
Principles
of object-oriented design

• Abstraction – Hide details

• Encapsulation – Keep changes local

• Modularity – Control information flow
High cohesion • weak coupling • talk only to friends

• Hierarchy – Order abstractions
Classes open for extensions, closed for changes • Subclasses that
do not require more or deliver less • depend only on abstractions

Goal: Maintainability and Reusability

Abstraction

Encapsulation

Modularity

1

2

3

4

Principles of Modularity

• High cohesion – Modules should contain
functions that logically belong together

• Weak coupling –Changes to modules
should not affect other modules

• Law of Demeter – talk only to friends

Call your Friends

A method M of an object O should only call
methods of

1. O itself

2. M’s parameters

3. any objects created in M

4. O’s direct component objects

“single dot rule”

Hierarchy

“Hierarchy is a
ranking or ordering
of abstractions.”

Hierarchy principles

• Open/Close principle – Classes should be
open for extensions

• Liskov principle – Subclasses should not
require more, and not deliver less

• Dependency principle – Classes should
only depend on abstractions

5

http://en.wikipedia.org/wiki/Law_of_Demeter

6

7

8

From Requirements
to Design

• Describe requirements as use cases

• Refine use cases to alternate scenarios

• Identify classes and operations

Initial Use Case
Use case: display camera views
Actor: homeowner

If I’m at a remote location, I can use any PC with
appropriate browser software to log on to the SafeHome
Web site. I enter my user ID and two levels of
passwords and, once I’m validated, I have access to all
the functionality. To access a specific camera view, I
select “surveillance” and then “select a camera”.
Alternatively, I can look at thumbnail snapshots from all
cameras by selecting “all cameras”. Once I choose a
camera, I select “view”…

Full Use Case

“Swimlane”
Activity Diagram

See Pressman, chapter 8 for the remainder of this
lecture

9

10

11

Swimlane diagram for Access camera surveillance–
display camera views functions

12

1. Retained Information
The information is necessary for the system to function

2. Needed Services
The potential class must have a set of potential operations

3. Multiple Attributes
We are focusing on potential classes with more than one attribute

4. Common Attributes and Operations
The attributes and operations apply to all instances of the class

5. Essential Requirements
External entities – producers and consumers of information – almost
always become classes

Requirements for

Potential Classes

Classes and Methods

• Class-Responsibility-Collaborator (CRC) modeling
is a simple means for identifying and
organizing classes

• Makes use of virtual or actual index cards

A CRC index card

CRC Responsibilities
• System intelligence should be distributed

across classes (➔ modularity)

• State responsibilities as general as possible
(➔ abstraction)

• Information and related behavior goes into
the same class (➔ encapsulation)

• Information about one thing should be
localized in a single class (➔ modularity)

• Responsibilities should be shared among
related classes (➔ hierarchy)

These are requirements a potential class has to fulfill
to be retained

13

14

15

16

