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ABSTRACT A conjunctive-normal-form expression (cnf) IS said to be 2-satisfiable if and only if any two 
of  its clauses are simultaneously satisfiable It is shown that every 2-satisfiable cn f  has  a truth assignment 
that satisfies at least the fraction h of  its clauses, where h = (x/5 - 1)/2 ~ 0.618 (the reciprocal o f  the 
"golden ratio"). The proof  ~s constructive m that it provides a polynomtal-ume algorithm that will find for 
any 2-sausfiable cnf  a truth assignment satisfying at least the fraction h o f  its clauses. Furthermore,  this 
result is optimal m that the constant h IS as large as possible. It is shown that, for any rational h '  > h, the 
set of  all 2-satisfiable cnfs that have truth assignments satisfying at least the fraction h '  o f  their clauses ~s 
an NP-complete set 

gEY WORDS AND PHRASES doubly transltwe permutations, golden mean, NP-complete, polynomial 
enumeration algorithm, polynomially constructive reductions, satlsfiabdlty 

CR CATEGORIES 5.21, 5.25, 5.39 

1. Introduction 

The inefficiency of the known optimization algorithms for many optimization 
problems (especially those which are NP-complete [2, 8]) has stimulated research 
into the possibilities of proving "performance guarantees" for simple and efficient 
heuristic algorithms. The following "performance guarantee" for polynomial ap- 
proximation algorithms has been studied extensively in the literature [5, 6]: The 
guarantee is quantified in terms of optimal solutions, stating that a particular 
algorithm constructs solutions that never differ in value from optimal by more than 
some fixed constant or by some constant percentage of the optimum value. When 
examples can be constructed that cause the algorithm to deviate from optimal by the 
maximal amount allowed by a proven performance bound, we may say that the 
"worst-case performance" of the algorithm is known exactly. 

Given this type of analysis, one might hope to classify problems by the nature of 
the best performance bounds known for them. However, rather than provide us with 
a meaningful absolute ranking for any problem, such a classification may merely 
reflect the limitations of our current knowledge [5]. There might yet be undiscovered 
polynomial approximation algorithms that provide guarantees better than those 
presently known. 

This paper presents a polynomial-time approximation algorithm for which the 
performance guarantee is provably the best possible (assuming that P # NP) among 
the class of polynomial algorithms. We call such an algorithm P-optimal. 
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Informally, a polynomial-time approximation algorithm is P-optimal if the problem 
of  guaranteeing better approximate solutions than those produced by the algorithm 
is NP-complete. This implies that if  a polynomial approximation algorithm B is P- 
optimal and P # NP, then there exists no polynomial-time algorithm which guar- 
antees more than B. 

A conjunctive-normal-form expression (cnf) is a finite sequence of clauses, with 
repetitions allowed, where each clause is a disjunction of  different literals (a literal is 
either a variable A or its negation A '). 

An interpretation of a cnf s is an assignment of  truth values ("true" and "false") to 
the variables of s. A cnf is satisfied by an interpretation iff every clause contains 
either a variable A to which true is assigned or a negated variable B'  such that false 
is assigned to B. 

If  the sequence s is 

{A V.B,A V.8',A' V B'), 

it is satisfied by the assignment of  true to A and false to B. There are, of course, cnfs 
which are not satisfiable. The simplest case is a cnf in which one clause is a variable-- 
say A- -and  the other is its negation A'. The following is an example of  an 
unsatisfiable but 2-satisfiable cnf: 

{A,B, C,A'V B'V C'}. 

This cnf contains a satisfiable subsequence which consists of three clauses. 
This paper deals with the "maximum satisfiability" problem of [7]: Given a 

conjunctive-normal-form expression (cnf), with repeated clauses allowed, find a truth 
assignment that satisfies a maximum number of the clauses. Algorithm B2 in [7] 
satisfies at least (Isl - weight(s)) clauses of a cn f s  [10]. Weight(s) is the sum of the 
weights of  the clauses in s, and the weight of a clause c is 2 -M, where Icl is the 
number of  literals in c. In [7] it is shown that there exist cnfs s in which I sl - 
weight(s) is the maximum number satisfiable. 

The current paper considers an algorithmic technique (called symmetrization) 
which allows a finer analysis. In the case of symmetrization, the worst-case perform- 
ance bound depends not only on the lengths of  the clauses in the input but also on 
the number of negated variables in each clause. We apply symmetrization to a special 
class, the "2-satisfiable" cnfs. In a 2-satisfiable cnf, unary clauses are allowed, but if 
clause A is present, then clause A'  is forbidden. From a result in [7] or the analysis 
mentioned above we would expect that in every 2-satisfiable cnf we can satisfy at 
least the fraction ½ of the clauses but not more than ¼. Indeed, the answer turns out 
to be ~0.618, the reciprocal of the golden raUo. 

The symmetrization technique provides both a proof of this result and an efficient 
algorithm. Moreover, although the 2-satisfiable cnfs are mainly of  theoretical interest, 
our computer experience with symmetrization indicates that this technique may also 
be a valuable practical method in general. 

The main theoretical results are 

THEOREM I. For a 2-satisfiable cnf s there exists a satisfiable subsequence of s that 
has at least h. [ s I clauses (where h is the reciprocal of  the golden mean, h z + h - 1 = 
O, h > O, and Isl is the number of  clauses in s). 

THEOREM 2. Let ho be a number greater than h. Then there exists a 2-satisfiable 
cnf s containing no sausfiable subsequence of s that has at least ho. I sl clauses. 
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COROLLARY 1. There exists a polynomial algorithm (called ENUMERA TE) which 
finds an interpretation J for  every 2-satisfiable cnf s such that J satisfies at least h. [ s I 
clauses. 

COROLLARY 2. For any rational h', h < h' _< 1, the set of  2-satisfiable cnfs which 
have an interpretation satisfying the fraction h' o f  the clauses is NP-complete. 

Symmetrization as a (non-polynomial-time) constructive reduction is a well-known 
technique; for example, it is used in [3] for coloring problems of hypergraphs. 
Symmetrization is an instance of the following general technique: Given a problem 
F which has to be solved either exactly or approximately, transform F to a "simpler" 
problem so that the solution of the "simpler" problem easily allows solution of the 
original problem. Symmetrization is unusual in the sense that it simplifies by making 
larger. 

Example. Consider the graph G (Figure 1) with five nodes and nine edges. The 
problem is to color this graph with three colors so that the fraction of the edges 
satisfying the coloring condition (adjacent nodes have different colors) is "close" to 
maximum. The "simpler" problem to which this graph is transformed is the complete 
graph with five nodes. It is easy to compute an optimal coloring with m colors for the 
complete graph with n nodes. Let r = n mod m. The fraction of the edges for which 
the coloring condition is satisfied by the optimum coloring with m colors is 

n2(m - 1) + r(r - m) 
d(n, m) = 

m . n . ( n -  1) 

4 The simple, but crucial step follows now: If the optimum for the Hence d(5, 3) = ~. 
complete graph with five nodes is 4 g, then there is a solution for the given problem 
such that the coloring condition is satisfied for at least the fraction ~- of the edges (i.e., 
eight edges). This can be proved by considering the complete graph as the "overlap- 
ping" of 5! permutations of the original graph. 

The remainder of the paper is organized as follows. In Section 2 we reduce 
Theorem 1 in two steps to a simpler form which can be proved directly; step 2 applies 
symmetrization. In the last part of Section 2 we prove Theorem 2. In Section 3 we 
present and analyze algorithm ENUMERATE, which applies symmetrization in a 
polynomlally constructive form. We show that Algorithm B2 of [7] is in general 
unable to provide the best guarantee in the 2-satisfiable case. Section 4 contains the 
proof of the NP-completeness result, and the paper concludes with some open 
problems. 

2. Reductwns 

We use three reductions to prove Theorem 1. For the definition of the reductions we 
need the following notions. The length of a clause is the number of occurrences of 
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literals in it. A literal is said to be positive if it is a variable; otherwise it is said to be 
negative. We say that a cnf s has property GM if s has an interpretation which 
satisfies at least h. I s [ clauses. 

Theorem 1 states that each 2-satisfiable cnf has property GM. In the following we 
reduce the set of  all 2-satisfiable cnfs to a set RED 1, so that RED 1 has property GM 
iff all 2-satisfiable cnfs have property GM. 

Definition 1. RED 1 is the subset of 2-satisfiable cnfs with the following proper- 
ties: 

(1) The clauses of length 1 only contain positive literals. 
(2) The clauses of length 2 only contain negative literals. 
(3) There are no other clauses. 

PROPOSITION 1. Each cnf  in REDI  has property GM. 

LEMMA 1. Proposition 1 ~ Theorem 1. 

PROOF. Let s be an arbitrary 2-satisfiable cnf. We simplify s to a cnf T(s) 
according to the following rules: 

(1) For each variable L which occurs negated in a clause of  length 1, replace all 
occurrences of  the literals L and L '  by their complements. 

(2) In clauses containing positive literals, drop all but one positive literal. 
(3) In clauses containing only negative literals, but more than one, drop all ex- 

cept two. 

T(s) is in RED 1, and to each interpretation I1 of  T(s) corresponds an interpretation 
I of  s which satisfies at least as many clauses in s as I 1 in T(s). Hence, if each cnf 
T(s) in RED1 has property GM, each 2-satisfiable cn f s  has property GM. [] 

A cnf s in RED 1 can be described as follows: s contains n variables V1, V2, . . . ,  Vn. 
The clause V, of  length 1 occurs x~ times. The clauses Vj' V Vg of length 2 occur yT.k 
times ( j  < k). (The clause Vk' V V / ( j  < k) is identified with the clause Vj' V Vg.) 
Hence a cnf of  RED 1 is determined by 

(1) a natural number n (number of  variables); 
(2) n numbers xl, x ~ , . . . ,  xn (repetition factors for the clauses of length 1); 
(3) (~) numbers y12, y13 . . . . .  yn-~.n (repetition factors for the clauses of  length 2). 

In the following we define a subset RED2 of RED 1 with the property that RED2 
has property GM iff RED 1 has property GM. 

Definition 2. RED2 is the subset of cnfs of RED 1 with the following properties: 

(1) x~ = xz . . . . .  xn; that is, all xj (1 _<j _< n) are equal. 
(2) y~2 = y13 . . . . .  yn-l.n; that is, all yj,k (1 _<j < n, j < k <_ n) are equal. 

PROPOSITION 2. Each cnf s in RED2 has property GM. 

LEMMA 2. Proposition 2 =-~ Proposition 1. 

PROOF. This proof uses symmetrization. Let s be a cnf in RED 1, and let W be a 
set which contains the variables of s. We construct a symmetrized cnf s' in RED2 
which contains the variables in W, such that s '  has property GM iff s has property 
GM. 

The construction of  s '  is based on a doubly transitive permutation group PG of W. 
A permutation group is said to be doubly transitive if it is transitive on the ordered 
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tuples [1, p. 139] (i.e., for all AI,  A2, BI, B2 in W ( A I  # A2, BI # B2) there is a 
permutation II  in PG such that II(A 1) = BI and II(A2) = B2). The full permutation 
group which will be used in this proof  is an example of  a doubly transitive group. 

To an element II of  PG we associate the cnf II(s) which is defined as the result of  
substituting II(A ) for A (for all A in W). We define S [PG](s) to be the concatenation 
of  the sequences II(s) for all II  in PG. Let J be an interpretation of  S[PG](s) which 
satisfies the fraction h '  of  the clauses in S[PG](s). It is obvious that there is at least 
one element II in PG such that J satisfies at least the fraction h '  of  the clauses of  
1-I(s). The interpretation J ' ,  defined by J '  = J o H -~ (i.e., J'(A ) = J(II-I(A ))) satisfies 
the same number of  clauses of  s as J satisfies clauses of  II(s). 

It remains to be shown that S[PG](s) is an element of  RED2. We use the following 
fact about permutation groups, which the reader can readily verify. 

FACT 1. Let PG be a doubly transitive permutation group on a set W, and let V1, 
V2 be elements of W (VI # V2). Let gl[PG] be the number of elements 1-I of  PG 
such that I-I(Vl) = VI, and let g2 [PG] be the number of elements II of PG such 
that I-I( V l) = VI and 1-I(V2) = V2. Then for all elements X, Y in W, there are exactly 
gI[PG] elements II of PG such that II(X) = Y. Moreover, for all pairs (X1, X2), 
(Y1, Y2) (XI # X2, YI # Y2) there are exactly g2 [PG] elements I1 of  PG such 
that II(X1) = Y1 a n d I I ( X 2 ) =  Y2 [1, Ch. 39]. 

An immediate consequence of  Fact 1 is the following. Let s be a cnf in RED 1, and 
let W be a set which contains the variables of  s. Assume that x clauses of  s are of  
length 1 and that y clauses are of  length 2. Let PG be a doubly transitive permutation 
group on W. Then the following hold for S[PG](s): 

(1) For  each A in W, the clause A occurs x .g l [PG]  times. 
(2) For each pair A, B of different elements of  W, the clause A '  ~/ B '  occurs 

2.) , .g2[PG] times. 

The factor 2 appears since the clauses A'  V B'  and B'  V A'  are identified. 
Thus s[PG](s) is an element of  RED2 and the lemma is proved. [] 

PROPOSITION 3. For all natural numbers n > 1 and all posttive rational numbers a, 
there exists a natural number k (0 <_ k <<_ n) such that 

k .a  + (~) - (~) 
> h. ( l )  

n.a + (~) 

LEMMA 3. Proposition 3 ~ Proposition 2. 

PROOP. A cnf s in RED2 is described by natural numbers n, x, and ),, where n is 
the number of  variables, x is the multiplicity of  the clauses of  length 1, and ), is the 
multiplicity of  the clauses of  length 2. Note that there is an interpretation satisfying 
all literals if), = 0 or n -- 1; so assume), > 0 and n > 1. I f k  is the number of  variables 
in s which are set true, then 

clauses are satisfied. The total number of  clauses in s is 

We define a = x/),. This is well defined, since we assumed ), > 0. The fraction of  
clauses satisfied is then (k .a  + (~) - (~))/(n.a + (~)). Hence a cnf s (in RED2) 
described by the numbers n, x, and) '  has property GM i f f ( l )  is true. []  
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PROOF OF PROPOSITION 3. We only use elementary calculus. 
I f  a _> n - 1, choose k = n; then (1) is satisfied. In the following we assume that 

a < n - l .  W e p u t  

k . a  + (~) - (~) 
f ( n ,  a, k )  -- 

n . a  + (~) 

Then Proposition 3 is equivalent to the following: For  the solution h[n] of  the min-  
max problem 

min max f ( n ,  a, k) ,  
0<a<n--10~_k~n 
a rational k integer 

the inequality h < h[n] holds. First we give an intuitive pseudoproof. Inf (n ,  a, k) we 
replace the expression (~) by n2/2 and (~) by k2/2  and call the resulting function 

f l (n ,  a, k ). Hence 
2 . k . a  + n e - k 2 

f i (n ,  a, k )  = 2 . n . a  + n 2 

ffi(n, a, k )  as a function of  k is maximal if k = a. We substitute a for k infa(n, a, k) 
and obtain 

a 2 + n 2 

f2(n, a) = 2 . n . a  + n 2" 

Note that 

f2(n, a) _> minj~(n, a) -- h. 
n>0 
a_>0 

The minimum is reached for a / n  = h. 
To prove Proposition 3, we observe that 

f ( n , a , k ) > h  

iff  

- k  2 + k.(1 + 2.a)  + n . ( n  - 1).(1 - h)  - 2 . n . h . a  > 0. (2) 

Let ks and k2 be the two solutions of  the quadratic polynomial in k on the left side 
of  inequality (2). Note that the average (kl + k2)/2 ffi a + 1/2. For  this possibly 
nonintegral value of  k, it is easy to show that (2) holds. Let 

d(n, a) = [ks - k2[ 
= ((1 + 2 .a )  2 + 4 . n . ( n  - 1).(1 - h)  - ( 8 . n . h . a ) )  ~/2. 

If  d(n, a) > 1 (n > 1, a _> 0), then there exists at least one integer k for which (1) 
holds. Therefore we prove that d(n, a) > 1 if n > 1. The minimum of  d(n, a) with 
respect to a is at 

a m m - - n . h - ½ .  

We replace a in d(n, a) by atom and, by making liberal use of  the identity h e + h - 

1 -- 0, we obtain a function 

dl(n) -- ~/4.n .h  - 4 . n . h  2. 

The identity h. (1 - h) ffi h a implies that 

dl(n)  = x / ~  3. 
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Note that dl(n) > 1 if n > 1. Therefore, if n > 1, the following holds for all 
real a: 1 < d~(n) ~. d(n, a). Hence k can be chosen in the interval J -- [a + ½ - z, 
a + ½ + z], where z = (n. h3) 1/2. 

J contains at least one integer if n > 1. Moreover, the breadth of  the interval is 
proportional to ~n which shows that we have much freedom in choosing k. This 
remark (with the above proof  showing it) is due to S.E. Knudsen. []  

PROOF OV THEOREM 2. It is sufficient to define a sequence sl, sz . . . . .  s,~ . . . .  of  2- 
satisfiable cnfs such that the fraction hn of  satisfiable clauses tends to h for n ~ oo. 
Given such a sequence S and a number h0 (h < h0 -< 1), there are infinitely many 
cnfs s in S such that s contains no satisfiable subsequence having ho.lsl or more 
clauses. 

The sequence S we use contains cnfs which are all in RED2. Hence an element of  
S is described by a natural number n (the number of  variables) and a rational 
number a (the quotient of  the multiplicity of  the clauses of  length 1 and the 
multiplicity of the clauses of length 2). We give a sequence of  rational numbers a2, 
aa . . . . .  a . . . . .  which describes a sequence S of  cnfs of  the reduced type within a 
constant multiple of  the multiplicities. 

We set 

Fn 
a n - -  n 'F~ , 

t t + l  

where Fn is the nth Fibonacci number (n _> 1, F1 = 1, F2 ffi l, Fn ffi Fn-1 + Fn-2). 
Observe that 

lim -~ = h. 
n--~ o~ n 

To motivate the definition of  the sequence S, we recall that the minimum 

a 2 + n 2 

min - h 
n>0 2 .n .a  + n 2 
o ~ 0  

is reached for a/n = h. It is easy to check that for this sequence S, the maximal 
fraction of  clauses which can be satisfied converges to h. 

Therefore, for all h0 > h there exist infinitely many 2-satisfiable cnfs s containing 
no satisfiable subsequence of  s which has at least h0. I s l clauses. []  

3. Algorithm E N U M E R A T E  

Theorem 1 guarantees for every 2-satisfiable cnf s an interpretation satisfying at least 
the fraction h of  the clauses. However our proof  is not polynomially constructive, 
since we used the full permutation group for symmetrizing. For  the full permutation 
group the order (group size = n!) is an exponential function of  the degree (set 
size = n). Fortunately there are sufficiently many "small" doubly transitive permu- 
tation groups for which the order is bounded by a small polynomial in the degree. 

I f  n is a prime p, then there exists a well-known doubly transitive permutation 
group DT[p],  the group of linear applications of the Galois field GF(p) .  Consider 
t h e p . ( p  - 1) permutations DT[p](q, r) on the set {1, 2 . . . . .  p}, which are defined 
as follows: 

DT[p](q,  r) = LAMBDA i ((q. i  + r )modp) ,  
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where 1 _< q _< p - 1, 1 _< r _< p, and 1 _< i _< p. The reader may readily verify that 
DT[p] is indeed a doubly transitive permutation group [1, Ch. 67]. 

Let s be a cnf in RED2 which contains n variables. Let p be the first prime greater 
than or equal to n. By the Postulate of  Bertrand [9, p. 22] we know that p < 2. n. 
Using the group DT[p] for symmetrizing s, we have to cheek at most p . ( p  - 1) 
interpretations in order to find an interpretation which satisfies at least the fraction 
h of the clauses in s. 

Let W be a set of  n variables, and let p be the first prime greater than or equal to 
n. We describe a set I(n) of interpretations of W which has the following properties: 

(1) Cardinality(I(n)) _<p.(p - 1).(p + 1) <p3.  
(2) For every 2-satisfiable cnf s with variables in W there is an interpretation in l(n) 

which satisfies at least h. I sl clauses in s. 

Set 
p p--1 p 

I(n) ffi U U LI INT(n, k, q, r), 
k-O q--1 r~l 

where the interpretations INT(n, k, q, r) are defined in the following way. Let RP[k] 
be an arbitrary permutation o f p  variables. Then variable V, in W (1 _< i _< n) is set 
true by the interpretation INT(n, k, q, r) iff 

((q. (RP[k](i)) + r)mod p) _< k. 

Otherwise V, is set false. 
Note that we have defined a large number of different sets I(n)  because RP[k] can 

be chosen arbitrarily. 

LEMMA 4. Let s be a 2-satisfiable cnf in which each clause of  length 1 contains a 
positive literal, and let n be the number of  variables in s. Then I (n )  contains an 
mterpretation satisfying h. [ s] clauses. 

Lemmas 1 and 2 have been proved in such a way that they contain a proof of 
Lemma 4. 

Note that we can enumerate the polynomial set l ( n )  of "interesting" interpretations 
without knowing anything of  s except the number of variables. 

The following algorithm, called ENUMERATE, constructs an interpretation 
satisfying at least the fraction h of the clauses of a 2-satisfiable cnf s. 

(1) For each variable L which occurs negated m a clause o f  length 1, replace all occurrences o f  the hterals 
L and L '  by their complements.  (Afterward the clauses o f  length 1 only contain posluve hterals.) 

(2) Compute  the first prune p greater than or equal  to n, and let W be a set o f p  variables containing all 
those from s. 

(3) Enumerate  the set I(n) of  interpretations o f  W, and  choose an interpretation which sausfies the 
maximal number of clauses m s 

Analysis o f E N U M E R A  TE. Algorithm ENUMERATE is a polynomial algorithm 
in the number l of occurrences of literals in the input cnf. By the Postulate of  
Bertrand [9, p. 22] the next prime of an integer n can be found in time 0(n3/2). 
ENUMERATE checks at most 8.n a interpretations, where n is the number of  
variables of  the input cnf. Thus the overall running time is 0(n3.1). 

ENUMERATE does not use the reduction which transforms a 2-satisfiable cnf to 
an element in RED 1. If  this reduction is used, the algorithm has to check at most 
4.n 2 interpretations, because the optimal k (number of  variables set true) for a 
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symmetrized cnf  can be computed by using calculus. This would reduce the running 
time to O(n 2. l) but might be expected to behave poorly in practice. 

In [7] an algorithm B2 (for MAXIMUM SATISFIABILITY) has been introduced. 
Following [10], we also consider the variant RJ of B2. 

The algorithms are based on the notions of  weight of  a cnf and the elimination of  
a literal in a cnf. 

For a c n f s  the weight w(s) is defined to be ~c 2 -Lcl, where the sum is taken over 
all clauses c of  s. [ c [ is the number of  literals in c. It is convenient to allow clauses of  
length 0, which are always unsatisfied. 

Let s be a cnf and L a literal; then s[L ] is the cnf obtained from s by the following 
process of  elimination. A clause c of  s containing L is dropped. A clause c of  s 
containing L '  is replaced by the clause c'  obtained from c by dropping L '  in c. If  
literal L is eliminated, then the variable V corresponding to L is set true if L is 
positive. Otherwise V is set false. 

Algorithm B2 constructs an interpretation of  a cnf s by iteratively eliminating the 
literals in s. 

For  a cnf sO containing no variables, the weight w(sO) is equal to the number of  
empty clauses in sO. Therefore, if s is a sequence of  m clauses and sO is the last cnf 
in the elimination process, the fraction of  satisfied clauses is equal to (m - w(sO))/m. 

Algorithm B2 chooses the literal L to be eliminated in such a way that w(s[L]) _< 
w(s). (This is possible since for all literals L in s the following equation holds: 
(½).(w(s[L]) + w(s[L'])) = w(s)). The fraction of  satisfied clauses is therefore at 
least (m - w(s))/m. 

Algorithm RJ chooses a literal L0 so that w(s[LO]) <_ w(s[L]) for all L in s. 
We give an example of  a 2-satisfiable cnfsm for which RJ constructs (and B2 could 

construct) an interpretation such that only (3.m + 1)/(5.m + 1) ~ 0.6 clauses are 
satisfied. Sm is a sequence of  (5-m + 1) clauses Cl, c2, . . . ,  c5m+1 in 2 .m + 1 variables 
A, B1, B2, . . . ,  B2.m: 

! , ,  for t =  1 . . . . .  2.m; 
c , =  VB,-2.m' for i = 2 . m +  1 , . . . , 4 . m ;  

for i = 4 . m +  1 . . . . .  5 . m +  1. 

The weights are as follows: 

W(sm[A ]) = 2. m, 
W(Sm[A']) = 2.m + 1, 
W(Sm[Bj]) = 2 .m + ¼ ( j  = 1, . . . ,  2.m), 
W(Sm[B~]) = 2.m + ¼ ( j  = 1, . . . ,  2.m). 

Therefore variable A is set true by RJ, and at most the fraction (3 .m + 1)/(5 .m + 1) 
0.6 of  the clauses is satisfied (independent of the interpretations of  the remaining 

variables). 

4. NP-Completeness 

In this section we prove 

COROLLARY 3. The set of 2-satisfiable cnfs which have an interpretation satisfying 
the fraction h' (1 _> h' > h; h', e.g., rational) is NP-complete. 

PROOF. Let h' = p/q be a rational number (1 >_ h' > h). We use the fact that the 
set of  2-satisfiable cnfs is NP-complete [2]. Therefore we give a polynomial transfor- 
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mation T which transforms a 2-satisfiable cnf s to a 2-satisfiable cnf T(s )  so that s is 
satisfiable iff  T(s )  has an interpretation satisfying at least the fraction h' of  the 
clauses. 

Let s be a 2-satisfiable cnf  containing m clauses. We may assume without loss of  
generality that h 'm < m - 1. Since h' > h, there exist integers ml > m2 and a 2- 
satisfiable cnf  t (m  1, m2) containing m l clauses of  which only m2 are satisfiable and 
such that m 2 / m l  < h' (Theorem 2). T(s )  contains zl  ffi m~p - m2q copies of  s 
concatenated with z2 ffi m(q  - p )  copies of  t (ml ,  m2). In the following we describe 
how to compute zl and z2 as a function of  s and h'. 

I f  in cnf  s at most r (r ffi m or r = m - 1) clauses can be satisfied, then at most the 
fraction 

r . g l  + m2.g2 
f ( r ,  z~, z2) - 

m . z l  + m l ' z 2  

of  the clauses can be satisfied in cnf  T(s) .  The reduction T requires that 

f ( m  - 1, zl, z2) < h' and f ( m ,  zl,  z2) _> h'. 

It is straightforward to check that both inequalities are satisfied if  z~ = m l p  - m2q 
and z2 -- m ( q  - p) ,  since h 'm < m - 1. [] 

Remark. In [4] it is shown that the set of  cnfs containing clauses of  at most length 
2 and which have an interpretation satisfying the fraction ~ of  the clauses is NP- 
complete. Using a reduction similar to that in [4] and the above method, it can be 
shown that the set of  2-satisfiable cnfs containing clauses of  at most length 2 which 
have an interpretation satisfying the fraction h' (1 > h' > h; h', e.g., rational) of  the 
clauses is NP-complete. 

5. Open Problems and Concluding R e m a r k s  

So far we have discussed 2-satisfiable cnfs. Similar results hold for 1-satisfiable cnfs. 
A cnf is said to be 1-satisfiable if  it does not contain an empty clause. It is obvious 
that a l-satisfiable cnfhas  an interpretation which satisfies I s I/2 clauses. The constant 
0.5 is optimal, and an interpretation satisfying half  of  the clauses can be found in 
polynomial time. For any rational t (1 _> t > 0.5) the set of  1-satisfiable cnfs which 
have an interpretation satisfying t. I s I clauses is NP-complete. 

These results suggest the following generalization: A cnf  s is said to be k-satisfiable 
(k ffi 1, 2, 3 . . . .  ) iff any k of  its clauses are satisfiable. 

Conjecture Ck (k = 3, 4, 5 . . . .  ). There exists a constant rk such that 

(1) for any k-satisfiable cnf  s there exists an interpretation of  s satisfying at least 
rk. [ s[ clauses; 

(2) for any r greater than rk there exists a k-satisfiable cnfs  such that no interpretation 
satisfies r .  [ s [ clauses; 

(3) there is a polynomial algorithm which finds an interpretation guaranteed by (1); 
(4) if r~ < r and r is rational, the set of  k-satisfiable cnfs having an interpretation 

which satisfies at least r.  [ s [ clauses is NP-complete; 
(5) rk is algebraic. 

We conjecture that limk~oo rk ffi 1. 

Although the conjecture itself is only of  theoretical interest, its proof  might yield 
practical algorithms of  an unknown type. 
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Symmetrization can be applied to a special class of  systems of  linear inequalities 
of  the following type. Let s be a system of  linear inequalities (sli) Cl, c2 . . . . .  cm in n 
variables xl, x2 . . . . .  xn, where inequality c, is of  the form 

~ a,:x: _> b, (a,: E { 1, O, - 1  }, xj ~ {0, 1 }, b, an integer, 
.I--1 

l _< i_< m, l _< j_< n ). 

The following question is of  considerable practical interest: What is the complexity 
of  the problem of  constructing a (0, l)-assignment J to the variables of  an sli s so that 
J satisfies at least a given fraction of  the inequalities. A partial answer can be found 
in [11, 121. 
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