
Greater Efficiency
for Conditional Constraint Satisfaction

Mihaela Sabin1, Eugene C. Freuder2, and Richard J. Wallace2

1 Department of Mathematics and Computer Science
Rivier College, 420 Main Street, Nashua, NH 03060, USA

msabin@rivier.edu
2 Cork Constraint Computation Center, Department of Computer Science

University College Cork, Cork, Ireland
{e.freuder,r.wallace}@4c.ucc.ie

Abstract. A conditional constraint satisfaction problem (CCSP) ex-
tends a standard constraint satisfaction problem (CPS) with a condition-
based component that controls what variables participate in problem so-
lutions. CCSPs adequately represent configuration and design problems
in which selected subsets of variables, rather than the entire variable
set, are relevant to final solutions. The only algorithm that is available
for CCSP and operates directly on the original, unreformulated CCSP
statement has been basic backtrack search. Reformulating CCSPs into
standard CSPs has been proposed in order to bring the full arsenal of
CSP algorithms to bear. One reformulation approach adds null values
to variable domains and transforms CCSP constraints into CSP con-
straints. However, a complete null-based reformulation of CCSPs has
not been available. In this paper we provide more advanced algorithms
for CCSP and a full null-based reformulation into standard CSP. Thor-
ough testing reveals that the advanced algorithms perform up to two
orders of magnitude better than plain backtracking, but that realizing
practical advantages from reformulation is problematic. The advanced
algorithms extend forward checking and maintaining arc consistency to
CCSPs. The null-based reformulation improves on the preliminary find-
ings in [1] by removing the limitation on multiple activation, and by
localizing changes. It identifies and addresses a difficulty presented by
activity cycles.

1 Introduction

There are many important and complex tasks to which constraint satisfaction has
been successfully applied. As a result, specialized constraint satisfaction problem
(CSP) classes have emerged to cope more directly with specific characteristics
of various application domains. Qualifiers such as partial, dynamic, hierarchi-
cal, composite, interval, mixed, and others characterize CSP specializations that
have been studied in the last decade. The conditional constraint satisfaction is
another specialization developed to cope with the special features of diagnosis
and configuration problems.

F. Rossi (Ed.): CP 2003, LNCS 2833, pp. 649–663, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

650 Mihaela Sabin, Eugene C. Freuder, and Richard J. Wallace

Conditional CSP extends standard CSP with a condition-based component
that models dynamic changes of problem solutions with predefined conditions.
The formalism has been introduced in [2] under the name of dynamic CSP. It in-
tegrates classical constraint satisfaction with a special type of constraint, activity
constraints, responsible for selecting those variables that should participate in
solutions. The formalism has been originally motivated by synthesis tasks such
as product configuration, in which not all cataloged components are present in
every single configured product. This class of dynamic CSPs is renamed condi-
tional constraint satisfaction problems (CCSPs) [3] to (1) capture the nature of
the control component that conditionally changes the initial model of the prob-
lem, and to (2) distinguish this class of problems from another class of dynamic
CSPs that reuses problem solutions when problem changes over time [4,5,6].

Since its first formalization in 1990, conditional constraint satisfaction pa-
radigm has been used for modeling not only configuration problems, but also
diagnosis [7], design [1], and network management [8] problems. Despite increas-
ing interest in the area of representing application problems as CCSPs, little
progress has been made in the area of improving direct solving methods that op-
erate on CCSP representations. In contrast with other CSP specializations, no
standard CSP solving method, except for backtrack search [1], has been adapted
to the conditional domain. The lack of specialized, direct solving methods is
compounded by the fact that a benchmark test base for this type of problems is
extremely limited [9,10], although very much needed in experimental evaluations.

In this paper we present two advanced methods for solving CCSPs that use
local consistency methods of forward checking and maintaining arc consistency.
Solving methods find values for the set of active variables. These are obtained
from the initial set of variables that are assigned values in every solution, and
variables that are newly incorporated into the problem via activity constraints.
The technical challenges encountered and overcome in extending forward check-
ing and maintaining arc-consistency to CCSP are to: (1) keep track of variables’
activity status as determined by consistency checking of activity constraints, (2)
enforce chosen level of consistency when checking both compatibility and activ-
ity constraints, (3) in case of maintaining arc consistency, extend arc consistency
with activation consistency along activity constraints.

The opportunity of importing efficient standard algorithms, whose behavior
has been extensively tested, raises new challenges. Are there available similarly
comprehensive experimental studies for evaluating CCSP solving? The reality of
many application domains, such as configuration or diagnosis, is that either real-
life problems data is not publicly available or problem examples are too simple.
A practical approach that overcomes this difficulty and has proved very success-
ful for benchmarking standard solving algorithms is to use randomly generated
CSPs. This is the approach we consider in this paper to evaluate empirically
the proposed algorithms. We extend a random standard CSP generation model
[11] to produce random activity constraints, and use the model to implement
a random conditional CSP generator. We generate large and diverse problem
populations to conduct experimental studies that time algorithm execution, and

Greater Efficiency for Conditional Constraint Satisfaction 651

count search operations specific to standard and conditional CSP solving. The
testing reveals that the advanced algorithms perform up to two orders of mag-
nitude better than plain backtracking.

An alternative approach to directly solving CCSP is to reformulate a CCSP
into an equivalent standard CSP. This approach has the advantage of bringing
to bear a mature constraint technology developed in the standard domain. The
first reformulation of conditional CSP into standard CSP has been mentioned
by Mittal and Falkenhainer [2], although they have not presented a full descrip-
tion of the transformation. They consider the addition of a special value, called
“null”, to the domains of all variables which are not initially active. A variable
instantiation with “null” indicates that the variable does not participate in the
problem solution. The feasibility of obtaining a null-based CSP reformulation of
a CCSP has been examined in-depth by Gelle [1]. She develops a null-based refor-
mulation algorithm that imposes the following limitation on CCSPs: non-initial
variables are activated by at most one activity constraint. A transformation of
multiple activations of the same variable has not been considered on the grounds
of an additional limitation, i.e., the transformation does not preserve locality of
change [1,9].

We have developed an algorithm of null-based reformulation that removes
these limitations. The algorithm (1) transforms multiple activations, and, (2)
preserves locality of change by allowing a less restrictive local change than the
one defined in [9]. Moreover, we have identified a new difficulty with null-based
reformulation introduced by activity cycles. We have developed an alternative
null-based reformulation algorithm that overcomes this difficulty at the cost of
not preserving locality of change. We have evaluated experimentally the per-
formance of solving the reformulated standard problem and compared it with
results obtained from applying direct solving methods to the original problem.
The findings show that the advanced solving methods are faster by one to two
orders of magnitude than solving the equivalent, reformulated problem.

2 Conditional CSP: An Example

Before we recall the definition of the conditional CSP, we give an example of a
simple product configuration task for which we develop a CCSP representation.
The insights of the modeling exercise facilitate the introduction of the basic
concepts of the CCSP framework. The example is a simplified version of an
example introduced by [2] and specifies a car configuration task (Figure 1). The
specifications include:

– required components, that participate in all final car configurations, with
their values;

– optional components, that can be optionally selected according to certain
configuration requirements, with their values;

652 Mihaela Sabin, Eugene C. Freuder, and Richard J. Wallace

– configuration requirements of compatibility, that restrict the values of the
selected components according to product assembly requirements and pro-
motional sales strategies;

– configuration requirements for selecting optional components, that express
customer preferences and additional requirements with regard to assembling
and selling the product.

Given the specified components and requirements, the task of configuration is to
assign values to selected components in such a way that requirements pertinent
to what is selected are satisfied. To obtain a CCSP representation of the car

Required components and their values
– comfort package has luxury, deluxe, and standard values
– frame has convertible and sedan values

Optional components and their values
– sunroof has sr1 and sr2 values
– air conditioner has ac1 and ac2 values

Configuration requirements of compatibility among component values
1. standard comfort package is not compatible with ac2 air conditioner
2. luxury comfort package is not compatible with ac1 air conditioner

Configuration requirements for selecting optional components
1. luxury comfort package includes sunroof option
2. luxury comfort package includes air conditioner option
3. convertible frame excludes sunroof option

Fig. 1. A simple car configuration task example

configuration example, we identify problem variables, values, and constraints. We
apply the following modeling guidelines and produce the CCSP representation
in Figure 2.

– Configuration task components and their values correspond to problem vari-
ables and their associated domains of values. Required components, which
are part of any configuration solution, are distinguished as initial variables.
Initial variables have the property of being initially active or included in the
problem search space. Optional components have their activity status ini-
tially undefined as they are not selected to either participate in, that is, be
included, or to explicitly not participate in, or be excluded from, problem
solutions.

– The requirements of component compatibility are modeled as compatibility
constraints, which restrict the combinations of allowed values assigned to
selected components.

– activity constraints change the initial variable set according to certain con-
ditions. These conditions control which optional components get selected in
a configuration, and which optional components are removed from a config-
uration.

Greater Efficiency for Conditional Constraint Satisfaction 653

Initial variables

sr1

sr2

Sunroof

ac1

ac2

excl

luxury

deluxe

standard

Package

convertible

sedan

Frame

a2

AirConditioner

a1

a3

c2

c1

Activity Constraints

a1 : Package = luxury
incl−→ Sunroof

a2 : Package = luxury
incl−→ AirConditioner

a3 : Frame = convertible
excl−→ Sunroof

Compatibility Constraints

cdisallowed
1 : {(luxury ac1)}

cdisallowed
2 : {(standard convertible)}

Solution Set

Frame Package Sunroof AirConditioner
convertible deluxe EXCL UNDEF
sedan luxury sr1 a2

sedan luxury sr2 a2

sedan luxury UNDEF UNDEF
sedan standard UNDEF UNDEF

Fig. 2. Conditional CSP representation of the car configuration task example

This description of modeling a configuration task as a CCSP identifies five
problem components. Thus, a conditional constraint satisfaction problem, P =
〈V,D,VI , CC , CA〉, involves a set of variables, V = {v1, . . . , vn}, which, if ac-
tive, can take on discrete values from their corresponding finite domains D =
{Dv1 , . . . , Dvn}, a non-empty set of initially active variables, called initial vari-
ables, VI , VI ⊆ V, a set of compatibility constraints, CC , and a set of activity
constraints, CA. All sets are finite.

The CCSP model in Figure 2 has four variables, two compatibility constraints
{c1, c2}, and three activity constraints, {a1, a2, a3}, of which a1 and a2 are in-
clusion activity constraints, and a3 is an exclusion activity constraint. Two of
the problem variables, Package and Frame are initial variables and, therefore,
active. They participate in all solutions and define the initial search problem
with which the solving process starts. The non-initial variables, AirConditioner
and Sunroof , have their activity status initially undefined. Their participation
in solutions is determined by activity constraints.

We say that a compatibility constraint c is consistent with an instantiation
I of the constraint variables iff either not all constraint variables are active, or
constraint variables are active and c satisfies I. For example, the instantiation
Package = standard and Frame = convertible trivially satisfies c1 since the
constraint variable AirConditioner is not active.

An inclusion activity constraint, a : acond
incl−→ vt, has an activation condition,

acond, which is a regular constraint defined on a set of condition variables, and
a target variable, vt. We say that a is consistent with an instantiation I of
the activation variables of acond iff either (1) not all condition variables are
active, or I is inconsistent with acond, or (2) all condition variables are active, I
satisfies acond, and vt is active. The example’s activity constraints of inclusion are

654 Mihaela Sabin, Eugene C. Freuder, and Richard J. Wallace

a1 and a2. The instantiation Package = luxury makes AirConditioner active
according to a1, and Sunroof active according to a2. In both cases, condition
variable Package is active and the instantiation satisfies the activation condition
of a1 and a2.

Given an exclusion activity constraint, a : acond
excl−→ vt, we say that a is con-

sistent with an instantiation I of the activation variables acond iff (1) either not
all condition variables are active, or I is inconsistent with acond, or (2) all condi-
tion variables are active, I satisfies acond, and vt is not active. a3 is an example of
an exclusion activity constraint. The instantiation Frame = convertible makes
Sunroof not active, since condition variable Frame is active and the instanti-
ation satisfies the activation condition of a3. Note that this instantiation does
not involve condition variables of either of the inclusion activity constraints.

A solution to a CCSP P is an instantiation of a set of active variables such
that all compatibility and activity constraints are satisfied. All solutions to the
example problem are listed in Figure 2.

3 Solving Methods

The domain of standard CSPs benefits from a rich collection of thoroughly tested
algorithms. In contrast, the study of conditional CSPs is still in its infancy with
little research directed to specialized solving methods that operate directly on
CCSP representations. Following the model of other CSP specializations, we
develop adaptations of the most representative standard CSP methods for the
conditional domain:

– modified backtrack search algorithm (CondBT) that handles both types of
activity constraints,

– new forward checking algorithm (CondFC) that propagates compatibility
constraints over active variables, and

– new maintaining arc-consistency algorithm (CondMAC) that propagates
both compatibility and activity constraints.

In Section 4, the relative performance of the proposed methods is analyzed
experimentally by using random CCSPs. We show that (1) the run-time
complexity order in the standard domain holds in the conditional domain,
i.e., CondBT < CondFC < CondMAC, and that (2) the advanced algorithms
CondFC and CondMAC are faster by up to two orders of magnitude than
CondBT. The full descriptions of the algorithms can be found in [12]. In the
following we use a running example to describe the algorithms’ behavior.

Backtrack search is the only algorithm that has been adapted for conditional
constraint satisfaction [2,1]. The proposed adaptation, however, handles only
activity constraints of inclusion. Activity constraints of exclusion are reformu-
lated as compatibility constraints [13]. We modify the algorithm, what we call
CondBT, to handle both types of activity constraints as given in the original
problem representation. Figure 3 shows the search tree for finding all solutions
to the example problem in previous section. The algorithm maintains an agenda

Greater Efficiency for Conditional Constraint Satisfaction 655

EXCLUDED

UNDEFINED

UNDEFINED

UNDEFINED

Initial search space

convertible sedan

sr1

ac1 ac2

sr2

ac1 ac2

Package luxury deluxe standard luxury deluxe standard

AirConditioner

Frame

Sunroof

Fig. 3. CondBT search trace on the sample problem in Figure 2

of future variables, which await instantiation. Therefore, only active variables
are stored in the agenda. The agenda’s initial set is the set of the problem’s
initial variables. The algorithm’s implementation uses recursion to traverse the
search tree. For each active variable instantiation, the algorithm first checks the
compatibility constraints and then the activity constraints. The backtrack search
trace in Figure 3 has the initial search space defined by Frame and Package.

A compatibility constraint is checked only if it involves the current variable
and previously instantiated variables, called past variables. Otherwise, no com-
patibility constraint check is performed. If the current instantiation is consistent
with the value assignment of the past variables, the constraint is satisfied. For
example, when search reaches the instantiation Package = luxury, with past
variable Frame = convertible, both c1 and c2 are satisfied.

An activity constraint is checked only if its activation condition is defined
on the current variable and past variables. Otherwise, the activity constraint is
discarded and no check is performed. Checking the consistency of the activation
condition has two possible outcomes: either (1) current instantiation violates the
activation condition, in which case the constraint does not “trigger” or has no ef-
fect on the activity status of its target variable, or (2) activation condition holds,
in which case its effect has to be determined. In the first case, the constraint
is trivially satisfied. In the second case, the constraint satisfiability depends on
matching the constraint type (of inclusion or exclusion) with the activity status
of the target variable (included, excluded, or undefined). The constraint fails if
an inclusion (or exclusion) activity constraint targets an already excluded (or
included) variable. The constraint holds if the activity status of the target vari-
able is consistent with the type of activation. The constraint also holds if the
target variable’s activity status is undefined. In this case, the activity constraint
has the effect of setting the target’s status to active (or included) or to excluded.

Let us consider that the current search point is Frame = convertible. Note
that the activity status of AirConditioner and Sunroof is undefined. The only
constraint checked at this point is the exclusion activity constraint a3: its activa-
tion condition is satisfied, and the exclusion of Sunroof takes effect, that is, its
activity status becomes excluded. The algorithm proceeds deeper in the tree by
choosing the next future variable in the agenda, and instantiates Package with

656 Mihaela Sabin, Eugene C. Freuder, and Richard J. Wallace

luxury. As shown before, compatibility constraint checking is successful and the
algorithm continues with checking the activity constraints. Activity constraint
a1 is checked and it fails: the inclusion of Sunroof conflicts with its current
activity status. luxury instantiation is found inconsistent, luxury is removed
from Package’s domain, and the search goes sideways in the tree to the next
value, deluxe, in the domain of the current variable. Constraint checking re-
sults in finding the first solution to the example problem: Frame = convertible,
Package = deluxe.

Forward checking in the conditional context (CondFC) enforces look-ahead
consistency [14] along compatibility constraints and prunes inconsistent values
from the domains of future variables. When activity constraints come into play
and newly activated variables are added to the set of future variables in the
agenda, consistency propagation is reiterated to involve these variables as well:
values which are inconsistent with the current partial solution are filtered from
the newly active variables. In Figure 4 we use the same sample problem to trace
CondFC execution. Let us consider that the current instantiation is Package =
luxury. Frame has been assigned the value sedan, but the propagation of c2
compatibility constraint did not find any inconsistent value in the domain of
Package. When luxury is tried for Package the only applicable constraints
are: a1 includes Sunroof and a2 includes AirConditioner. Both constraints are
satisfied and the search space grows with these two variables. Forward checking
prunes ac1 from the domain of AirConditioner by propagating c1.

c2 propagation => c2 propagation =>

EXCLUDED UNDEFINED

UNDEFINED UNDEFINEDAirConditioner

Sunroof

Package

Frame

Initial search space

c1 propagation =>

sr1

ac2

convertible

luxury deluxe

sedan

standarddeluxeluxurystandard

luxury deluxe luxury deluxe standard

ac2ac1

sr2

ac2

Fig. 4. CondFC search trace on the sample problem in Figure 2

The level of consistency enforced by CondFC can be extended to arc consis-
tency over all future variables, which are both directly and indirectly connected
via compatibility constraints to the current instantiation node in the search tree.
Arc consistency processing has received constant attention in the research com-
munity since Mackworth’ seminal paper on consistency in constraint networks
[15]. Combining backtrack search with arc consistency has produced one of the
most effective solving algorithm for binary standard CSPs, maintaining arc con-
sistency (MAC) [16,17,18,19]. CondMAC is MAC’s analog for binary conditional
CSP. It uses arc consistency over binary compatibility constraints1 and a new

1 CondMAC implementation uses AC-4 arc consistency algorithm [20].

Greater Efficiency for Conditional Constraint Satisfaction 657

form of local consistency over binary activity constraints, called activation con-
sistency.

A modified version of the running example (Figure 5) is used to exemplify
the execution of CondMAC. Prior to launching backtrack search, the agenda
of initial variables is made arc consistent. The figure shows that there is only
one compatibility constraint, c2

′, which participates in the computation of the
support counters associated with (and shown next to) the values of the initial
variables. The support value of 0 for hatchback on c2

′ indicates that hatchback
is inconsistent with Package’s values and can be removed for Frame’s domain.
Having completed this preliminary phase, in Figure 6 we show how local consis-
tency is interleaved with backtrack search in CondMAC.

The improvement of CondMAC over CondFC consists of (1) making the
newly included variables arc consistent along compatibility constraints and (2)
propagating activity constraints to further remove condition values that contra-
dict activity status of problem variables. When convertible is assigned to Frame,
the other value left in its domain, sedan, is eliminated. Along the compatibil-
ity constraint c2

′, sedan supports all three values at Package. Its elimination
propagates via c2

′ and support counters of luxury, deluxe, and standard are
decremented. Consequently, standard’s support counter becomes 0, which shows
its inconsistency with the partial solution Frame = convertible. The value is
removed and no more arc consistency propagation takes place at this point. Fol-
lowing the checking of compatibility constraints, we check activity constraints
whose condition variables are active. a3 qualifies, it is satisfied, and Sunroof is
marked as excluded from the search tree rooted at Frame = convertible. How-
ever, there is another activity constraint, a1, whose condition involves future
variable Package, and which conflicts with a3. To maintain activation consis-
tency over future variables, a1’s condition value, luxury, which is found incon-
sistent with convertible, is also removed from the domain of Package. All value
removals due to enforcing activation consistency are propagated via arc consis-
tency over compatibility constraints defined on future variables. In this example,
removal of luxury propagates on c2

′ and results in convertible losing one more

1

2

2

0

2

3

Initial variables

AirConditioner

ac1

ac2

sr1

sr2

Sunroof

exclluxury

deluxe

standard

Package

convertible

sedan

hatchback

c2’
Frame

a2 a3

a1

c1

c2
′ : {(luxury convertible)(luxury sedan)

(deluxe convertible)(deluxe sedan)(standard sedan)}

Fig. 5. Modified version of sample problem: an additional value, hatchback, in Frame,
and updated c2

′, which leaves hatchback with no support at Package. Values partici-
pating in compatibility constraints have associated support counters

658 Mihaela Sabin, Eugene C. Freuder, and Richard J. Wallace

hatchback)
0 2 1

sedan
3 1 02 12 1

: luxury includes Sunroof convertible and becomes inconsistent with

{(convertible

EXCLUDED

UNDEFINED

sedan hatchback)
0 1 0

{(convertible
1 3 1

Initial search space

=

=

SC of c2’

SC of c2’

: convertible Sunroofexcludesa3

a1

deluxe(luxury standard)}

convertible

Package

Frame

Sunroof

AirConditioner

deluxe(luxury standard)}

deluxe

Fig. 6. CondMAC search trace on the sample problem in Example 5

support, down to 1 at this point. With this level of consistency achieved, search
continues with the instantiation of Package with the only value left in its do-
main, deluxe. Applicable constraints (that is, c2

′ only) are checked and satisfied,
and the first solution to the problem is found.

4 Experimental Evaluation

In our experiments we use Freuder and Wallace’s model of constant probability of
inclusion for generating random CSPs [21,11], extended with additional parame-
ters that collect activity information, called activity parameters, for a specialized
class of binary CCSPs. The class restricts both compatibility and activity con-
straints to binary constraints. Binary activity constraints are defined on a single
condition variable, with an associated unary activation constraint, and the usual
target variable. As a general practice, the most prevalent experimental design for
studying algorithm performance using random standard CSPs involves varying
density and satisfiability parameters. In the context of random CCSPs, these
parameters are the probability of generating compatibility constraints, denoted
dc, and the probability of generating allowed pairs in a compatibility constraint,
denoted sc. Specific to CCSP, we are interested in generating combinations of pa-
rameter values for those activity parameters that control the amount of activity
a problem exhibits. These parameters are:

– density of activity, denoted da, is the probability of generating a non-initial
variable as a target variable.

– satisfiability of activation, denoted sa, is the probability of generating a value
in a domain as a condition value. The number of condition values in a domain
measures the satisfiability of the activation condition defined on that domain.

The three algorithms for solving CCSPs, CondBT, CondFC, and CondMAC,
were tested in experiments covering diverse populations of randomly generated
problems. The algorithms’ implementations handle binary constraints. This re-
striction is imposed by the binary CondMAC algorithm and the binary random

Greater Efficiency for Conditional Constraint Satisfaction 659

Test suite design: problem of 10 variables,
with 8 values per domain, fixed satisfi-
ability of compatibility, sc = 0.25, den-
sity of activity, da = 0.3, and satisfiabil-
ity of activation, sa = 0.3. Compatibility
density, dc, varies in the range [0.1 . . . 0.4]
in increments of 0.02. For each of the 16
(dc, sc, da, sa) topological classes 100 in-
stances were generated.

Fig. 7. CondBT and CondFC execution time for variable compatibility density, dc

Fig. 8. CondFC and CondMAC execution time for variable satisfiability of activation,
sa and three values of density of activity: da = 0.1 (left), da = 0.2 (middle), and
da = 0.5 (right). Fixed compatibility topology: dc = sc = 0.2

CCSPs used during testing. The experimental analysis has two types of studies.
In the first category we measured execution time of each algorithm for finding
minimum size solutions, that is, solutions that have a minimum number of vari-
ables that are assigned values. In the second category we run the algorithms to
find all solutions, and we collected measures that are representative of algorithm
effort: number of backtracks and compatibility checks as well as some new mea-
surements specific to CCSP, such as number of condition checks, included and
excluded variables, activity constraints that redundantly set variables’ activity
status, and activity constraints whose action conflict with variables’ activity
status.

Relative time performance of CondBT and CondFC is shown in Figure 7. We
observe that CondFC runs one to two orders of magnitude faster than CondBT.
Relative time performance of CondFC and CondMAC has been studied on a
larger test suite that consists of 81 problem classes corresponding to all (da, sa)
activity parameter combinations, with da and sa varying in the [0.1 . . . 0.9] range
in 0.1 increments. Figure 9 shows time variation with sa for three da values.
Compatibility parameters are fixed: dc = sc = 0.2. There are 100 instances per
problem class, each of 10 variables with domains of 10 values. The main result
supported by the data is that CondMAC consistently outperforms CondFC.

660 Mihaela Sabin, Eugene C. Freuder, and Richard J. Wallace

Fig. 9. Comparison between CondFC and CondFC effort measured as the number of
backtracks (left), compatibility checks (middle), and condition checks (right). Variation
of effort with density of compatibility, dc, and satisfiability of activation, sa. Fixed
sc = 0.3 and da = 0.2

Finally, the experimental study in Figure 9 evaluates algorithm efficiency
measured by counting the number of backtracks, compatibility checks, and condi-
tion checks performed by CondBT and CondFC when searching for all solutions.
The problem space considered for this study, as defined by (dc, sc, da, sa), had
2,025 problem classes: 5 dc values in [0.4 . . . 0.8] range, 5 sc values in [0.1 . . . 0.4],
and 81 da and sa combined values in [0.1 . . . 0.9] range. Figure 9 synthesizes
CondBT vs. CondFC comparison results for only 45 classes, with fixed sc = 0.3
and da = 0.2. The study results show that CondFC outperforms CondBT on
all measures and for all problem topologies. Similar to standard CSP solvers, all
effort measures counted for CondBT and CondFC increase with problem satis-
fiability, sc, and decrease with problem density, dc. As problems exhibit more
conditionality (larger da and sa), CondBT and CondFC perform more condi-
tion checks, obviously, but fewer backtracks. CondFC is better than CondBT by
one to two orders of magnitude on the number of backtracks and compatibility
checks, and up to three orders of magnitude on the number of condition checks.

5 Reformulation

The prominence and maturity of the constraint satisfaction classical paradigm
motivates our interest in reformulating the conditional CSP representation into
a standard CSP. This reformulation requires the addition of a special value,
called “null”, to the domains of non-initial variables, and the transformation
of compatibility and activity constraints into ordinary constraints [2,1,13,9]. A
null-based reformulation of conditional CSPs is presented and studied in depth
in [1,9]. However, this transformation is limited in the following key respects:

1. it does not transform multiple activations of the same variables,
2. it does not preserves locality of change: when the original problem changes

with the addition of another activity constraint to a multiple activation
cluster, which has already been reformulated, the reformulation cannot be
updated locally,

3. it does not handle activity cycles.

Greater Efficiency for Conditional Constraint Satisfaction 661

To address these three limitations of the null-based reformulation, we have de-
veloped two alternative transformations. One removes the first two limitations;
the other removes the third. Both algorithms synthesize non-binary ordinary
constraints whose arity increases with the number of activity constraints in a
multiple activation cluster or in an activity cycle.

Given the reformulation algorithms that overcome the limitations with mul-
tiple activations, locality of change, and activity cycles, we are interested in eval-
uating the relative efficiency of solving with standard methods the reformulated
problem. The test suite we designed for this purpose has random conditional
CSPs of 8 variables with domains of 6 values. The problems are organized in
nine classes, each corresponding to a sc value in [0.1 . . . 0.9]. The other three
problem generation parameters were fixed. Conditional CSPs were solved with
CondMAC. Their non-binary null-based reformulations, obtained with the re-
formulation algorithm that handles activity cycles, were first transformed into a
binary constraint representations and then were solved with the MAC algorithm
for binary CSPs. The execution time results are shown in Figure 10, on a normal
scale (left) and logscale (right). We observe that solving binary null-based refor-
mulations is much slower, up to two orders of magnitude, than solving original,
conditional CSPs directly. Two conclusions can be drawn from these findings.
First, greater efficiency in solving conditional CSPs lies with algorithms that
operate on the original representation. Second, much has to be learned about
what is specific to null-based reformulations and how standard methods can
more efficiently exploit these representations.

0
20
40
60
80

100
120
140
160

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
im

e
(s

ec
)

sc

RefMAC
CondMAC

0.01

0.1

1

10

100

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
im

e
(s

ec
 -

 lo
gs

ca
le

)

sc

RefMAC
CondMAC

Fig. 10. Execution time of CondMAC and RefMAC - standard MAC for solving equiv-
alent null-based, standard reformulations. Original conditional CSPs have 8 variables
and 6-value domains. 100 problem instances per topological class: variable satisfiability
of compatibility, sc, in [0.1 . . . 0.9] and fixed dc = 0.15, da = sa = 0.3

6 Conclusion and Future Work

CCSPs are extensions to standard CSPs that have proved useful in represent-
ing configuration and diagnosis problems. In contrast to other CSP extensions,
CCSP has not benefited from adaptations of efficient CSP solving algorithms to

662 Mihaela Sabin, Eugene C. Freuder, and Richard J. Wallace

improve CCSP solving. Moreover, experimental analysis of the efficiency of avail-
able CCSP solvers has been extremely limited. In this paper we presented two
advanced algorithms for CCSP that adapt forward checking and maintaining arc
consistency to keep track of variables’ activity status and to enforce local con-
sistency along compatibility and activity constraints. We studied their efficiency
experimentally and shown an improvement of up to two orders of magnitude
over plain backtrack search. An alternative approach to directly solving CCSP
is to reformulate it into an equivalent standard CSP. We studied a null-based
reformulation of CCSPs, addressed its limitations, and provided experimental
evidence that the proposed direct methods are more efficient.

We envision two directions for our future work. Real-life configuration and di-
agnosis problems are formulated as non-binary CCSPs. We want to generalize the
current implementations of CondFC and CondMAC to handle non-binary con-
straints and take advantage of efficient non-binary local consistency algorithms
[19,22,23]. In [1,10] a reformulation method has been proposed that generates
a set S of standard CSPs equivalent to the original CCSP. Conventional local
consistency methods are then applied on intermediate problems generated along
the way to producing S in order to reduce S and solve its members more effi-
ciently with CSP solving algorithms. The method can be further improved with
a hybrid approach that interleaves CSP solving, rather than just preliminary lo-
cal consistency, with reformulation2. We are interested in a more comprehensive
study of CCSP solving that will include this hybrid approach and facilitate new
advances in solving and reformulating CCSPs.

Acknowledgments

This work has received support from Science Foundation Ireland under Grant
00/PI.1/C075, from the National Science Foundation under Grant No. IRI-
9504316, and from Trilogy Software, Inc.

References

1. Gelle, E.: On the generation of locally consistent solution spaces. Ph.D. Thesis,
Ecole Polytechnique Fédérale de Lausanne, Switzerland (1998)

2. Mittal, S., Falkenhainer, B.: Dynamic constraint satisfaction problems. In: Pro-
ceedings of the Eighth National Conference on Artificial Intelligence. (1990)

3. Sabin, M., Freuder, E.: Detecting and resolving inconsistency and redundancy
in conditional constraint satisfaction problems. In: Web-published papers of the
CP’98 Workshop on Constraint Problem Reformulation, Pisa, Italy (1998)

4. Dechter, R., Dechter, A.: Belief maintenance in dynamic constraint networks. In:
Proceedings of AAAI-88. (1988) 37–42

5. Bessière, C.: Arc-consistency in dynamic constraint satisfaction problems. In:
Proceedings of the 9th AAAI. (1991) 221–226

2 E. Gelle, ABB Corporate Research Ltd., Switzerland, personal communication.

Greater Efficiency for Conditional Constraint Satisfaction 663

6. Verfaillie, G., Schiex, T.: Solution reuse in dynamic constraint satisfaction prob-
lems. In: Proceedings of the 12th AAAI, Seattle, WA (1994) 307–312

7. Sabin, D., Sabin, M., Russell, R., Freuder, E.: A constraint-based approach to
diagnosing software problems in computer networks. In Montanari, U., ed.: Princi-
ples and Practice of Constraint Programming - CP’95, Lecture Notes of Computer
Science 976, Springer Verlag (1995)

8. Sabin, M., Russell, R., Miftode, I.: Using constraint technology to diagnose errors
in networks managed with spectrum. In: Proceedings of the IEEE Internationl
Conference on Telecommunications, Bucharest, Romania (2001)

9. Soininen, T., Gelle, E., Niemelä, I.: A fixpoint definition for dynamic constraint
satisfaction. Principles and Practice of Constraint Programming, CP’99 (1999)

10. Gelle, E., Faltings, B.: Solving mixed and conditional constraint satisfaction prob-
lems. Constraints 8 (2003) 107–141

11. Wallace, R.: Random CSP Generator. Constraint Computation Center, University
of New Hampshire, Durham, NH, U.S.A. (1996)
http://www.cs.unh.edu/ccc/code.html.

12. Sabin, M.: Solving and Reformulation of Conditional Constraint Satisfaction Prob-
lems. PhD thesis, University of New Hampshire, Durham, NH, U.S.A. (2003)

13. Haselböck, A.: Knowledge-based Configuration and Advanced Constraint Tech-
nologies. PhD thesis, Technical University of Vienna (1993)

14. Haralick, R., Elliott, G.: Increasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence 14 (1980) 263–313

15. Mackworth, A.: Consistency in networks of relations. Artificial Intelligence 8 (1977)
16. Sabin, D., Freuder, E.: Contradicting conventional wisdom in constraint satisfac-

tion. In Borning, A., ed.: Principles and Practice of Constraint Programming,
Lecture Notes in Computer Science. Volume 874. Springer (1994) (PPCP’94: Sec-
ond International Workshop, Orcas Island, Seattle, USA).

17. Grant, S., Smith, B.: The phase transition behavior of maintaining arc consistency.
Technical Report 92.95, School of Computing, University of Leeds (1995) (A revised
and shortened version appears in Proceedings ECAI’96, pp. 175-179, 1996).

18. Bessière, C., Régin, J.C.: MAC and combined heuristics: Two reasons to forsake FC
(and CBJ?) on hard problems. In Freuder, E., ed.: Principles and Practice of Con-
straint Programming. Lecture Notes of Computer Science. Volume 1118., Springer
(1996) 61–75 (CP’96: Second International Conference, Boston, MA, USA).

19. Bessière, C., Régin, J.C.: Arc consistency for general constraint networks: prelim-
inary results. In: Proceedings IJCAI’97, Nagoya, Japan (1997) 398–404

20. Mohr, R., Henderson, T.: Arc and path consistency revisited. Aritificial Intelligence
28 (1986) 225–233

21. Freuder, E., Wallace, R.: Partial constraint satisfaction. Artificial Intelligence 58
(1992)

22. Bessière, C., Régin, J.C.: Refining the basic constraint propagation algorithm. In:
Proceedings IJCAI’01, Seattle, WA (2001) 309–315

23. Bessière, C., Meseguer, P., Freuder, E., Larrosa, J.: On forward checking for non-
binary constraint satisfaction. Artificial Intelligence 141 (2002) 205–224

	1 Introduction
	2 Conditional CSP: An Example
	3 Solving Methods
	4 Experimental Evaluation
	5 Reformulation
	6 Conclusion and Future Work
	References

