
The Specker Challenge Game for Education and
Innovation in Constructive Domains

Karl Lieberherr, Ahmed Abdelmeged, and Bryan Chadwick

College of Computer & Information Science
Northeastern University, 360 Huntington Avenue

Boston, MA, 02115 USA.
{lieber,mohsen,chadwick}@ccs.neu.edu

Dedicated to Ernst Specker to celebrate his 90th birthday.

1 Introduction

We have the following vision: To teach a constructive domain (e.g., domains in com-
puter science, mathematics, engineering, etc.), we design a domain-specific game where
the winning students demonstrate superior domain knowledge. The game is simple: the
students make constructive claims about the domain we want to teach and refute each
others’ claims. The students who are the most successful in defending their claims and
in refuting the claims of others win the game. Some benefits of the game are: (1) the
students give each other constructive feedback about their claims. Students who lose
points gain knowledge to improve their game in the future. (2) Although the students
are egoistic, maximizing their points, they create a common good: knowledge. The
claims that have not been successfully opposed are candidates for truth. (3) The game
is fun and adjusts to the skill levels of the students. It can be played productively by
undergraduates as well as by world-class researchers to push the state-of-the-art in a
domain. The game also serves as a useful, and novel software development process to
develop software for computational problems.

2 Claims and Refutation Protocols

At the heart of the game are two major concepts, those of claims and a corresponding
refutation protocol. Claims are made by one student, Alice. Alice is then engaged with
another student, Bob, in an instance of a refutation protocol to determine if Alice would
be able to successfully support her claim. Or if Bob would be able to successfully refute
Alice’s claim. Or if both Alice and Bob will tie.

2.1 Claims in a Nutshell

We distinguish between mathematical and non-mathematical claims.



2 Lieberherr et al.

– Mathematical. Those claims can be written as a mathematical statement that is either
true or false. For example, ∃(c, n0) s.t. ∀n ≥ n0 : n1/2 ≤ c ∗ (log(n))10. For those
claims we can determine in principle in advance that we have a winning strategy for
supporting or refuting them.

– Non-Mathematical. Those claims take the form of “I can construct a problem, know-
ing a very good solution for it that you cannot beat”. or “If you construct a problem,
knowing a very good solution for it, I can beat your solution”. For those claims we
cannot guarantee logically that we will win. We must play out the game and the refu-
tation protocol will decide. An example of a non-mathematical claim is the claim for
the Maximum Independent Set problem shown below or the claims in the renaissance
game.

2.2 Refutation Protocol in a Nutshell

The refutation protocol involves a message exchange between both students, Alice and
Bob, and a trusted third party called the administrator. The administrator serves as a
mediator for messages; Alice and Bob communicate only to the administrator and the
administrator forwards their messages to the other party. The administrator also serves
as a referee that decides who succeeds in the protocol.

The exact sequence of messages exchanged messages depends on the claim. We
assume that all three parties have agreed on a claim made by Alice. If the claim was
of the form ∃x ∈ X s.t.∀y ∈ Y (x) : predicate(x, y). Then Alice has to provide an
x ∈ X such that Bob cannot find a y ∈ Y (x) that makes predicate(x, y) false. On
the other hand, if the claim was of the form ∀x ∈ X ∃y ∈ Y (x) : predicate(x, y),
then Bob has to provide an x ∈ X such that Alice cannot find a y ∈ Y (x) that makes
predicate(x, y) true. In general, a pair of messages needs to be exchanged per every
pair of alternating qualifiers in the claim.

To handle non-mathematical claims, x may be extended to have an optional secret
part that is used to hold the secret solution. The administrator does not pass the secret
along to the other party, instead it stores it locally and uses it later in deciding on a
winner.

Note that Alice is not required to prove her claim, neither is Bob required to dis-
prove Alice’s claim (unless the refutation protocol explicitly requires them to exchange
proofs). Claims are supported or refuted via examples and counter examples. There-
fore, if Alice successfully supports her claim (Alice wins), it does not mean that her
claim is true. It could be that Bob made a mistake. If Bob successfully refuted Alice’s
claim (Bob wins), it does not mean that the claim is false. It could be that Alice made a
mistake. However, we can state the following properties of the game: If Alice is perfect
and Bob wins, the claim is false. If Bob is perfect and Alice wins, the claim is true. By
”perfect” we mean making the best decisions to win the game.

2.3 Claim Design

Claim design must follow a few principles. Mathematical claims that come from inter-
esting theorems with an even number of alternating quantifiers are good candidates for
claims. This is folklore knowledge.



Specker Challenge Game 3

The claims must have the property that it is ”challenging” for Alice to produce her x
and for Bob to produce his y (knowing x). It must be ”challenging” for Alice to produce
claims that cannot be refuted. It must be ”challenging” for Bob to analyze a claim to
reach the refute decision. Another issue in claim design is privacy. The information that
is exchanged between the players should not reveal too many secrets. Otherwise, the
players are less motivated to develop new ideas.

Claim design for educational purposes may have an indirect flavor. For some simple
claims, a significant amount of material needs to be mastered that is not at all mentioned
in the claim formulation.

2.4 Examples

O Notation How can we engage our students in a constructive discussion about the big
O notation. The instructor prepares for them a set of claims to choose from and Alice
chooses the following claim: n1/2 = O((log(n))10). The parameters to the refutation
protocol are:X = R+⊗R+, where R+ is the set of positive real numbers, and Y = R+.
There are no secrets in this case. The refute function is refute((C, n0), n) = (n <
n0) ∨ (n1/2 > C · ((log(n))10)). The refutation protocol is: Alice finds x = (C, n0)
and Bob finds n ≥ n0 so that refute returns true. After playing this game a few times,
Bob starts to refute consistently and they start looking for a reason. They remember a
theorem from calculus: log(n) ∈ O(nx) for every x > 0.

Highest Safe Rung Problem How can we engage our students in a constructive dis-
cussion about search, from linear search to binary search and what is between? Along
the way, we want to teach them about binary decision trees and attempting to minimize
the longest root-to-leaf path in such trees. More importantly, they learn about deriving
and solving equations and analyzing the asymptotic behavior of functions. We do this
by engaging the students in the following game between Alice and Bob. The game is
based on the following problem from [2]: You are doing some stress-testing on various
models of glass jars to determine the height from which they can be dropped and still
not break. The setup for this experiment, on a particular type of jar, is as follows. You
have a ladder with n rungs, and you want to find the highest rung from which you can
drop a copy of the jar and not have it break. We call this the highest safe rung. You
have a fixed “budget” of k ≥ 1 jars. By HSR(n, k) = q we summarize Alice’ claim
that she can determine the highest safe rung for a ladder on n rungs and a budget of
k jars with at most q experiments. The parameters to the refutation protocol are: X is
the set of sequences of questions to Bob of the form breaks(j): Does the jar break at
rung j? Y is the set of sequences of answers from Bob of the form true or false. The
answers must be consistent: if breaks(j1) is true then breaks(j2) holds for all j2 > j1
and if breaks(j1) is false then breaks(j2) does not hold for all j2 < j1. The refutation
function for HSR(n, k) = q is refute(n, k, q, x, y) returns true if (y is not consistent
with x) or (y contains more than k true answers) or (x contains more than q questions)
or the highest safe rung is not uniquely determined.

We give the following claims to choose from: HSR(9, 2) = 6,HSR(9, 2) =
5,HSR(9, 2) = 4,HSR(9, 2) = 3. Alice chooses claim HSR(9, 2) = 4 after find-
ing a decision tree whose longest root to leaf path is 4. Bob also tries to find a decision



4 Lieberherr et al.

tree of depth 4 but he cannot. Therefore Bob decides to refute Alice’ claim. However,
Alice successfully defends her claim. Bob tries to improve his decision tree construc-
tion based on the input he got from Alice through the game and he now also succeeds
to find a decision tree for HSR(9, 2) = 4.

Maximum Independent Set An independent set in a graph is a set of mutually nonad-
jacent vertices. The problem of finding a maximum independent set in a graph, IndSet,
is one of most fundamental combinatorial NP-hard problems. The refutation protocol
is: Alice constructs a graph G with at most n nodes and deposits her secret independent
set I1. Alice gives G as well as the size of I1 to Bob. In other words, I1 is a secret
for now. Bob has 10 minutes to construct his independent set I2 which he gives to Al-
ice and she checks it. Alice reveals her secret set I1 and Bob checks it. Bob wins iff
size(I2) ≥ size(I1) ∗ 0.9. A few of the topics that students learn while playing the
game: The difference between checking and searching algorithms; How to hide secrets;
How to search for secrets; Approximation Algorithms.

Min-Max Calculus is a constructive domain that can be covered with the game using
modern tools like WolframAlpha. We choose claims of the form: ∀x ∈ X∃y ∈ Y :
f(x, y) ≥ c. The claim is of the form ∀∃, therefore the refutation protocol is (Alice
claims, Bob tries to refute): Bob chooses x0. Alice chooses y0. Bob wins iff f(x0, y0) <
c.

Example: Claim GoldenRatio(c): minx∈[0,1]maxy∈[0,1](x∗y+(1−x)(1−y2)) ≥
c, where c in [0, 1]. If the players are perfect, claim GoldenRatio(0.62) is refutable
while claim GoldenRatio(0.61) is not. To find out why, calculus knowledge is needed.

For mathematical claims like this, it makes sense to close them under negation and
also allow:
Claim NegGoldenRatio(c): ∃x ∈ X∀y ∈ Y : f(x, y) < c. When Bob refutes claim
GoldenRatio(c) successfully, he claims a new claim NegGoldenRatio(c) to find out
whether his refutation was accidental.

Renaissance Games Consider yourself moved back a few hundred years to the time of
the Renaissance in Italy. The mathematicians challenged each other regarding the best
algorithms to solve problems. Tartaglia played the role of Alice and Fior the role of Bob
in a game about cubic equations. Tartaglia won because he had discovered a technique
to solve Fior’s equations while Fior could not solve the ones posed by Tartaglia.

They used the following adapted refutation protocol: x and y were delivered simul-
taneously, i.e., y does not depend on x. Alice solves Bob’s equations and Bob solves
Alice’ equations. X = Y = sets of cubic equations. x = thirty cubic equations from Al-
ice. y = thirty cubic equations from Bob. refute(x, y) = Alice solves fewer equations
in y from Bob than Bob solves in x from Alice within two hours.

Note that those renaissance claims are not mathematical claims in the sense of the
Highest Safe Rung claims or the Min-Max claims. Tartaglia could not be 100% sure
that he would win. But he thought that Fior had not discovered the solution technique
that he had and this gave Tartaglia a significant edge. But the game is interesting and
the winner demonstrates that he/she has better algorithms.



Specker Challenge Game 5

3 The Specker Challenge Game

The Specker Challenge Game (SCG) is a mechanism for encouraging a number of play-
ers to engage in the refutation protocol described above. The game revolves around
one central pool of claims. Players are encouraged to add claims to the pool by either
proposing new claims or strengthening existing claims. Players are also encouraged to
test claims already existing in the pool through the refutation protocol described above.
Players are evaluated based on their contribution to the pool of claims. A contribution
is either a non-refuted claim (i.e., a claim that has been successfully defended) or a
refutation of existing claims.

3.1 Game Benefits

The game motivates players to participate in a well defined dialog about a specific do-
main. This is important for educational purposes where students learn about the domain
through the dialog. Stirring up the communication between geographically dispersed
students in online education environments is a desirable feature. Players are engaged
because they will either win the game or win constructive feedback. If Alice loses, she
can study the y she got from Bob that made her lose. Maybe the y has a structure that
gives a hint at Bob’s clever technique for producing y. If Bob loses, he can study the x
that Alice created.

Also, the structured, domain-centered communication between scholars helps stir-
ring up the innovation in a specific domain.

A second benefit of the game is the accumulation of knowledge in a structured
manner. The central pool of undisputed claims is also a useful byproduct of the game. It
represents the state of the art knowledge about the domain. Note that players, scholars
in this case, can still keep important pieces of information to themselves.

Consider claims of the following algorithmic form: Alice claims she has an algo-
rithm that solves any problem x in X with a solution y(x) in Y (x) that has quality
q(Y (x)). The refutation protocol is: Bob constructs a hard problem instance x0 in X
and Alice must find a solution y of the claimed quality. If she cannot, Bob wins. Note
that Alice can keep her algorithm for solving problems in domainX secret and Bob can
keep his algorithm for generating hard problems in domain X secret. Yet a central pool
of hard problems and some good solutions for them is populated. Games of this kind
drive the scholars towards a common good, although they are egoistic: to find the best
algorithm and to pose the hardest problems. The scholars create social welfare through
their egoistic behavior thanks to the mechanism design the game uses.

3.2 Game Versions

Intensional Vs. Extensional Set of Claims Before playing the game all three parties
need to agree on a how claims are expressed. A domain expert is expected to provide
such specification. In the intentional version, the expert defines a language to express a
usually huge set of claims that may be proposed. In the extensional version, the expert
enumerates the universe of all possible claims that may be proposed.



6 Lieberherr et al.

Board Vs. Avatar SCG/Board is the informal version of the game where two students
challenge each other and together check the rules of the game. SCG/Board Extensional
is a convenient combination because of its low overhead. The students can control their
educational experience by choosing claims in a domain they want to explore further.
The universe of possible claims is usually enumerated by the instructor.

The main attraction of SCG/Avatar is that players get the opportunity to create their
“organism” that needs to fend for itself in a real virtual world inhabited by organisms
created by other players.

This version of the game works well when the domain is sufficiently simple
so that the task of proposing and opposing can be easily programmed. SCG/Avatar
brings to the game a strong software development component and a very fun competi-
tive/collaborative environment. The avatars live somewhere on the web, written in your
programming language of choice, and compete with each other in a full round-robin
or Swiss style tournament. We have observed that students during the running game
changed their avatar to improve its performance against the avatars of their peers. When
they come to class, they get a simple baby avatar that can walk and talk (it can briefly
survive on the web) but does not have much intelligence. Then they add intelligence that
is hopefully better than the intelligence that their peers add. The game creates a ranking
of the avatars that gives feedback to the students about their algorithm and software
development skills.

The Highest Safe Rung and Min-Max games could be easily played using SCG/Avatar
by teaching the avatars enough calculus so that they propose strong claims and success-
fully refute weak claims. We used a more complex version version of SCG/Avatar based
on the Constraint Satisfaction Domain.

3.3 The Scientific Community Game Mechanism

SCG is also an acronym for Scientific Community Game in which scholars compete for
reputation gained by proposing hard to refute claims or refuting existing claims. The
game proceeds according to the following rules:

– The game is a two player game.
– The game consists of a fixed number of turns. A turn can only take a fixed amount of

time.
– Scholars start with a fixed and equal amount of reputation.
– The sum of reputations remains constant throughout the game.
– There is only one central pool of claims. Initially, the pool is empty.
– Claims contain a real numbered field in the range [0..1] referred to as strength. Claims

also contain another real numbered field in the range [0..1] referred to as confidence.
– The credibility of a claim is the result of multiplying their confidence field by the

reputation of their proposing scholar at the time the claim is proposed.
– In each turn except the final turn, every scholar with a positive reputation must either:

– propose at least one new claim to be added to the central pool of claims.
– strengthen at least one claim from the central pool. Strengthening is not possible

in the first turn and is not allowed in the final turn.
– Scholars can also refute existing claims.



Specker Challenge Game 7

– Scholars strengthen claims by increasing their strength fields from si to st. When
they do so, they gain (st − si) multiplied by the credibility of the claim.

– Scholars refute claims by engaging in an instance of the refutation protocol men-
tioned above. The result is a recognition factor [−1..1]. The opposed scholar reputa-
tion gain is the recognition factor multiplied by the credibility of the claim.

Below, we give an explanation/rationale for some of the less obvious game rules:
It is important to keep the game a two-player game so that a player can regain its

reputation lost when its claims are strengthened by opponents. In a multi-player version,
players that come after weak players have the advantage of being able to gain reputation
by strengthening and refuting claims made by those weak players. Furthermore, in a
multi-player version, players can form coalitions in which one player loses reputation
for another player. These kind of coalitions are non-productive from the point of view
of the game purpose. The two player requirement is not a limitation though, as a multi-
player version can be derived from this two player version via a tournament made up of
multiple rounds (such as the Swiss-style tournament used in the FIFA world cups).

Confidence is a real number in [0, 1] that indicates how confident the proposer is
in the claim. The confidence should reflect the amount of effort that has been put into
the claim. Confidence 1 means that we believe that the claim cannot be opposed (i.e.
strengthened or refuted). For example, one could use confidence 1 for a claim for which
the scholar has a proof.

Strength is a real number in [0, 1] that indicates the strength of the claim. For exam-
ple, in the min-max domain mentioned earlier, the claim ∀x ∈ X∃y ∈ Y : f(x, y) ≥
0.62 is stronger than the claim ∀x ∈ X∃y ∈ Y : f(x, y) ≥ 0.61. In some domains,
there is no inherent notion of the strength of the claim, or there is an inherent notion of
strength that cannot be expressed by a real number in the range [0, 1]. The O-notation
domain is an example of such domains. In this case, strength is set to 1 and it is no
longer possible to strengthen claims.

Claims also have a credibility that is proportional to both it’s proposing scholar’s
“confidence” in the claim and it’s proposing scholar’s reputation at the time of propos-
ing the claim.

Since the sum of reputations is preserved and the initial reputation sum is positive,
we are guaranteed to have at least one scholar with a positive reputation. Scholars with
positive reputation are required to be active so that the game is guaranteed to produce
an accumulation of claims.

Scholars with positive reputation stay active by either proposing at least one new
claim or strengthening at least one existing claim. Scholars can also try to refute existing
claims for a possible reputation gain that will help them win the game. Strengthening
a claim is a sort of opposing an existing claim and proposing a new (stronger) claim
at the same time. That’s why strengthening qualifies both as a proposition and as an
opposition at the same time.

It is meaningless to propose new claims at the final turn as the players do not gain
reputation by proposing new claims they get reputation by successfully supporting their
proposed claims. Since there are no more turns for their opponent to try to refute their
claims, it becomes meaningless to propose new claims in the final turn.



8 Lieberherr et al.

Strengthening is not allowed in the final turn as it makes it possible for a player to
get away with reputation gained by over-strengthening an existing claim. It is also es-
sential for scholars to get the chance to refute the strengthening of their claims made by
opponents as they lose reputation when their claims are strengthened by other scholars.
This also enhances the quality of the final set of claims in the central pool as they are
less likely to contain overly strong claims.

Scholars with negative reputation cannot propose any new claims or strengthen any
existing claims, as their new claims would have negative credibility leading to oppo-
nents losing reputation when they strengthen or successfully refute these claims. Schol-
ars with negative reputation can only try to refute existing claims in order to increase
their reputation.

The refuting protocol recognizes claims by a recognition factor in [−1, 1] A recog-
nition factor of 1 means that the other scholar has completely failed to refute that claim.
A recognition factor of −1 means that the other scholar has completely succeeded to
refute that claim.

Scholar’s final reputation is the sum of the scholar’s initial reputation plus the repu-
tation gains and losses; thus reflecting the past performance of the scholar. The scholar
with the highest final reputation wins the game.

There is an issue with the axioms as they are currently formulated: When a scholar
with low reputation refutes the claim of a scholar with high reputation, the low rep-
utation scholar will significantly increase its reputation. But when the low reputation
scholar loses, it will also lose a high amount of reputation. This might discourage schol-
ars with low reputation from “testing” claims made by scholars with high reputation.

3.4 Equilibrium

SCG has a natural equilibrium state. When all players are perfect, they propose claims
that can neither be refuted nor strengthened. The other players will recognize those
claims as “optimal”. Everybody will keep their initial reputation and the game is a
tie. In real games with imperfect players, there is a lot of refuting and strengthening
happening.

4 Applications

4.1 Education

The Specker Challenge Game works very well to create a productive interaction be-
tween students of constructive domains, like STEM fields. The Specker Challenge
Game focuses the student interaction on a specific domain and gives the students valu-
able hands-on experience when they propose and oppose.

Software Development We have used SCG/Avatar successfully in software develop-
ment courses. Implementations of SCG(CSP) have been used at Northeastern Univer-
sity to teach several semesters of a senior level course on software development [4, 3].
Throughout the course students learn not only about the rigors of software organization



Specker Challenge Game 9

and evolution, but about some details of SAT/CSP algorithms. The feedback from both
course staff and regular competitions keeps students involved, putting their best ideas
into the avatars.

The course invites students to master a wide variety of CS topics ranging from
Theory of Computation, Discrete Structures (combinations, permutations, simple com-
binatorics), Calculus (maximizing and minimizing multi-variable rational functions) to
Object-Oriented design and Software Engineering.

An important part of teaching is to evaluate whether the students understand the
computational processes and whether they can effectively use them in practice. A
round-robin contest is the perfect tool to give the students quick feedback how well
they do compared to the other students. Furthermore, the agents help each other with
testing.

When students come to the course, they get a baby agent that must be equipped with
intelligence to win. We got reports in Spring 2009 that students were so immersed into
the game that they ignored other courses and put all their effort into winning. We used
the rule that after two weeks of contests, the source code had to be revealed. This on one
hand lead to rapid improvements to the agents but it also contributed to the competitive
nature of the game.

We plan to further develop our use of the Specker Challenge Game for teaching
Software Development. There is significant value in giving the students a baby agent
that they have to nurture into an “intelligent adult” using state-of-the-art software de-
velopment technology.

Algorithms We have also used SCG successfully in two undergraduate algorithms
courses [6]. Here we used the “board” version of the game (SCG/Board) where the two
participating students jointly check the game rules. We use the game to help the students
to create ideas about how to solve textbook problems. We see value in having students
defend claims that are true and refute claims that are false. A successful defense of a
claim maybe a baby step towards a proof of the claim.

4.2 Innovation

We believe that the small innovation steps we have observed in undergraduate compe-
titions can be achieved on a larger scale when world-class researchers participate (e.g.,
PhD students in algorithms) both for SCG/Avatar and SCG/Board.

Optimization Problems How can we drive innovation towards better algorithms for
NP optimization problems? NPO is the class of all NP optimization problems. The
ingredients to an optimization problem are the set of input instances or problems, the
set of feasible solutions, and the measure defined for a feasible solution. In a nutshell,
NPO problems are optimization problems whose feasible solutions are short and easy
to recognize.

For optimization problems, the game proceeds as follows. Alice claims that she has
an algorithm to solve a family of optimization problems within a given resource bound
and a given solution quality. The refutation protocol: Bob gives Alice a problem (x) in
the family and if Alice cannot produce a solution (y) within the given resource bound



10 Lieberherr et al.

or the promised quality, Alice loses. Solution quality and resource consumption usually
manifest in the game in the form of claim strength.

Using SCG/Avatar, we design a virtual scientific community that through the avatar
game improves its knowledge. The game is designed in such a way that the winning
avatars have the best approximation algorithms for the NPO problems under discussion.

SCG/Avatar offers a new way to evaluate algorithms without resorting to an asymp-
totic analysis. Good asymptotic behavior is important but games are won also by clever
implementations that use small constant factors. The problem instances allowed to ap-
pear in the game are all bounded by a large constant.

4.3 Better Software Development Process for Computational Problems

Developing software for computational problems is an important ongoing activity. The
claims are of the form: Claim(X,Q,R): I have a program that solves instances in X
with quality Q and resource bound R. SCG/Avatar provides a new software develop-
ment process for such software that is based on both collaboration and competition. For
example, instead of having 4 people working as one team, we use 2 people to develop
Alice and 2 to develop Bob and the competitions between Alice and Bob will improve
them. The process works better when more avatars are involved.

The benefits of the process are:

– Engages Software Developers. Nobody wants to see their avatar suffer and being
beaten by their peers. The competitions typically run over several hours and we saw
software developers stay up at night and improve their avatar between rounds in the
same competition.

– Meaningful Measurement. The tournament ranking provides an objective evaluation
of the avatars and the teams behind them with respect to software development and
algorithm skills. The game is designed in such a way that the winning avatar must
demonstrate better algorithms and their correct implementation.

– Encourages Good Software Engineering Properties. There is a lot of pressure be-
tween the competitions to update the avatar’s code quickly. This can only be done if
the code has good software engineering properties such as modularity.

– Encourages Good Algorithms. Winning avatars often have superior algorithmic
knowledge that they exploit in the game.

– Testing. The avatars are thoroughly tested through the opposing activity.

4.4 Hiring

Companies can benefit from SCG/Avatar by screening potential employees with the
game. When a company seeks algorithmic/implementation skills in a given algorithmic
problem solving domain, they define a game for this domain and let potential employ-
ees participate. The potential employees might create useful knowledge for which they
are compensated. For example, the potential employee competition might create an al-
gorithm that beats the algorithm that was created in-house.



Specker Challenge Game 11

5 Evaluation of the Specker Challenge Game/ Disadvantages

The Specker Challenge Game, because its very flexible refutation protocol, covers a
broad area. Because of this coverage, the effort of learning the game can be quickly
amortized. But one disadvantage of the game is that students and software developers
need to learn the game mechanics of a scientific community.

The Avatar version requires a very well functioning game engine to work well. The
administrator needs to painstakingly check all avatars whether they follow the rules.
The Avatar version requires a software tool to quickly generate baby avatars. We hope
to make this parameterized engine freely available but we are not there yet.

We found SCG/Avatar to be addictive. Students identified with their avatars and did
not want to see them suffer. We had to advise the students to balance their efforts with
other courses.

6 Origins of the Specker Challenge Game

Initially, we used the domain of Boolean CSP: Boolean constraint satisfaction problems,
motivated by our joint work with Ernst Specker [8]. Specifically, our problem domain
X was the set of CSP formulas, where a formula is a sequence of constraints, each over
a set of variables. For a given CSP formula x ∈ X we use V (x) to represent the set
of all variables used in its constraints. Feasible solutions, S(x), are assignments to a
formula’s variables, defined as all maps whose domain is V (x), and range is boolean
values, {true, false}.

For CSP, the easiest way to define a sub-domain for a claim (i.e., X ′) is to do so
intensionally by giving a set of relations that can be used to create legal constraints.
The function fsat(x, s), which calculates the fraction of satisfied constraints in x using
assignment s, is used for predicate descriptions.

A scholar might offer a claim using the relation 1-IN-3, which is true when exactly
one of its three variables is assigned true. The claim proposed could be: Alice claims:
There exists a CSP formula using only the 1-IN-3 relation so that for all assignments to
the formula at most the fraction 0.4 will be satisfied.

〈〈{1-IN-3}, Q〉, 0.4〉 with Q(x, s) = (fsat(x, s) ≤ 0.4)

If refuted by Bob, the offering scholar Alice would need to provide a CSP instance
using the 1-IN-3 relation, e.g.:

x ≡ 〈 (1-IN-3 {a, b, c}), (1-IN-3 {a, b, d}), (1-IN-3 {b, c, d}) 〉
We can quickly see that with the defined predicate, Q, it is rather easy to refute the

claim given this problem instance. Though not all assignments provide a good fraction
of satisfied constraints (e.g., the all false assignment does not satisfy any), there are
multiple assignments that do. Two possible solutions and their satisfied fractions are:

fsat(x, { a 7→ false, b 7→ true, c 7→ false, d 7→ false }) = 1 and
fsat(x, { a 7→ true, b 7→ false, c 7→ false, d 7→ false }) = 2/3



12 Lieberherr et al.

For formulas made only of this relation, 1-IN-3, there always exists an assignment
that will satisfy at least 4/9 of all constraints. This is known as a P-optimal threshold
for this specific CSP problem [7]: we can satisfy this fraction quickly (in polynomial
time), but to do better than 4/9 + ε for ε > 0 makes the problem NP-hard. We get this
value by maximizing the polynomial: 3 · p · (1 − p)2, which we derive from the truth
table of 1-IN-3, eventually obtaining the maximum value at p = 1/3.

7 Related Work

TopCoder [11] has connections to SCG/Avatar. TopCoder offers algorithm competitions
where you need to defend your own program and try to find bugs in programs of others.
But there are big differences: Specker Challenge Game has claims which can be flexibly
defined while in TopCoder they have a fixed form: I have an algorithm that solves the
problem correctly. If you want to refute my claim you must provide a test-input where
the code fails. Also in SCG/Avatar the avatars must create claims which is absent in
TopCoder.

The Specker Challenge Game is patterned after a real scientific community: This
related work is quite old. Scientists are encouraged to offer results that are not easily
improved. They must offer results that they can successfully support. They strengthen
results, if possible. They must stay active and publish new results or oppose current
results. They want to become famous! How to turn predicate calculus statements with
an even number of alternating quantifiers into a game is well-known folklore.

[9] provides excellent background information on SCG. However, the idea of defin-
ing games with claims/refutation protocols is not touched. The chapter on Evolutionary
Game Theory (chapter 29) is most relevant to SCG, although traditional evolutionary
game theory works with infinitely many players. In this world, the players are organ-
isms that meet other organisms from which they buy products and to which they offer
products. The 2 organisms play a fixed, 2 player game.

[5] gives further information on the Specker Challenge Game. [10] provides a good
introduction to game design. [1] promotes the use of serious games in computer science
programs but from a different angle than this paper.

Acknowledgements

We would like to thank Novartis/NIBR for partially supporting the development of the
Specker Challenge Game. Alex Dubreuil was the teaching assistant for several courses
where the Specker Challenge Game was used and he gave us valuable feedback and
encouragement. We would like to thank Pete Manolios for his feedback on the game
and to Shriram Krishnamurthi for the Renaissance Game connection.

References

1. K. Becker and J. R. Parker. ”Serious Games + Computer Science = Serious CS”. J. Comput.
Small Coll., 23:40–46, December 2007.



Specker Challenge Game 13

2. J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2005.

3. K. Lieberherr. Software Development: CSU 670 Fall 2009. Website, 2009. http://www.
ccs.neu.edu/home/lieber/courses/cs4500/f09/cs4500-f09.html.

4. K. Lieberherr. Software Development: CSU 670 Spring 2009. Website, 2009. http://
www.ccs.neu.edu/˜lieber/courses/csu670/sp09/csu670-sp09.html.

5. K. Lieberherr. The Specker Challenge Game. Website, 2009. http://www.ccs.neu.
edu/˜lieber/evergreen/specker/scg-home.html.

6. K. Lieberherr. Algorithms and Data CS 4800, Fall 2010. Website, 2010.
http://www.ccs.neu.edu/home/lieber/courses/algorithms/cs4800/
f10/course-description.html.

7. K. J. Lieberherr. Algorithmic extremal problems in combinatorial optimization. Jour-
nal of Algorithms, 3(3):225–244, 1982. http://www.ccs.neu.edu/˜lieber/
p-optimal/karl-algo-extremal.pdf .

8. K. J. Lieberherr and E. Specker. Complexity of partial satisfaction. Journal of the
ACM, 28(2):411–421, 1981. http://www.ccs.neu.edu/˜lieber/p-optimal/
JACM1981.pdf .

9. N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic Game Theory. Cam-
bridge University Press, New York, NY, USA, 2007.

10. J. Schell. The Art of Game Design: A Book of Lenses; electronic version. Elsevier, Burling-
ton, MA, 2008.

11. TopCoder. The TopCoder Community. Website, 2009. http://www.topcoder.com/.


