
CSU 670 Spring 2009 Sub Project 1
Karl Lieberherr and Ahmed Abdelmeged
January 6, 2009

Notes:
======
NOTE: This description is intentionally a bit underspecified.
Ask questions in class to clarify the requirements so that
you have a more complete picture.
In any software development project you have to dig for the requirements.
There is usually room for interpreting the requirements
in different ways.

Part 1
=============================================================

We are going to create an artificial world that we populate with little creatures that buy and
sell services. Each creature gets the same initial life energy and they are responsible for the
buy and sell decisions they make. The services are opportunities to win or lose energy. Each
service that is bought consumes energy but there is the potential to get that energy back
through clever use of a second resource: computational energy.

You have to take good care of those little creatures because you will be graded by what you
"teach" them. A good dose of your computer science and mathematics knowledge will flow
into those little creatures and if it does not, your grade will suffer. The little creatures will
trade with each other using the knowledge you have given them. The life energy your
creature will have left at the end of the game will influence your grade in a significant way.

Here are some trading examples: A summary of robot competitions. VodkaCurfewFest won
the last competition. We will let VodkaCurfewFest and maybe other robots compete in our
competitions. http://www.ccs.neu.edu/home/lieber/courses/csu670/sp09/competitions/f08/
competitionsf08.htm.

The project of Spring 2009 CSU 670 is about designing and implementing an algorithmic
derivative trading game, called the Specker Derivative Game (SDG). The objects traded are
financial derivatives. (Financial derivatives are financial instruments whose value derives
from the value of assets underlying them. Examples of financial instruments used in
derivative transactions are options. Options are financial instruments that convey the right,
but not the obligation, to engage in a future transaction on some underlying security.) Each
derivative has a creator and can be bought by a player at the price offered by the creator.
The creator of a derivative will not change when a derivative is sold. We say that a buyer
owns a derivative. When you own a derivative with predicate T, you have the right to
request raw material satisfying T and you have the right to sell back to the creator the
finished product you produce from the raw material at a price that is equal to the quality of
your product. The better quality you produce, the more you will be paid. On the other hand,
the creator of the derivative has only the obligation to give you raw material satisfying
predicate T, but he/she may make it hard for you to produce a high quality product.

The game has an administrator and a list of players. A player consists of a name, a list of
offers (derivatives offered for sale), a list of sold derivatives (derivatives bought by other
players), a list of bought derivatives (derivatives bought from other players), and a money
field for the money owned by the player. Initially, each player gets 5 million dollars.



A derivative consists of a required name, a required predicate, a required creator (a player),
a required price, and a few fields representing the state of the derivative as follows. If the
optional boughtBy field is present, the derivative has been bought by another player. If the
optional rawMaterial field is present, the buyer has requested raw material (currently
unspecified). If the optional finished field is present, the buyer has delivered the finished
product which is currently unspecified and it has a quality field which says how much the
buyer has to be paid by the creator of the derivative.

Create an object-oriented design for The Specker Derivative Game. Include also the history,
the list of moves that happened during a game (the administrator keeps track of this
information). The moves that must be recorded include CreateDerivative, BuyDerivative,
DeliverRawMaterial, DeliverFinishedProduct. CreateDerivative creates a derivative (unsold).
BuyDerivative records who bought the derivative. DeliverRawMaterial records the raw
material delivered by the creator of the derivative. DeliverFinishedProduct records the
finished product delivered by the buyer and the quality (a real number in [0,1]) of the
product. All prices are real numbers in [0,1] (fraction of a million $).

Here is an example of the kind of information you need to represent. This representation
contains redundancy and you should attempt to reduce some or all of the redundancy in
your design.

(player
name Peter
offers

(derivative
name d1
predicate unspecified
creator Peter
price 0.75

derivative
name d2
predicate unspecified
creator Peter
price 0.618

)
soldOffers

(derivative
name d3
predicate unspecified
creator Peter
price 0.85
boughtBy Paul

derivative
name d4
predicate unspecified
creator Peter
price 0.618
boughtBy Paul

)
boughtOffers

(derivative
name d5
predicate unspecified



creator Paul
price 0.85
boughtBy Peter

derivative
name d6
predicate unspecified
creator Paul
price 0.6
boughtBy Peter

)
money 0

)
history

(create
derivative

name d1
predicate unspecified
creator Peter

price 0.75
create

derivative
name d4
predicate unspecified
creator Peter
price 0.618

buy
derivative

name d3
predicate unspecified
creator Peter
price 0.85
boughtBy Paul

delivered
derivative

name d3
predicate unspecified
creator Peter
price 0.85
boughtBy Paul
rawMaterial

unspecified raw material
finished

derivative
name d3
predicate unspecified
creator Peter
price 0.85
boughtBy Paul
rawMaterial

unspecified raw material
finished

unspecified finished product
quality 0.25



)

The above example is intentionally incomplete and not from a real game. The purpose is
only to show the kind of information that needs to be represented.

Turn in your object-oriented design, together with the corresponding Java or C# classes.
The classes must be capable to parse a game history and print it back out. But you should
not have to write any Java or C# code to define the details of the parsing and printing
functionality. A tool should generate this information from a schema that you write for your
object-oriented design.

I suggest that you use the DemeterF tool, a brand new tool developed in our college. See
file: how-to-use-DemeterF in the course directory.

You may use any other Java or C# tool that has similar data-binding capabilities.

The details of the game will be introduced later. Basically, the players get a turn during
which they create new derivatives or buy one from one of the players. It is explicitly allowed
to create a derivative with predicate T and price p even if there is already a derivative of the
same predicate T but with a higher price offered by some player.

If the derivatives are too expensive, nobody will buy them. For example, if all cost one
(million). The rules of the game will make the players buy or lower the prices: Here is an
important rule:

When it is a player's turn: The player must buy at least one derivative from another player
or re-offer all derivatives that are for sale with a lower price. This will create new derivatives
of an existing predicate, one for each predicate. In addition, a player may create new
derivatives using new predicates. (The idea is that if a player does not want to buy, s/he
must demonstrate that the prices are too high by lowering all of them. Several derivatives
of the same predicate will be usually for sale and the clever buyer will normally choose the
cheapest one.)

The game terminates after a fixed number of rounds (say 20). The winning player is the one
who has the most energy (money) at the end of the game.

1. by careful thinking. Buy derivatives where you are guaranteed to make money.

2. by exploiting mistakes of others: (a) Sell derivatives where the buyer uses suboptimal
techniques to create the finished product. This will lower the amount of money you have to
pay for the finished product and will increase your profit. (b) Buy derivatives where you
think the seller will make a mistake by giving you raw material from which you can produce
a high quality product.

So in order to play the game well you must be good at: 1. spotting the best buys (which
includes spotting the bad buys) 2. creating a high quality finished product out of the raw
material.

In addition it helps, if you know the shortcomings of the other players but this is not needed
to win in this game.

Of course, this all depends on the predicates used, and what it means to finish a raw
product. This will be specified in project 2.



What to turn in for project 1/part 1: Turn in your object-oriented design, a DemeterF class
dictionary or equivalent schema that can represent the required information. Turn in your
parser and printer that has been generated from the schema.

The projects are done using pair programming. Find a partner and let me know if you
cannot find one. Make sure you are a balanced team by comparing your answers to the
questionnaire. We will be practicing pair programming: http://www.ccs.neu.edu/home/
lieber/courses/csu670/sp09/project/ppp/pair-prog.html

You must turn in a development diary for each project: http://www.ccs.neu.edu/home/
lieber/courses/csu670/sp09/project/ppp/development-diary.html

Part 2
==================================================================

Form a team of two students (the same pair as in part 1)
and play a few rounds of
SDG/classic/MAX-SAT (the raw materials are conjunctive normal forms) as described in

http://www.ccs.neu.edu/home/lieber/courses/csu670/sp09/requirements/two-player-
param/two-player-sdg.pdf

This is an important document describing the requirements for the SDG.

Turn in the game history over 3 rounds.
In each round a player has one turn.

Follow the language definition for game histories in:

/home/lieber/.www/courses/csu670/sp09/software/abstract-histories

to turn in your history.

Turn in your answers electronically on Blackboard. Header to use:

Software Development CSU 670
Spring 2009
Project Number 1


