
Four More
GRASP Principles
Curt Clifton

Rose-Hulman Institute of Technology

Q1

Four More
GRASP Principles

Polymorphism

Pure Fabrication

Indirection

Protected Variations

Polymorphism

Problem: How do we handle alternatives based on
type? How do we create pluggable software
components?

Chained ifs and lots of switch statements are a bad
code smell → new types require finding conditions
and editing

Pluggable components require swapping one
module for another without changing surrounding
design

Q2

Polymorphism

Problem: How do we handle alternatives based on
type? How do we create pluggable software
components?

Solution: When related alternatives vary by type,
assign responsibility to the types for which the
behaviors vary.

I.e., Use subtypes and polymorphic methods

Corollary: Avoid instanceof tests

Q3

Example

Bad:
switch (square.getType()) {
case GO:
! …
case INCOME_TAX:
! …
case GO_TO_JAIL:
! …
default:
! …
}

What happens when
we need to add other

sorts of squares in
future iterations?

Solution: Replace
switch with polymorphic

method call

Example (continued)

Make abstract unless
clear default behavior

Details of polymorphic
method drawn separately

Polymorphism Notes

A design using Polymorphism can be easily extended
for new variations

When should supertype be an interface?

Don’t want to commit to a class hierarchy

Need to reduce coupling

Contraindication: speculative future-proofing

Don’t be too clever! Q4,5

Team Polymorphism

Q6

Pure Fabrication

Problem: What object should have responsibility when
solutions for low representation gap (like Info. Expert)
lead us astray (i.e., into high coupling and low
cohesion)

Solution: Assign a cohesive set of responsibilities to an
artificial (not in the domain model) class

Q7,8

Example

How might we design for saving a Sale object in a
database?

What does Info. Expert say?

Instead, a Pure Fabrication solution:

insert(Object)
update(Object)
…

…
PersistentStorage

Common Design Strategies

Representational decomposition

Behavioral decomposition

Pure Fabrications are often
behavioral decompositions

Notes on Pure Fabrication

Benefits:

Higher cohesion

Greater potential for reuse

Contraindications:

Can be abused to create too many behavior objects

Watch for data being passed to other objects for
calculations

Keep operations with data unless
you have a good reason not to

Q9

Cartoon of the Day

Used with permission. http://notinventedhe.re/on/2009-10-13

Indirection

There is no problem in computer science that
cannot be solved by an extra level of indirection.

— David Wheeler

Indirection

Problem: Where do we assign responsibility if we want
to avoid direct coupling between two or more objects?

Solution: Assign responsibility to an intermediate
object to mediate between the other components

Q10,11

Indirection and
Polymorphism Example

Protected Variation

Problem: How do we design objects and systems so
that instability in them does not have undesirable
effects on other elements?

Solution: Identify points of predicted instability
(variation) and assign responsibilities to create a stable
interface around them

Example: ITaxCalculatorAdaptor

Key Concept

Q12,13
Instability here doesn’t mean “crashy”. It

means prone to change or evolve.

Protected Variation is
Pervasive in Computing

Virtual machines and operating systems

Data-driven designs (e.g., configuration files)

Service lookup (URLs, DNS)

Uniform access to methods/fields (Ada, Eiffel, C#,
Objective-C, Ruby, …)

Standard languages (SQL)

Liskov Substitution Principle

Law of Demeter, or
“Don’t Talk to Strangers”

Within a method,
messages should only
be sent to:

this

a parameter

field of this

element in collection
of field of this

new objects
Better: Don’t talk to strangers

who seem unstable

Special case of PV

This guideline warns against code like:
sale.getPayment().getAccount().getAccountHolder()

Notes on
Protected Variations

Benefits (if we guessed variation points correctly):

Extensions easy to addCan plug in new
implementations

Lower coupling

Lower cost of change

Risk: watch out for speculative future-proofing

Q14

Protected Variations
by Other Names

Information hiding [Parnas72]

“We propose instead that one begins with a list of
difficult design decisions which are likely to change.
Each module is then designed to hide such a
decision from the others.”

Open-Closed Principle [Meyer88]

“Modules should be both open (for extension …) and
closed (… to modification[s] that affect clients)”

