Four More
GRASP Principles

Curt Clifton
Rose-Hulman-institute:of fechnology

Four More
GRASP Principles

® Polymorphism
» Pure Fabrication
= [ndirection

» Protected Variations

Polymorphism

= Problem: How do we handle alternatives based on
type? How do we create pluggable software
components?

x Chained ifs and lots of switch statements are a bad
code smell = new types require finding conditions
and editing

Pluggable components require swapping one
module for another without changing surrounding
design

Q2

Polymorphism

» Problem: How do we handle alternatives based on

type? How do we create pluggable software
components?

Solution: When related alternatives vary by type,

assign responsibility to the types for which the
behaviors vary.

® [.e., Use subtypes and polymorphic methods

= Corollary: Avoid instanceof tests

Example

= Bad:
switch (square.getType() {
case GO:

case INCOME _TAX:
case GO _TO JAIL:

default:

/

What happens when
we need to add other
sorts of squares In
future iterations?

Solution: Replace
switch with polymorphic
method call

Example (continued)

Make albstract unless Details of polymorphic
clear default behavior method drawn separately

GeToJalSyace | [¢ Plaver)

|anded On (gl_'

s etlocahion(‘:)«\\) B% &"f ok

\%Qo\n

Polymorphism Notes

x A design using Polymorphism can be easily extended
for new. variations

x \Vhen should supertype be an interface?

= Don’t want to commit to a class hierarchy

®x Need to reduce coupling

x Contraindication: speculative future-proofing

Don’t be too clever!

Team Polymorphism

Pure Fabrication

= Problem: \What object should have responsibility when
solutions for low representation gap (like Info. Expert)
lead us astray (i.e., into high coupling and low
cohesion)

x Solution: Assign a cohesive set of responsibilities to an
artificial (not in the domain model) class

Example

x How might we design for saving a Sale object in a
database”?

x \Vhat does Info. Expert say?

» |[nstead, a Pure Fabrication solution:

PersistentStorage

insert(Object)
update(Object)

Common Design Strategies

® Representational decomposition

= Behavioral decomposition

Pure Fabrications are often
behavioral decompositions

Notes on Pure Fabrication

x Benefits:
= Higher cohesion
x (Greater potential for reuse
x Contraindications:
x Can be abused to create too many behavior objects

= \Vatch for data being passed to other objects for
calculations

Keep operations with data unless Q9
you have a good reason not to

Cartoon of the Day

Used with permission. http://notinventedhe.re/on/2009-10-13

Indirection

There is no problem in computer science that
cannot be solved by an extra level of indirection.
— David Wheeler

Indirection

= Problem: \Where do we assign responsibility if we want
to avoid direct coupling between two or more objects?

x Solution: Assign responsibility to an intermediate
object to mediate between the other components

Indirection and
Polymorphism Example

«interface»
ITaxCalculatorAdapter

getTaxes(Sale) : List<TaxLineltems>

-~
// ~N
- ~

TaxMasterAdapter GoodAsGoldTaxPro <?77>Adapter
Adapter

getTaxes(Sale) : List<TaxLineltems>

getTaxes(Sale) : List<TaxLineltems>

Protected Variation

= Problem: How do we design objects and systems so
that instability in them does not have undesirable
effects on other elements?

x Solution: [dentify points of predicted instability
(variation) and assign responsibilities to create a stable
interface around them

x Example: [TaxCalculatorAdaptor

Instability here doesn’t mean “crashy”. It
means prone to change or evolve.

Protected Variation IS
Pervasive in Computing

x \irtual machines and operating systems

x Data-driven designs (e.g., configuration files)

Service lookup (URLS, DNS)

Uniform access to methods/fields (Ada, Eiffel, C#,
Objective-C, Ruby, ...)

Standard languages (SQL)

Liskov Substitution Principle

Law of Demeter, or Caf@efc,a,
“Don’t Talk to Strangers L

= \Vithin a method,
messages should only
be sent to;

= this
a parameter
field of this

element in collection
of fleld of this

Better: Don't talk to strangers
new opjects who seem unstable

This guideline warns against code like:
sale.getPayment().getAccount().getAccountHolder ()

Notes on
Protected Variations

x Benefits (if we guessed variation points correctly):

x Extensions easy to addGan plug in new
Implementations

= | ower coupling
= [ower cost of change

x Risk: watch out for speculative future-proofing

Protected Variations
by Other Names

= |nformation hiding [Parnas’2]

x “WWe propose Instead that one begins with a list of
difficult design decisions which are likely to change.
Each module Is then designed to hide such a
decision from the others.”

x Open-Closed Principle [Meyer88]

x “Modules should be both open (for extension ...) and
closed (... to modification[s] that affect clients)”

