Jon Pelc & Chris Lee

12/13/09

Prof. Lieberherr

CS 4500

Report by one of the winning teams. A few typos corrected and questions inserted by Karl Lieberherr. Posted with permission.
Project Description Agent Lightning
1) Much of the difficulties we encountered during the course were of the communication variety.  Our methodology for working on the agent was fairly unique.  At the end of each class we’d discuss the lecture and most recent competition results which led to ideas on how to improve the agent.  We would then each work on the agent separately.  On competition days we would compare our changes and those which made the agent stronger were used.  However, on more than one occasion we had discovered that we had worked on the same improvement or that our combined changes caused the agent to break.  This led to have more detailed plans on what each of us was to be doing for the week.  The other major difficulty we had to deal with was adjusting to new scglib jars but this was eventually alleviated and covered in class discussions.

Our agent really did not deviate from the organization of the basic agent.  We viewed it as a skeleton to improve; not as something to redesign.  In fact, the major change we made to its organization, keeping track of profitable problems that we have solved and their solutions can be viewed simply as an improvement.


We largely stayed faithful to our roadmap.  The actual time it took to complete each task did not always match up with the estimated time predicted but most tasks were addressed.  Either directly, such as using “trivial inverses” for increasing the difficulty of OfferTask in fast pitch, or indirectly, i.e. avoiding reoffering to minimize our potential losses.  For those that weren’t we were able to find other places in our agent to address those issues.  For example, updating the breakeven component to work with multiple relation numbers was never directly addressed.  Instead we decided to use our cache of guaranteed profit problems to make decisions when most teams used break even calculations.  
Question 2.0

How did you take advantage of the freedom you had? Did the freedom inspire you to investigate more options? Describe the options you considered and which ones you implemented.

2.0) We were pretty conservative with respect to the freedom we were given for our agent.  When I say conservative, I am referring to non-drastic strategies, unlike other teams (like Athena who rewrote the entire basic agent, and Stepdad, who used clustered PC’s to solve).  We considered doing some more aggressive strategies, like doing calculations not during our turn or doing some computations before the competition and saving it, but we decided that we could spend less time working on other strategies that would result in similar or even better performance.  

One of the first strategies we incorporated before most teams was writing a function to get the quality of a solution, and use a loop to solve many times.   This helped us in the early stages to get an edge over our opponents, who were either using a random assignment, or a biased coin (which did not provide as good results as solving the problem 100 times).  

For example, we created a class that cached our computations, so that we did not do the same work multiple times.  This helped considerably, because finding the breakeven for a given problem type is almost always a repeated calculation (imagine an offer that sits in the market for the entire game: every turn, the agent calculates whether the price is less than the breakeven).  In T-Ball, we calculated the breakeven by providing all permutations of 13 variables.  Then, we used a specific strategy to solve a symmetric problem.  Because symmetric problem’s have an inherent property that the specific assignment of a variable did not change the quality of a solution, we realized we could solve the symmetric problem by only testing different percentages of true/false for the variables.  

For example, we had to value a solution that contained 0 true assignments, then 1 true assignment, etc.  The highest quality solution would be the absolute best solution for the given problem, because the tests encompassed all possible quality values for the symmetric problem.  If we were to do a brute force search for the best solution, you would need to find the quality for 213 solutions.  With this method, you were guaranteed to find the best solution in 13 solutions.  We improved this algorithm even further by stopping the algorithm after the quality of solutions stopped increasing, because we noticed if we graph the quality of the solution (y-axis) and number of variables (x-axis) for a symmetric solve described above, it resulted in a parabola.  This meant once the parabola hit the peak, it is no longer necessary to solve for the rest of the solutions, because the solutions will always be lower than the previous solution.

By two-third’s into the semester, our agent and Athena’s agent were using the same breakeven logic.  This resulted in modifying our accept/reoffer strategy.  This is because we were both offering problems slightly above the breakeven, forcing the opposing player to accept a bad offer, or reoffer for a loss.  Therefore, we changed our logic to more intelligently accept a bad offer rather than reoffer for a loss.  This was one of the key differences between Athena and Lightning’s agents that led to our wins near the end of the semester. 

Question 2.1

The game is competitive / cooperative. How did you react to the competitive nature of the game?

2.1) The competitive nature of the game inspired us to work harder on our agent.  It was fun to monitor our agent as it played throughout the tournament, and we often did substantial programming during the tournament as we saw issues. (Note by Karl: the tournaments lasted for several hours.) By the end of the competition, we would usually have already fixed any major bugs or issues we encountered during the competition. 

Question 2.2

Writing winning agents takes a lot of skill: at the conceptual, design and implementation level. If the conceptual understanding is perfect, but there is a flaw in the design or implementation, your agent probably won't win. How did you react to the need to do all steps well.

2.2) Because of the complexity of the problem space, and the need to predict what kind of functionality your opponent will add next, it is hard to do all three well without purely putting in the work.  We spent many hours analyzing our opponent’s strategies, and the best way to combat them.  We did many benchmarking tests to see what kind of strategies work best against our opponents, and lots of integration tests (practice competitions) to see how we do against other teams.  A big turning point in Lightning’s game play was when we found out how to run the Athena agent on our own for test competitions.  Before that, we only got feedback from the real competitions and we could not experiment with different strategies without concern of the outcome.

Question 2.3

The success of such a class depends on having a community of students with different skills: Some like a more tactical approach, others strive for a strategic solution. Some are good programmers and others are not but they have other skills. Some like to use new tools and others only well tested tools. How did you react to the diversity that was all focused through the game.
2.3) Based on our discussions in class there was clearly a significant amount of diversity present.  We reacted to this positively as it created a number of benefits.  For example, knowing that our opponents could have multiple approaches led us to both create stronger defenses for our agent as well as consider new strategies in order to be competitive.  It was also beneficial to gain effectiveness on communicating with individuals who may hold different philosophies or be at different skill levels.

Question 2.4

How did you react to using the competition results as part of your grade?

2.4) I think it is a very reasonable way to grade.  It does make the class very competitive, but competition brings about the best in people’s abilities.  It also brings about collaboration because one agent’s strength will be another agent’s fault.
Question 2.5

Did the feedback you received through the competitions help you find bugs in your software?

2.5) Yes.  By examining the results of the competitions we were able to examine the specific instances where our agent was weak and address them.  This happened multiple times when examining our logs versus Sweet and Athena.

Question 2.6

The other agents posed problems to you. Did the cycle: Observe history - Identify issues - Plan an approach -Design your code - Implement – Test, that you were exposed to after every competition help you improve your problem solving skills?

2.6) We agree that it enhanced our problem solving skills for the purposes of this game.  However, saying that it improved our general problem solving skills may be a bit of a stretch.  While it is true that each time this cycle was practiced we became more effective and efficient at it, the thought process behind it was very specific to the MAX-CSP game and may not be applicable to other projects where other approaches may be more appropriate.

Question 2.7

Many software design and implementation problems you had to solve during the course were caused by your peers. I only made sure through the game design that they could pose reasonable problems to you. Did the fact that you solved problems created by your peers motivate you?

2.7) We both agree that this facet of the game motivated us.  A significant amount of the work we put in was for the purpose of beating specific teams that at one time or another performed better than we did.  However, the fact that the problems were created by our peers was only one factor at work.  The way competitions were graded played a large role in our drive to solve our classmates’ problems. 

Question 2.8

The SCG game was designed so that it is sound, i.e., the game score reflects **only** the agent's skill level in:

I)   Solving problems

II)  Providing hard problems

III) Introspective skills: predict how the solution algorithm behaves.

Argue for or against soundness of the SCG game.
2.8) We would argue that the game is sound in these aspects outside of the second one.  The critical piece of our agent was our solver and much of the work was based around it.  Therefore we consider the game sound in reflecting the agent’s skill level in solving problems.  As sweet demonstrated with their tactical approach to the game, much could be gained by predicting how the solvers of other agents behave which validates the third aspect of the game.  In addition, knowing and predicting how our solver works allowed for better budgeting of time for other tasks.  As far as providing hard problems, we feel the game did not reflect agent skill level.  From what we understand most groups did not go farther than offering all the permutations of the variables used and those that did mentioned they saw no significant difference in results.

