

Avatar Designer
Guide for Algorithms

Srinivas N Jay
Madhu Balasubramanian
11/1/2011

 1

Table of Contents

1.Introduction .. 2
1.1 Understanding Terminologies ..2

1.1.1 Refutation ..2
1.1.2 Strengthening ...3
1.1.3 Agreement ...3
1.1.4 Example:..3

2. Making a clever avatar ... 4
2.1. Tips To Design Clever Avatars ..4

3. Admin ... 5
 3.1 Building and running the Admin. ...5
 3.2 Tournament Management..6

4. Avatar... 7
 4.1 Signing up and Enrolling as Avatar ...7
 4.2 Running Avatars ...7
 4.3 Understanding the tournament page ..8
 4.4 Configuration files..8

5. Smart History .. 10
 5.1. Understanding Smart History files ... 10

6. GNU Screen : ... 11
 6.1 Steps to run GNU .. 11
 6.2 Caveats... 12
 6.3 Exit Screen.. 12

 2

1.Introduction

This guide provides a description of playgrounds, which are environments for learning

and innovation. Playgrounds with a teacher are good for learning and playgrounds
without a teacher are for innovation. A teacher has all the correct answers. Playground
designers will be provided with SCG Playground Designer Guide to design

playgrounds.

This Avatar Designer Guide assumes that readers know the quantifier game (An
operational approach) to predicate logic, focusing on how a claim is defended rather than
whether it is true. Every predicate logic claim is translated into a game between two

players.

To learn about computational problems and their efficient solution and robust
implementation, you have to implement an avatar with your knowledge about how to
solve a certain computational problem to play certain quantifier game. In this Guide, we

introduce the knowledge needed to implement avatars in playgrounds of SCG.

In SCG, we are interested in solve functions for computational problems that translate
instances to solutions. The instances must belong to an InstanceSet and a solution must
satisfy a valid predicate for a given instance.

The purpose of SCG is to find good solutions to the given problem and implement them

reliably in an avatar.

What is a playground?

A playground is an arena where avatars play tournaments, which are organized by an
administrator. Avatars are software programs written by developers like us, and they play

each other by proposing , refuting, strengthening or agreeing to claims.

For example, we have a set of claims of the form:

C(k,f(k)) where k is some value and f is a function with range [0,1]. K defines a family of
instances. The claim C(k,f(k)) claims, for example, that for all instances in K there is a

solution of quality f(k).

1.1 Understanding Terminologies

Defending one's own claims and refuting or strengthening others’ claims wins reputation.

1.1.1 Refutation

A user refutes a claim if he/she thinks the claim is not true. If Bob successfully refutes the
claim, Bob wins reputation and Alice loses reputation. If Alice successfully defends her

 3

claim, Alice wins reputation and Bob loses reputation.

1.1.2 Strengthening

A user strengthens a claim if he/she thinks the quality of the claim is not optimum. If Bob
successfully defends his strengthened claim, Bob wins reputation and Alice loses
reputation. Otherwise, if Bob fails to defend his strengthened claim, Alice wins

reputation and Bob loses reputation.

1.1.3 Agreement

A user agrees to a claim when he/she is convinced that the claim is true. If Bob agrees on
claim C with Alice, the following conditions should hold true:

Bob must defend C against Alice.
Bob must refute !C (i.e., the negated claim of C).

If Bob fails to satisfy any one of the above conditions, then Bob loses reputation and
Alice wins reputation.

Similarly Alice must satisfy the following conditions:
Alice must defend C against Bob.

Alice must refute !C with Bob as the defender.
If Alice fails to satisfy any one of the above conditions, then Alice loses reputation and

Bod wins reputation.

If both Alice and Bob satisfy all their conditions, the reputations remain unaffected and

the claim goes into the social welfare set (i.e., the claim repository).

1.1.4 Example:

Let us consider a simple playground as an example.

Definition:

 ∀a,b  [1, 10]  c: a + b = c

Here,
 Instance will be (a, b)
 Solution will be a + b

Let us say that Alice makes a claim and Bob has option to either agree or refute.

Consider two claims as an example:
 Claim1: ([1,10], [1,10],[2,20])
 Claim2: ([1,10], [1,10], [2,5])

Case 1: Alice makes Claim1. According to the claim, a and b can have any value

between 1 and 10. And c is in the range 2..20, which satisfies the condition that

for any value of a and b  [1, 10], c ranges from 2 to 20. Thus, this claim is

true. Bob has to agree to this claim.

 4

Case 2: Alice makes Claim2. In this case, a and b  [1, 10] and c is in the range 2..5.

When we take a = 10 and b = 10, c = 20 which doesn’t fall in the range as
claimed. So, Bob can refute this claim by providing Alice with the above

instance of a and b for which the values of c doesn’t satisfy the given range.

2. Making a clever avatar

You are provided with the clever avatar template and baby avatar. The files are located
under GenericSCG/src/hsr/avatar/. You have to fill in the template of clever avatar by

following steps below:

Step 1: No changes required for .cd file.

Step 2: .beh file has following methods, which need to be modified to make a clever
avatar:

List<Claim> propose(List<Claim> forbiddenClaims): The “propose” method is used to

make new claims during competitions. Propose function implementation is provided. No
changes are required for this function.

List<OpposeAction> oppose(List<Claim> claimsToBeOpposed): The “oppose” method
is used to respond to the claims of the proposer. The claims are given in the input
parameter claimsToBeOpposed. For every claim from the proposer, avatar has to take

one of the following oppose action:
1. Refute

2. Agree
3. Strengthen
The oppose function in clever avatar template needs to be updated with appropriate

oppose actions.

InstanceI provide(Claim claimUsed):
The “provide” method is used to provide an instance for the given claim. In clever avatar
template, provide function implementation is provided. No changes are required for this

function.

SolutionI solve(SolveRequest solveRequest):
The “solve” method is used to provide a solution for the instance provided by opposition.
This method has to be updated with solve logic in clever avatar template.

2.1. Tips To Design Clever Avatars

When making a clever avatar, users have to make sure to provide legitimate instances and
solutions. Otherwise their avatar will be kicked out of the tournament.

Following are the checks that will be performed by admin:

 5

1. Instance and solution Validity check: If the instance/solution provided by the

avatar is not valid, the avatar will be kicked out.

2. Quality check: The “quality” method is used to calculate the quality of the
solution provided for this Instance object. It returns the quality as double between
0 to 1 (with 0 being the least quality and 1 being the max quality). If the quality of

a solution provided by an avatar is not within this range, the avatar is kicked out.

3. BelongsTo check: The “belongsTo” method checks if the instance provided by
the player corresponds to the InstanceSet. Otherwise the avatar is kicked out of
the tournament.

4. New Claim check: If the ProposedClaimMustBeNew parameter in the

configuration section is set to true and the avatar makes a duplicate claim, the
avatar is kicked out of the tournament.

5. Valid Number Of Claims check: If an avatar makes claims less than
MinProposals OR greater than MaxProposals, the avatar is kicked out of the

tournament. These values are specified in the configuration section.

6. Valid Request check: If an avatar fails to respond when it is the avatar’s turn, the

avatar is kicked out of the tournament.

3. Admin

The given GenericSCG package has 2 entry points – Admin.java and PlayerMain.java.
When run on the local system for testing purposes, three versions of the same application

need to be run, one as Admin and 2 as players(avatars).

When running a tournament, the person acting as Admin runs his/her application as an
admin (by running Admin.java) ,while the players participating run their versions as
avatars(by running PlayerMain.java).

3.1 Building and running the Admin.

Step 1: Execute build.xml:

 Location: /GenericSCG

 Command: ant

Step 2: Run the Admin

 Location: GenericSCG/bin

Command: java -cp .:demeterf.jar:hamcrest-all-1.3.0RC2.jar scg.admin.Admin

 6

<admin password>

3.2 Tournament Management

In order for avatars to play against each other, the admin must setup a tournament with

specific configuration parameters. Following are the steps the admin performs:

1. Once the admin is up and running, open the URL http://server-url:7007/signin

(example: http://localhost:7007/signin, server is running locally). We are also
planning to setup tournaments where you will get to play against teacher avatar,

which is very competent and provides the best solutions. You should plan to
participate in these tournaments to test their clever avatars. The tournaments will
be hosted at http://tvtennis.ccis.neu.edu:7007/signin

2. Enter the username: root and password: <password given while executing Admin

class>

3. Create a new tournament by filling in all the required fields.
a. Enter a meaningful name for the tournament. Enter Running time in

minutes. For example, if the current time is 12.57pm and you want to
schedule a tournament at 1.00 pm, the running time is 3.

b. Please refer section 4.4 to get the configuration file for a particular

playground.

4. On the right side of the “Admin status” page, there is a list of players who are
approved and some who are waiting to be approved by admin. When you want to
approve a player/team, check the team’s name and click “Approve Selected”. This

team will now be able to enroll in tournaments and play. Unless this step is
complete, players will not be able to play in tournaments. Additionally, admin has

the option to also remove users.

http://localhost:7007/signin

 7

4. Avatar

4.1 Signing up and Enrolling as Avatar

1. Once the admin is up and running, open the URL http://server-url:7007/signup

(example: http://localhost:7007/signup, server is running locally). Enter your

team/avatar’s name as username and the password of your choice. Click
signup.

2. Wait for the admin to approve your signup. Once the admin notifies you of the

approval, go to http://server-url:7007/signin and enter your

teamname/avatarname and password that you used to signup.

3. You will be directed to the page where tournaments are listed. Clicking on the
tournament number will take you to the tournament’s page. You may only
enroll for tournaments that are in the Registration/Enrollment phase. You

cannot participate in tournaments that are in the Running/Complete phase.

4. Once you are in the tournament page, you may click on “Enroll” to enroll for
the tournament. This page also gives you details of the configuration for this
playground.

5. As soon as you do this, you will see your avatar’s name under list of players

who have enrolled.

 6. This is only part of the enrollment process. You still have to get your avatar

 running, to actually participate in the tournament.

4.2 Running Avatars

You need a minimum of 2 players for a tournament. So run 2 instances of
PlayerMain class, when testing on your local machines:

Step 1: Generate Java files using Demeterf

 Location: GenericSCG

Command: java -cp .:demeterf.jar:hamcrest-all-1.3.0RC2.jar demeterf
<./src/dds/avatar/ddsAvatar.cd> <./src/dds/avatar/ddsAvatar.beh>

<outputfolder>

Step 2: Build the source files

http://localhost:7007/signup
http://server-url:7007/signin

 8

 Location: /GenericSCG

 Command: ant

Step 3: Run the avatar

 Location: /GenericSCG/bin

Command: java -cp .:demeterf.jar:hamcrest-all-1.3.0RC2.jar
scg.net.avatar.PlayerMainDDS <random-port> <server-name> <team-
username> <team-password> <tournamentID>

Random port : 8020
Server name : localhost(if you are running on your localmachine) or the CCIS

server where the admin is hosted (tvtennis.ccis.neu.edu)
Team-username: the username you used to signin
Team-password : the password you used to signin

tournamentID : the number to the left of the tournament name in the tournament
list page.

DDS must be replaced by the playground acronym (Example : MMG/BFS/HSR) .
Make sure the admin and avatars are running on the same network.

4.3 Understanding the tournament page

1. Once the avatar is up and running, you may go to your tournament page and find
your name under list of players in bold letters. This indicates that you have completed
all steps required to participate in the tournament.

2. When the status of the tournament changes from “Registration” to “Running”, you
will see raw and smart history files generated for every round, and your scores being
updated accordingly.

3. When the status of the tournament changes to “Complete”, you will see your final
scores, and the scores of other players you played against. You may also open the

smart history file and see how you the game was played. Details about reading the
history files are given in Section 5.1

4.4 Configuration files

The below configuration has to be used while creating the tournaments. Configuration is

specific to a playground.

1. MMG:

scg_config[
domain:mmg.MMGDomain

protocols: scg.protocol.ForAllExistsMax
tournamentStyle: full round-robin
turnDuration: 60 //seconds

 9

maxNumAvatars: 30
minStrengthening: 0.001

initialReputation: 100.0
maxReputation: 1000.0

reputationFactor: 0.4
minProposals: 2
maxProposals: 5

numRounds: 6
proposedClaimMustBeNew: true

minConfidence: 0.5
]
mmg.MMGConfig {{ mmg_config[] }}

2. BFS:

scg_config[
domain:bfs.BFSDomain
protocols: scg.protocol.ForAllExistsEqual

tournamentStyle: full round-robin
turnDuration: 60 //seconds

maxNumAvatars: 30
minStrengthening: 0.001
initialReputation: 100.0

maxReputation: 1000.0
reputationFactor: 0.4

minProposals: 2
maxProposals: 5
numRounds: 6

proposedClaimMustBeNew: true
minConfidence: 0.5

]
bfs.BFSConfig {{ bfs_config[] }}

3. HSR:
scg_config[

domain:hsr.HSRDomain
protocols: scg.protocol.ForAllExistsMin
tournamentStyle: full round-robin

turnDuration: 60 //seconds
maxNumAvatars: 30

minStrengthening: 0.001
initialReputation: 100.0
maxReputation: 1000.0

reputationFactor: 0.4
minProposals: 2

maxProposals: 5
numRounds: 6

 10

proposedClaimMustBeNew: true
minConfidence: 0.5

]
hsr.HSRConfig {{ hsr_config[maxN: 1000] }}

5. Smart History

5.1. Understanding Smart History files

Consider a sample paragraph of the smart history file from a MMG game. Let us try and
understand each line and field means.

SAMPLE 1:
claim mmg.MMGInstanceSet {{ }} scg.protocol.ForAllExistsMax {{ }}

0.5707252354898215 1.0
proposer {{ navi }}
opposer {{ dexter }}

action strengthening 0.5807252354898215
responses provider {{ navi }} pr provide mmg.MMGInstance {{ 0.05 }}

provider {{ dexter }} pr solve mmg.MMGSolution {{ 0.046511853922261426 }}
winner {{ dexter }}
pointsWon 1.0

SAMPLE 2:

claim mmg.MMGInstanceSet {{ }} scg.protocol.ForAllExistsMax {{ }} 0.106 1.0
proposer {{ dexter }}

opposer {{ navi }}
action agree
responses provider {{ navi }} pr provide mmg.MMGInstance {{ 0.05 }}

provider {{ dexter }} pr solve mmg.MMGSolution {{ 0.4648488775874373 }}
winner {{ dexter }}

pointsWon 1.0

SAMPLE 3:

claim mmg.MMGInstanceSet {{ }} scg.protocol.ForAllExistsMax {{ }}
0.7323630210011601 1.0

proposer {{ navi }}
opposer {{ dexter }}
action refuting

responses provider {{ navi }} pr provide mmg.MMGInstance {{ 0.3 }}
provider {{ dexter }} pr solve mmg.MMGSolution {{ 0.3158511574800351 }}

winner {{ navi }}
pointsWon 1.0

 11

KEY:
claim INSTANCE SET PROTOCOL QUALITY CONFIDENCE

proposer {{ AVATAR_NAME }}
opposer {{ AVATAR_NAME }}

action ACTION NAME: REFUTE/STRENGTHEN/AGREE STRENGTHENED
CLAIM(if action is strengthening)
responses provider {{ AVATAR_NAME }} pr FUNCTION CALLED

INSTANCE {{ INSTANCE VALUE }}
 provider {{ AVATAR_NAME }} pr FUNCTION CALLED

SOLUTION {{ SOLUTION VALUE }}
winner {{ AVATAR_NAME }}
pointsWon VALUE

EXPLANATION:

Consider sample 1. It represents the history of first round out of the 9 rounds
(MAxrounds) between team navi and team dexter
- team navi proposes with a claim of C = 0.5707252354898215

- team dexter opposes by strengthening 0.5807252354898215
- team navi provides with a value of x= 0.5

- team dexter solves with a value of y= 0.046511853922261426
 - team dexter wins this round winning 1.0 points.

6. GNU Screen :

When playing from a remote terminal, there is danger of being disconnected during the
middle of the game. This issue can be prevented to a certain extent by using a GNU

screen.

This program allows you to start one or more processes running in a unix shell
session, "detach" from that shell session, and then "reattach" to it
later from the same connection you first used, or from another

connection. Having a connection terminated is the same as a "detach" - nothing prevents
you from easily reattaching upon reconnecting.

6.1 Steps to run GNU

1. Connect to a remote host (ie: ssh to login.ccs.neu.edu): This will

vary based on your ssh client.
2. Run screen (only do this one time):
> cba@login:~ $ screen <enter>

3) Upon starting up, screen will display a welcome message. You can
either read this or not, as your preference dictates. When done reading,

press <enter>
4) You are now back at a shell prompt, but are running within screen.

 12

Start some program (eg: the game client) as if this were a normal shell
session, eg:

> cba@login:~$ vim somefile.txt <enter>
5) Detach or lose your connection: To detach from your running screen

session but leave the program you just started running, type ctrl-a, d
(Control key + "A" key (lowercase), then just "D" key (lowercase)). This
will look like this:

> cba@login:~ $ screen
> [detached]

> cba@login:~ $
(note the "[detached]", and the absence from your shell of the program
you were just running). If you don't manually detach your screen

session, but instead just lose an ssh connection (eg: your lose network,
sleep/hibernate your local machine, close your ssh client, etc), the

effect is the same as if you had manually detached.
6) Reattach: To attach back to the screen session from which you
previously detached (or from which you were separated due to

network/ssh/etc problems), just run "screen -x", eg:
> cba@login:~ $ screen -x <enter>

Your display should now be restored to the state it was in when you
previously detached from or lost connectivity to your screen session.

6.2 Caveats

1. If you run more than one screen session (eg: run "screen" rather than

"screen -x" on the same host more than once without first exiting your
previous screen session(s)), you will be greeted with an error message

asking you to select the screen session to which you want to reattach.
Simply run "screen -x $SESSION" (where $SESSION is generally of the form
process_id.tty.host, eg: 1234.pts-99.login) to attach to a given screen

session. I suggest that if you do accidentally start more than one
screen session, you exit all but one, so as to keep things simple. See

below for how to exit a screen session.

2. Because screen takes over your entire (virtual) terminal, it is

(generally) not possible to scroll back output in screen. As such, if
you want to run something from within screen which will produce a lot of

output, and you want to review that output, it is generally wise to pipe
that output to pager (eg: "| less" or "| more") or redirect it to some
file to review later (eg: "> mylogfile.txt").

6.3 Exit Screen

To fully exit a screen session (bringing your entire screen process to

a close), simply attach as per the directions above, end any programs
running within the screen session, and exit the shell as you would

 13

normally (eg: "logout", "exit", ctrl-d, etc). You will know that you
have exited screen because after clearing its output, instead of

displaying "[detached]", screen will instead display "[screen is
terminating]", eg:

> cba@login:~ $ screen -x
> [screen is terminating]

> cba@login:~ $

