For a y,-formula S:

mean 4, ,(S) = 2

all relations
Res§

temp(d + 1) "R

where m, is the number of satisfying rows in the truth table of R. (3) For

}a{?(s' ;enamjng R algorithm MEANALL shows the same behavior on S and

Comparison of MEANALL /MAXMEAN

We can expect that most of the time MAXMEAN finds a better assign-
ment than MEANALL. For some v, mean 4z(8) is not an absolute
-optimal performance bound in the sense that [ mean ,, , (S )| + 1 clauses
can be satisfied in polynomial time. What can be easily proven is that
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maxmean(S) = mean 4, ;(S). This follows from

n!
!meankokh___’kd(S)

meanALL(S) == 2 kolk !k,

kothk+ - +ky;=n

Equality holds, iff mean, ; ... (S) is independent of iy Kyssaakys [ The
formulas for which mean, ; ... (S) is independent of k., k, ---k, are
rare. Hence algorithm MAXMEAN usually guarantees more than algorithm
MEANALL, if the performance bound is expressed as a rational number
(maxmean(S) and mean;,(S)). Of course [ maxmean(S)]
—[mean 4, ,(S)] is possible, although maxmean(S)> mean 4 ,(S). For
some sets I' of ,formulas algorithm MEANALL satisfies at least the
fraction

7= inf  max SAE )
SeT all assignments Cl'(S)
Jof §
of the clauses. This happens e.g. with the approximate graph coloring
problem with d + 1 colors. In this case T = mean 4, @ =d/(d+ 1)
As a rule of thumb we have
mean 4 ;. SA(S, J)

= inf max
Cl( S ) SET all assignments C!( S )
Jof§

if the maximum of mean ; ..., (S) is achieved, if all k(0 =j = d) have
about the same size.
The comparison of MEANALL and MAXMEAN can be carried over to

compare MAXMEAN and MAXMEAN"™"2.
Let maxmean"(S) = maXg—g,<z,Meany'’y ;. Letn = n, + n,. Since

n —_— 1 LI nl n2 mn
me””L,(S) = 20 L\, -1, meanLiz,zL,—Lz(S)

’
L
nyny

we get maxmeany'"*(S) = meany (S) and equality holds if meanj'"y ; (S)

does not depend on L,. The above relationship holds, since
L 1n, n, n, +n,
S (Lz (LI_LZ)_( L, )

L,=0
(Vandermonde’s identity). Since

maxmean™"(S) = maxmean'"*(S) = mean],
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we can expect that for a random renaming R algorithm MAXMEAN™"2
applied to R(S) will find a better assignment than algorithm MAXMEAN
applied to R(S).

Algorithm MAXMEAN* has an interesting interpretation, namely, it is a
polynomial algorithm for a relaxation of generalized maximum satisfiability.

The maximum 4,-satisfiability problem can be formulated in the follow-
ing way: Given a y,-formula S, find a renaming of the variables of S, so
that the assignment that assigns 0 to all variables, is optimal.

Algorithm MAXMEAN* solves the following relaxation in polynomial
time: Given a formula S, find a renaming, so that the assignment which
assigns 0 to all variables, is optimal for the worst-case formula among all
formulas similar to the renamed one. By the worst-case formula we mean
the formula in which the minimal number of clauses can be satisfied. Two
formulas are similar, if they contain for each relation R the same fraction of
clauses containing R. The worst-case formulas are symmetric.

CONCLUSION AND OPEN PROBLEMS

A y-formula § is said to be k-satisfiable if any k clauses can be satisfied.
The y-k-extremal problem consists of: Find a polynomial algorithm which
satisfies at least the fraction

TR 54(8..0)
Ty = inf L e
all ke-satisfiable all assignments  ¢l(S')
y-formulas § Jof S

of the clauses in a k-satisfiable ¢-formula. The solution of the y-k-extremal
problem for any & and ¢ would give a striking insight into the structure of
Y-satisfiability problems.

In this paper the y-1-extremal problem is solved for any ¢ since the set of
1-satisfiable y-formulas is closed under symmetrization. [13] contains partial
results regarding the solution of the y-2-extremal problem.
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