
DiaLog

A system for dialogue logic

J�urgen Ehrensberger1 and Claus Zinn2

1 Ecole polytechnique f�ed�erale de Lausanne, Laboratoire de T�el�ecommunications

CH-1024 Lausanne, Switzerland

ehrensbe@tcomhp20.epfl.ch
2 Universit�at Erlangen-N�urnberg, Lehrstuhl f�ur K�unstliche Intelligenz

D-91058 Erlangen-Tennenlohe, Germany

zinn@informatik.uni-erlangen.de

Abstract. We present a proof system which implements dialogue logic

as originally developed by Lorenzen. Intuitionistic and classic logic are

pre-de�ned. A rule language allows to easily de�ne dialogue rules for

other logics. DiaLog provides multi-sorted logic. The system supports

fully automated and interactive proof search. A user-friendly graphical

interface displays the dialogue tableau, a dialogue trace �eld and a dia-

logue strategy grapher.

1 Dialogue logic

The principles of dialogue logic were proposed by Paul Lorenzen in 1958 in

order to provide a new autonomous foundation of intuitionistic logic (cf. [5]). In

this new approach the validity of a given formula is examined in a formal dialogue

between two participants: the proponent and the opponent. At the beginning of a

dialogue the proponent asserts a thesis and the opponent may assert hypotheses.

The consecutive steps of the dialogue are attacks upon previous assertions or

defences against previous attacks which are stated by the proponent and the

opponent in turn. Some of these statements may contain new assertions and

thus might be subject to subsequent attacks.

1.1 Dialogue rules

A formal dialogue is de�ned in terms of particle rules, also called argumentation

forms, and frame rules. For each logical connective � a particle rule is given

which speci�es how attacks upon assertions having � as main connective and

defences against such attacks have to be performed. Tab. 1 gives an overview of

these particle rules.

A logical disjunction asserted by one of the formal dialogue participants may

be attacked by its counterpart by stating 0?0. The �rst player is then to choose the

disjunct that he wants to assert in the defence. In the case of a logical conjunction

the attacking player chooses the subformula (either left or right conjunct) that is

to be asserted by the other player in the defence. To attack a logical implication,

Assertion Attack Defence

A _B ? A B

A ^B L? R? A B

A! B ?; A B

:A ?; A

9xA(x) ? A(n)

8xA(x) n? A(n)

Table 1. Particle rules

the premise of this formula has to be asserted. The defence is carried out by

asserting the consequence of the formula. A formula :A is attacked by stating

A. In this case, there is no possible defence. After an attack to an existential

quanti�ed formula 9xA(x), the defending player can choose a term n for which

he asserts the formula A(n). In the case of a universal quanti�ed formula the

attacking player chooses the term.

While the particle rules impose restrictions on how to attack propositions and

how to defend oneself against such attacks, the frame rules impose restrictions

on when attacks and defences may take place in the dialogue. I.e., the frame

rules order the exchange of arguments and thus determine the frame in which

the dialogue may develop. The frame rules for intuitionistic logic are:

1. Any formal dialogue starts with the proponent's assertion of the thesis. The

opponent is free to state an arbitrary number of hypotheses. This de�nes the

setting of the dialogue. The consecutive dialogue steps are performed by the

opponent and the proponent in turn. The opponent starts the argument in

attacking the thesis.

2. After the setting of the dialogue has been �xed, each action of a player is

either an attack upon a previously stated assertion or a defence against an

attack of the other player.

3. Each action of the opponent is a reaction (according to the particle rules)

upon the immediately preceding action of the proponent.

4. A defence of the proponent against an attack of the opponent may only be

carried out once.

5. Attacks to which no defence has yet been stated are called open attacks. If

the proponent3 wants to perform a defence against an open attack, he has

to answer the most recent open attack of the dialogue. If he is not able to

answer this attack, he is not allowed to answer any other open attack.

6. It is not allowed to attack atomic formulae. The opponent may state any

atomic formula. The proponent may only state an atomic formula after it

has been stated by the opponent.

7. A dialogue is won by a player, if the other player cannot perform any action

that is conform to the dialogue rules.

3 Due to the third frame rule there are no open attacks of the opponent.

The frame rules and their proper justi�cation have been the key issue in the

development of dialogue logic. The frame rules 1-7 for intuitionistic logic can be

modi�ed in order to provide classical logic.

A single dialogue has no signi�cance for the validity of a thesis. Instead, all

possible dialogues starting from this thesis have to be considered. The proponent

is said to have a winning strategy for a formula, if he is able to win all possible di-

alogues with this formula as thesis by appropriate choices of his statements. The

possible dialogues about a formula can be represented as a tree of statements.

A winning strategy for a proponent is then a tree with the following properties:

1. All branches of the tree are �nite.

2. The leafs of the tree are statements of the proponent4.

3. No branch can be extended beyond the leaf in accordance with the dialogue

rules5.

4. When it is the proponents turn to perform a statement, only one of the

possible alternatives is contained in the tree.

5. When it is the opponents turn to perform a statement all possible alterna-

tives are contained in the tree.

The winning strategy is not unique.

It can be shown that the notion of winning strategies (wrt. a well-de�ned

set of dialogue rules) coincides with the notion of provability in Gentzen's cal-

culus LJ for intuitionistic logic (cf.[2], [3] for details of this equivalence theorem).

1.2 Finite dialogue trees

In most cases, a dialogue tree (containing all possible dialogues in accordance

with the dialogue rules) is in�nite. It may contain (a) dialogues with in�nitely

many steps { due to repeated attacks or repeated defenses { and (b) in�nite

rami�cations { when terms have to be chosen. In order to only allow �nite

dialogue trees, two measures have to be taken.

Firstly, the number of repeated attacks upon the same formula and the num-

ber of repeated defences to the same attack have to be restricted using an attack

limit and a defence limit. It has to be pointed out, that these limits restrict the

possibility to �nd a winning strategy, i.e., with too low limits a strategy for a

formula might not be found even if the formula is valid in some given logic.

Secondly, whenever attacks upon universal quanti�ed formulae and defences

against attacks of existential quanti�ed formulae are performed the dialogue

participants have to choose appropriate terms. These terms are elements of the

Herbrand universe which is, in general, in�nite. To avoid in�nite rami�cations,

4 In DiaLog, the leafs of the tree are resign statements (symbolized by '%') of the

opponent.
5 I.e., there exists no action (wrt. the rules) for the opponent to continue the dialogue.

two purely technical methods are applied that do not a�ect the possibility to

�nd a strategy.

When it is the opponent that has to choose a term, he introduces a new

symbol that has not yet been used in the dialogue. This constitutes the most

di�cult case for the proponent. If the proponent can �nd a winning strategy for

this case, he will succeed for any other case too.

If the proponent has to choose a term, he delays his choice until only a �nite

number of possible terms remain. Like the opponent he introduces a new symbol

that, in this case, stands for a not yet speci�ed term. When the proponent wants

to state an atomic formula containing such a symbol, the �nite number of atomic

formulae that have already been stated by the opponent is examined. Only the

atomic formulae, that can be uni�ed with the proponent's atomic formula are

considered. The uni�cation results in concrete values for the formerly unspeci�ed

term. These symbols that are introduced into the dialogue by the opponent or

the proponent are called term symbols and are pre�xed in DiaLog with '$'.

1.3 An example

Those who do not know dialogue logic may appreciate an example. Fig. 1 shows

the beginning of the dialogue for the thesis ::a! a and the hypothesis a_:a.
After the attack of the thesis by the opponent the proponent cannot state the

Opponent Proponent

a _ :a 1 ::a! a

?;::a 2

Fig. 1. Starting of a dialogue about ::a! a under TND6

atomic formula a. He has the choice to attack either the hypothesis a_:a or the

assertion ::a. When he chooses to attack ::a he might lose the dialogue. This

situation is shown in Fig. 2 and Fig. 3. In line 3 of both dialogues the proponent

Opponent Proponent

a _ :a 1 ::a! a

?;::a 2 ?;:a
?; a 3 ?1

a 4 %

Fig. 2. Dialogue continuation 1

Opponent Proponent

a _ :a 1 ::a! a

?;::a 2 ?;:a
?; a 3 ?1

:a 4 ?; a

% 5

Fig. 3. Dialogue continuation 2

6 abbrev. for Tertium Non Datur, law of excluded middle.

cannot defend the attack of the opponent as there is no defence against an

attack upon a negation. Moreover, he cannot use the atomic formula a of the

opponent as defence against the attack of the opponent in line 2, as this is not

the most recently stated attack7. The only remaining possibility is to attack the

hypothesis. In dialogue continuation 1 the opponent takes the right choice and

again states the atomic formula a so that the proponent has to resign. However,

the proponent wins the dialogue if the opponent chooses the wrong alternative

and states the formula :a (line 4) as shown in dialogue continuation 2.

If the proponent already attacks the hypothesis in line 2, he can win both

dialogues that result from the remaining choices of the opponent. These dialogues

are depicted in Fig. 4 and Fig. 5. In this example, the proponent wins the last

Opponent Proponent

a _ :a 1 ::a! a

?;::a 2 ?1

a 3 a[[2]]

% 4

Fig. 4. Dialogue continuation 38

Opponent Proponent

a _ :a 1 ::a! a

?;::a 2 ?1

:a 3 ?2;:a
?; a 4 ?3; a

% 5

Fig. 5. Dialogue continuation 4

two dialogues, independent of the actions taken by the opponent. In the �rst

two dialogues the winner depends on the choice of the opponent.

For showing the validity of a proposition P the proponent needs to have

a winning strategy, i.e. he must know how to force the opponent to lose. We

must therefore look at all possible dialogues for a given thesis P. It is useful to

represent these dialogues by dialogue trees (cf. Fig. 6). The dialog tree branches

whenever proponent or opponent has a choice. The leaves of the dialogue tree

mark the end of dialogues. Note that even for valid formulae some dialogues may

be won by the opponent (if the proponent does not apply his winning strategy).

2 DiaLog

DiaLog provides two modes to generate a winning strategy: a fully automatic

mode and an interactive mode. In the latter, the user plays the role of the pro-

ponent and is thus obliged to choose from the set of alternatives the appropriate

statements in order to win the dialogues. The system assures that all possible

alternatives of the opponent are considered.

7 Note: Imagine, that the proponent sets the negation :A and that the opponent

attacks :A by setting ?; A. According to frame rule 5 the proponent is obliged to

always defend himself by answering the most recent open attack. But there exists no

defence upon attacks on :A. Thus the proponent cannot defend himself against the

most recent open attack and is thus not allowed to answer any other open attacks.
8 Note that 'a [[2]]' means: 'a is my defence against your attack in line 2'.

?

?

? ?

?

?;:aP (3)

O(4)?; a

P (5)?1

O(6) a

P (7) % ?; a

%

:aO(6)

P (7)

O(8)

P (5) ?2;:a

P (3) ?1

?

?

�
�
�
�
�
��9

X
X
X
X
XXz

�
�

�
��9

H
Hj

?

? ?

?

?

?

�
�
�
�9

X
X
XXz

O(1) a _ :a

::a! a

?;::a

P (1)

O(2)

O(4) a

P (5) a[[2]]

O(6) %

O(4) :a

O(6) ?; a

O(8) %

P (7) ?4; a

Fig. 6. Dialogue tree for ::a! a under TND

For automated mode we give a very simple example, the proof for the Peirce

formula, to illustrate the work with DiaLog.

; *** The PEIRCE FORMULA

declare predicate a () prefix a

declare predicate b () prefix b

hypothesis TND a OR NOT a

thesis a SUB b SUB a SUB a

All symbols like constant, variable, and function symbols have to be declared

before their use in the speci�cation of thesis and hypotheses. The declarations

are followed by one thesis and an arbitrary number of (named) hypotheses.

Fig. 7 shows the main window of DiaLog after proof termination of the Peirce

formula. The proof has been found automatically. It can be visualized by the

strategy grapher (cf. Fig. 8).

We sketch now how to prove the irrationality of
p
2. The formalization (the

thesis and two hypotheses) is as follows:

:9p9q(2 =
p2

q2
^ :(9s : 2s = p ^ 9t : 2t = q)):

8u(9t : 2t = u2 ! 9s : 2s = u)

8x8y8z(2x = y2 ^ 2z = y ! 2z2 = x)

Fig. 7. Main window (screenshot after the Peirce formula has been proven)

In DiaLog this is written in the following form:

; *** Irrationality of sqrt 2

declare sort nat

declare constant 2 nat

declare variable p nat \ declare variable q nat \ declare variable r nat

declare variable s nat \ declare variable t nat \ declare variable u nat

declare variable x nat \ declare variable y nat \ declare variable z nat

declare function * (nat nat) -> nat infix 3 4 *

declare function ^ (nat nat) -> nat infix 6 5 ^

declare predicate = (nat nat) infix =

hypothesis A1 ALL u ((EXI t 2 * t = u ^ 2) SUB (EXI s 2 * s = u))

hypothesis A2 ALL x ALL y ALL z ((2 * x = y ^ 2 AND 2 * z = y) SUB 2 * z ^ 2 = x)

thesis NOT EXI p EXI q (2 * q ^ 2 = p ^ 2 AND NOT ((EXI s 2 * s = p) AND (EXI s 2 * s = q)))

set attack limit 2

As one can see from the example DiaLog provides multi-sorted logic. Sorts

and a hierarchy of sorts can be de�ned.

The winning strategy for the irrationality of
p
2 has been established in

interactive mode. It's structure is shown in Fig. 9.

Fig. 8. Winning strategy for the Peirce formula

3 A rule language to rede�ne dialogue rules

The particle and frame rules that are used for the dialogues are not �xed in

DiaLog. There are prede�ned rules for intuitionistic and classical logic, but the

system also provides means to modify or completely rede�ne these rules. The

rule language is embedded in the Scheme programming language that has been

used to implement DiaLog. Various Scheme functions are provided which allow

to obtain information about the current dialogue, e.g., whether an attack is still

open, the position of the most recently stated open attack, the number of attacks

already performed upon an assertion.

3.1 Speech acts

We describe the internal format of dialogue speech acts as used in DiaLog. The

elements that describe a speech act form a 6-tuple (cf. Tab. 2). The � contains

OPP(A1): HYPOTHESE: Au: (Et: 2 * t = u ^ 2 −>
Es: 2 * s = u)

OPP(A2): HYPOTHESE: Ax: Ay: Az: (2 * x = y ^
2 && 2 * z = y −> 2 * z ^ 2 = x)

PRO(1): THESE: ~ (Ep: Eq: (2 * q ^ 2 = p ^ 2
&& ~ (Es: 2 * s = p && Es: 2 * s = q)))

OPP(2): ?, Ep: Eq: (2 * q ^ 2 = p ^ 2 && ~
(Es: 2 * s = p && Es: 2 * s = q))

PRO(3): ?2,

OPP(4): Eq: (2 * q ^ 2 = $1 ^ 2 && ~ (Es: 2 *
s = $1 && Es: 2 * s = q))

PRO(5): ?4,

OPP(6): 2 * $2 ^ 2 = $1 ^ 2 && ~ (Es: 2 * s =
$1 && Es: 2 * s = $2)

PRO(7): L ?6,

OPP(8): 2 * $2 ^ 2 = $1 ^ 2

PRO(9): $1 ?A1,

OPP(10): Et: 2 * t = $1 ^ 2 −> Es: 2 * s = $1

PRO(11): ?10, Et: 2 * t = $1 ^ 2

OPP(12): Es: 2 * s = $1

PRO(13): ?12,

OPP(14): 2 * $3 = $1

PRO(15): $2 ^ 2 ?A2,

OPP(16): Ay: Az: (2 * $2 ^ 2 = y ^ 2 && 2 * z
= y −> 2 * z ^ 2 = $2 ^ 2)

PRO(17): $1 ?16,

OPP(18): Az: (2 * $2 ^ 2 = $1 ^ 2 && 2 * z =
$1 −> 2 * z ^ 2 = $2 ^ 2)

PRO(19): $3 ?18,

OPP(20): 2 * $2 ^ 2 = $1 ^ 2 && 2 * $3 = $1
−> 2 * $3 ^ 2 = $2 ^ 2

PRO(21): ?20, 2 * $2 ^ 2 = $1 ^ 2 && 2 * $3
= $1

OPP(22): 2 * $3 ^ 2 = $2 ^ 2

PRO(23): $2 ?A1,

OPP(24): Et: 2 * t = $2 ^ 2 −> Es: 2 * s = $2

PRO(25): ?24, Et: 2 * t = $2 ^ 2

OPP(26): Es: 2 * s = $2

PRO(27): ?26,

OPP(28): 2 * $4 = $2

PRO(29): R ?6,

OPP(30): ~ (Es: 2 * s = $1 && Es: 2 * s = $2)

PRO(31): ?30, Es: 2 * s = $1 && Es: 2 * s =
$2

OPP(32): R ?,

PRO(33): Es: 2 * s = $2 [[32]]

OPP(34): ?,

PRO(35): 2 * $4 = $2 [[34]]

OPP(36): %%%

OPP(32): L ?,

PRO(33): Es: 2 * s = $1 [[32]]

OPP(34): ?,

PRO(35): 2 * $3 = $1 [[34]]

OPP(36): %%%

OPP(26): ?,

PRO(27): 2 * $3 ^ 2 = $2 ^ 2 [[26]]

OPP(28): %%%

OPP(22): R ?,

PRO(23): 2 * $3 = $1 [[22]]

OPP(24): %%%

OPP(22): L ?,

PRO(23): 2 * $2 ^ 2 = $1 ^ 2 [[22]]

OPP(24): %%%

OPP(12): ?,

PRO(13): 2 * $2 ^ 2 = $1 ^ 2 [[12]]

OPP(14): %%%

Fig. 9. Proof structure for
p
2 is irrational

element meaning value

� sign opponent or proponent

� identi�cation name or number

� assertion formula

�1 relation name or number

�2 type attack, defence, . . .

� parameter left or right or term

Table 2. A speech act is a 6-tuple

the information which of the players has stated the speech act. The identi�cation

� of a speech act is unique within a dialogue but not within a dialogue tree. It is

used to refer to a speech act in subsequent attacks or defences. When referring to

a hypothesis, � contains the name of the hypothesis that the user has attached

to it in its declaration. For all other speech acts, � contains a natural number

indicating the dialogue step in which this speech act has been stated. If the speech

act contains a formula, � will contain that formula. For assertion-free statements,

� contains the empty formula. The �1 element speci�es the identi�cation of a

previous speech act that is now attacked or defended. The type of the speech

act, i.e. whether it is an attack, a defence, a thesis or a hypothesis, is contained

in �2. The � part is required for speech acts that need additional parameters

in accordance with the particle rules. In attacks upon conjunctions this element

speci�es whether the left or the right subformula has to be stated in the defence.

For attacks or defences of quanti�ed formulae � contains a term.

The terms as well as the formulae in � are objects of the programming lan-

guage Scheme that provide numerous methods for testing, modi�cation and se-

lection of subformulae.

3.2 Particle Rules

The application of particle rules create speech acts, which can be set within a
dialogue. They are applied to the last step performed in the dialogue. As an
example consider a conjunction A^B that has been stated by the proponent in
the last dialogue step with the identi�cation 5 as a defence against an attack in
step 4. This speech act is described by the 6-tuple

(proponent 5 A ^B 4 defence empty-parameter).

In this case, the particle rules generate two new speech acts that are attacks
upon the conjunction9:

(opponent x empty-formula 5 attack left)

(opponent x empty-formula 5 attack right).

The general form to de�ne a particle rule is:

(define particle-rule name body).

The name should be of type string, the body is a Scheme function call with �ve
arguments and has one of the following forms:

(p-rule ny delta eta1 eta2 zeta

(conditions condition1 ... conditionn)

(speechact-form delta0 eta10 eta20 zeta0))

(p-rule ny delta eta1 eta2 zeta

(conditions condition1 ... conditionn)

(speechact-list

(speechact-form delta1 eta11 eta21 zeta1)

.

.

.

(speechact-form deltan eta1n eta2n zetan)))

In the formal parameters ny, delta, eta1, eta2 and zeta are the necessary

elements of the speech act under consideration that are provided to the function.

When the conditions of the function evaluate to true, one or more speech act

forms are generated. Speech act forms are 4-tuples, omitting the sign and the

identi�cation of regular speech acts. These elements are added when the speech

act form is actually set in the dialogue.
A particle rule that generates the speech act forms of the example given

above can be de�ned as:

9 In the dialogue tableau, these speech acts will appear as 'L?5' and 'R?5', respectively.

(define particle-rule

"A_Con"

(p-rule ny delta eta1 eta2 zeta

(conditions (equal? (main-symbol delta) "AND"))

(speechact-list

(speechact-form empty-formula ;; delta

ny ;; eta1

attack ;; eta2

left) ;; zeta

(speechact-form empty-formula ;; delta

ny ;; eta1

attack ;; eta2

right)))) ;; zeta

When this rule is applied to a speech act it tests whether a conjunction was

stated and in this case generates the required speech act forms.

The rules for quanti�ed formulae have to take into account that a term
symbol has to be used instead of a concrete term. The term symbol is chosen by
the system when the given speech act is set in the dialogue, not when the speech
act is generated, as a speech act might be set multiple times in a dialogue but
the term symbol has to be unique. To indicate that a term symbol has to be
chosen, the quantor variable is placed into the element � of the speech act form
instead of a term or a term symbol. This method is used in the following rule
that generates attacks upon universal quanti�ed formulae:

(define particle-rule

"A_All"

(p-rule ny delta eta1 eta2 zeta

(conditions (equal? (main-symbol delta)

"ALL"))

(speechact-form empty-formula ;; delta

ny ;; eta1

attack ;; eta2

(quantor-variable delta)))) ;; zeta

The rule that generates defences against such attacks is de�ned as:

(define particle-rule

"V_All"

(p-rule ny delta eta1 eta2 zeta

(conditions (equal? (main-symbol (delta-function eta1))

"ALL")

(eqv? eta2 attack))

(speechact-form (substitute-variable ;; delta

(body (delta-function eta1))

(quantor-variable

(delta-function eta1))

zeta)

ny ;; eta1

defence ;; eta2

empty-parameter))) ;; zeta

The expression (delta-function eta1) returns as a result the formula of the

speech act who's identi�cation is equal to eta1. When this rule is applied to

an attack upon a universal quanti�ed formula it takes as assertion of the newly

generated speech act the body of the quantor formula and replaces the quantor

variable with the term symbol that the system has placed into the element � of

the attack when the attack was stated in the dialogue.

The same method can be used for the particle rules that treat existential

quanti�ed formulae.

3.3 Frame Rules

The frame rules serve to restrict the range of possible speech acts created by the

particle rules.

Before speech acts are actually set in the dialogue, the frame rules are applied

to the speech acts that have been generated in all previous steps. They determine

which of these speech acts are allowed in the current dialogue state. In addition,

they delete speech acts that won't be allowed in any subsequent dialogue step.
Frame rules are de�ned in a form similar to particle rules:

(define frame-rule name body).

The body of the frame rule is slightly di�erent from the body of a particle rule:

(r-rule sigma delta eta1 eta2 zeta

(conditions condition1 : : : conditionn)

ag)

Again, conditions are speci�ed that evaluate the elements of a speech act. The

ag can have the values lock-speechact and delete-speechact, determining

the action that has to be taken if all conditions evaluate to true.
An example of a locking rule is the frame rule that locks all speech acts

except for the thesis, when the thesis has not yet been set in the dialogue:

(define frame-rule

"RR_D_Thesis_P"

(r-rule sigma delta eta1 eta2 zeta

(conditions (not (eqv? eta2 these))

(not (thesis-set?)))

lock-speechact))

When the number of attacks of the proponent upon the same dialogue step
exceeds the limit of attacks that has been speci�ed, every new attack upon this
dialogue step can be deleted. This is performed by the following rule:

(define frame-rule

"RR_D_Angriff_P"

(r-rule sigma delta eta1 eta2 zeta

(conditions (eqv? sigma p_signum)

(eqv? eta2 attack)

(>= (attack-repetitions eta1)

attack-limit))

delete-speechact))

The built-in functions thesis-set? and attack-repetitions provide informa-

tion about the current dialogue state. There are several other functions that can

be used in the frame rules. As di�erent dialogue rules might require di�erent

information about the current dialogue a means is provided to construct new

information functions.

Using the rule language that has been presented in the examples, rules for

ontic and deontic modal logic have been de�ned in extension to the rules for

classical an intuitionistic logic.

3.4 Built-in heuristics for proponent and opponent

At any time of the dialogue the proponent and the opponent have, in general,

various choices to continue a given dialogue. The dialogue players have to choose

one suitable action from a set of allowed actions (generated by the application

of particle and frame rules).

In DiaLog we have implemented simple heuristics which determine an action

which best serves the goal to minimize the length of dialogues (i.e., the number

of nodes to be examined in order to �nd the proof).

The opponent's heuristics is to prefer setting assertion-free speech acts. If

this is not possible he will set speech acts containing complex formulae. He tries

to avoid setting atomic formulae.

The proponent's heuristics try to answer open attacks as soon as possible.

If the proponent is able to defend himself by setting an atomic formula he wins

the dialogue. He will thus prefer to defend himself with atomic formulae rather

than with complex formulae. Furthermore, the proponent prefers assertion-free

attacks rather than attacks which consist in setting atomic formulae. If not

otherwise possible, the proponent will attack with complex formulae. In general,

repetitions of speech acts have a low priority.

Please note, that in unsuccessful dialogues all speech acts of the proponent

will be tested. The heuristics thus do not minimize the number of nodes to be

explored in such dialogues. In the same way, the opponent's heuristics do not

minimize the number of nodes in successful dialogues, but only in dialogues

which are lost.

4 Earlier and future work

4.1 Earlier work

In the history of dialogue logic there has always been a struggle about the 'cor-

rect' speci�cation of particle and frame rules. In the literature on dialogue logic

numerous versions of them (mostly kept rather informal) can be found (e.g., cf.

[5]). Felscher gives a formal account on dialogue logic including an equivalence

theorem which states that provability by winning strategies (with a well-de�ned

set of dialogue rules) coincides with provability in Gentzen's calculus LJ for in-

tuitionistic logic (cf. [2], [3]).

Around 1970 at least 2 implementations of dialogue logic existed. One of

them has been made at Erlangen University by Haas (cf. [4]). Another imple-

mentation has been used in Austin, Texas (implemented in Fortran on a Control

Data 6600), where Lorenzen spent some time as a visiting professor (around

1970). Due to memory restrictions these systems implemented only propositional

logic.

4.2 Future work

As far as the authors know, DiaLog is the �rst system which implements

dialogue logic for full predicate logic. We had the following goals in mind:

1. To promote dialogue logic which is rather unknown in the automatic deduc-

tion community.

2. To better understand the dialogue calculus.

3. To have a system for teaching purposes.

There are several matters which require further study. Primarily, we are

interested in how to �nd fast a winning strategy, that is �nding the shortest and

most elegant proof. There are several ways to achieve this:

{ Avoid super
ous dialogue steps by adapting the frame rules such that the

equivalence of winning strategies to the notion of provability in intuitionistic

logic (classic logic, respectively) is preserved. Therefore, we have provided a

mechanism for rede�ning frame rules easily. It has been our mayor issue to

technically support the experimentation with dialogue rules.

{ Avoid super
ous dialogue steps by modifying the heuristics which sort pos-

sible speech actions by their relevance.

To better analyse the system's performance future work will require an in-

depth evaluation of statistical information about the proof process including

the number of success and failure nodes, the number of hypotheses used, the

maximum of attack and defence repetitions, the maximal length of dialogues,

the number of dialogues generated etc.

The current version of DiaLog includes a strategy grapher which graphi-

cally represents the winning strategy if the proof succeeds. It should be noted,

however, that large proofs require to improve the strategy grapher (e.g., to pro-

vide a zoom facility and the possibility to cut-o� branches).

For system evaluation we have written a converter which translates TPTP

problems into the input format of DiaLog. First tests suggest that without

human guidance (thus without running DiaLog in interactive mode) the prover

will be unable to �nd proofs of complex theorems. Currently, we regard the

formulae presented to prove the irrationality of
p
2 as a complex theory.

5 Availability

The system has been written and developed in the programming language Scheme.

The Scheme implementation supports a purely textual user interface. For the

graphical user interface you will require STk, a Scheme dialect which interfaces

with the X Windows system. DiaLog has been developed within the master's

project of the �rst author. DiaLog contains all the features (and some more)

described here. It should still count as a prototypical version. For e�ciency rea-

sons some code rewriting may be necessary. DiaLog is freely available and can

be obtained by contacting the authors.

Comments and bug reports are highly appreciated.

6 Conclusion

We presented a proof system which implements dialogue logic and which o�ers

the possibility to freely and easily rede�ne the dialogue rules. Intuitionistic and

classic logic are prede�ned. Multi-sorted logic is supported. DiaLog runs in

automated and interactive mode. A user-friendly textual and graphical interface

is provided. DiaLog can be used to better understand dialogue logic and its

limits.

Acknowledgements: We would like to thank the anonymous referees for

their comments.

References

1. Ehrensberger, J�urgen. \Ein System f�ur Dialogische Logik". Diplomarbeit am Insti-

tut f�uer Mathematische Maschinen und Datenverarbeitung, Lehrstuhl f�ur K�unstliche

Intelligenz, Universit�at Erlangen-N�urnberg. 1996.

2. Felscher, Walter. \Dialogues, Strategies and Intuitionistic Provability". Annals of

Pure and Applied Logic 28 (1985): 217{254

3. Felscher, Walter. \Dialogues as a Foundation for Intuitionistic Logic". Handbook of

Philosophical Logic. Vol. III. Ed. by Dov M. Gabbay und Franz Guenthner. Dor-

drecht: D. Reidel, 1986. 341{372.

4. Haas, Gerrit. \Programme zur dialogischen Logik". Arbeitsberichte des IMMD. Bd.

3, Nr. 4. Universit�at Erlangen-N�urnberg, Oktober 1970.

5. Lorenzen, Paul and Lorenz, Kuno. \Dialogische Logik". Wissenschaftl. Buchge-

sellschaft, Darmstadt. 1978.

This article was processed using the LATEX macro package with LLNCS style

