# Linear Programming: Chapter 11 Game Theory 

Robert J. Vanderbei

October 17, 2007

Operations Research and Financial Engineering Princeton University Princeton, NJ 08544
http://www.princeton.edu/~rvdb

## Rock-Paper-Scissors

A two person game.
Rules. At the count of three declare one of:
Rock Paper Scissors

Winner Selection. Identical selection is a draw. Otherwise:

- Rock beats Scissors
- Paper beats Rock
- Scissors beats Paper

Payoff Matrix. Payoffs are from row player to column player:

$$
A=\begin{gathered}
\\
P \\
S \\
R
\end{gathered}\left[\begin{array}{rrr}
P & S & R \\
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right]
$$

Note: Any deterministic strategy employed by either player can be defeated systematically by the other player.

## Two-Person Zero-Sum Games

Given: $m \times n$ matrix $A$.

- Row player (rowboy) selects a strategy $i \in\{1, \ldots, m\}$.
- Col player (colgirl) selects a strategy $j \in\{1, \ldots, n\}$.
- Rowboy pays colgirl $a_{i j}$ dollars.

Note: The rows of $A$ represent deterministic strategies for rowboy, while columns of $A$ represent deterministic strategies for colgirl.

Deterministic strategies can be bad.

## Randomized Strategies.

- Suppose rowboy picks $i$ with probability $y_{i}$.
- Suppose colgirl picks $j$ with probability $x_{j}$.

Throughout, $x=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n}\end{array}\right]^{T}$ and $y=\left[\begin{array}{llll}y_{1} & y_{2} & \cdots & y_{m}\end{array}\right]^{T}$ will denote stochastic vectors:

$$
\begin{aligned}
x_{j} & \geq 0, \quad j=1,2, \ldots, n \\
\sum_{j} x_{j} & =1
\end{aligned}
$$

If rowboy uses random strategy $y$ and colgirl uses $x$, then expected payoff from rowboy to colgirl is

$$
\sum_{i} \sum_{j} y_{i} a_{i j} x_{j}=y^{T} A x
$$

## Colgirl's Analysis

Suppose colgirl were to adopt strategy $x$.

Then, rowboy's best defense is to use $y$ that minimizes $y^{T} A x$ :

$$
\min _{y} y^{T} A x
$$

And so colgirl should choose that $x$ which maximizes these possibilities:

$$
\max _{x} \min _{y} y^{T} A x
$$

## Solving Max-Min Problems as LPs

Inner optimization is easy:

$$
\min _{y} y^{T} A x=\min _{i} e_{i}^{T} A x
$$

( $e_{i}$ denotes the vector that's all zeros except for a one in the $i$-th position-that is, deterministic strategy $i$ ).

Note: Reduced a minimization over a continuum to one over a finite set.

We have:

$$
\begin{gathered}
\max \left(\min _{i} e_{i}^{T} A x\right) \\
\sum_{j} x_{j}=1 \\
x_{j} \geq 0, \quad j=1,2, \ldots, n
\end{gathered}
$$

## Reduction to a Linear Programming Problem

Introduce a scalar variable $v$ representing the value of the inner minimization:
$\max v$

$$
\begin{aligned}
v & \leq e_{i}^{T} A x, \quad i=1,2, \ldots, m \\
\sum_{j} x_{j} & =1 \\
x_{j} & \geq 0, \quad j=1,2, \ldots, n .
\end{aligned}
$$

Writing in pure matrix-vector notation:

$$
\begin{aligned}
\max v & \\
v e-A x & \leq 0 \\
e^{T} x & =1 \\
x & \geq 0
\end{aligned}
$$

( $e$ denotes the vector of all ones).

## Finally, in Block Matrix Form

$$
\begin{gathered}
\max \left[\begin{array}{l}
0 \\
1
\end{array}\right]^{T}\left[\begin{array}{l}
x \\
v
\end{array}\right] \\
{\left[\begin{array}{cc}
-A & e \\
e^{T} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
v
\end{array}\right] \leq\left[\begin{array}{l}
0 \\
1
\end{array}\right]} \\
x \geq 0 \\
v \text { free }
\end{gathered}
$$

## Rowboy's Perspective

Similarly, rowboy seeks $y^{*}$ attaining:

$$
\min _{y} \max _{x} y^{T} A x
$$

which is equivalent to:

$$
\begin{aligned}
\min u & \\
u e-A^{T} y & \geq 0 \\
e^{T} y & =1 \\
y & \geq 0
\end{aligned}
$$

## Rowboy's Problem in Block-Matrix Form

$$
\begin{gathered}
\min \left[\begin{array}{l}
0 \\
1
\end{array}\right]^{T}\left[\begin{array}{l}
y \\
u
\end{array}\right] \\
{\left[\begin{array}{cc}
-A^{T} & e \\
e^{T} & 0
\end{array}\right]\left[\begin{array}{l}
y \\
u
\end{array}\right] \geq\left[\begin{array}{l}
0 \\
1
\end{array}\right]} \\
y \geq 0 \\
u \text { free }
\end{gathered}
$$

Note: Rowboy's problem is dual to colgirl's.

## MiniMax Theorem

Let $x^{*}$ denote colgirl's solution to her max-min problem. Let $y^{*}$ denote rowboy's solution to his min-max problem. Then

$$
\max _{x} y^{* T} A x=\min _{y} y^{T} A x^{*}
$$

Proof.
From Strong Duality Theorem, we have

$$
u^{*}=v^{*}
$$

Also,

$$
\begin{aligned}
& v^{*}=\min _{i} e_{i}^{T} A x^{*}=\min _{y} y^{T} A x^{*} \\
& u^{*}=\max _{j} y^{* T} A e_{j}=\max _{x} y^{* T} A x
\end{aligned}
$$

QED

## AMPL Model

set ROWS;
set COLS;
param A \{ROWS,COLS\} default 0;
var $x\{C O L S\}>=0$;
var v;
maximize zot: v;
subject to ineqs $\{i$ in ROWS\}: $\operatorname{sum}\{j$ in COLS $\}-A[i, j] * x[j]+v<=0 ;$
subject to equal:

$$
\operatorname{sum}\{j \text { in COLS }\} \quad x[j]=1 \text {; }
$$

## AMPL Data

```
data;
set ROWS := P S R;
set COLS := P S R;
param A: P S R:=
    P 0 1 -2
    S -3 0}
    R 5 -6 0
;
```

solve;
printf \{j in COLS\}: " $\% 3 s \% 10.7 f \backslash n ", j, 102 * x[j] ;$ printf \{i in ROWS\}: " $\% 3 s \% 10.7 f$ $\backslash n ", i, 102 * i n e q s[i] ;$ printf: "Value $=\% 10.7 \mathrm{f}$ \n", 102*v;

## AMPL Output

```
ampl gamethy.mod
LOQO: optimal solution (12 iterations)
primal objective -0.1568627451
    dual objective -0.1568627451
    P 40.0000000
    S 36.0000000
    R 26.0000000
    P 62.0000000
    S 27.0000000
    R 13.0000000
Value = -16.0000000
```


## Dual of Problems in General Form

Consider:

$$
\begin{aligned}
\max c^{T} x & \\
A x & =b \\
x & \geq 0
\end{aligned}
$$

Rewrite equality constraints as pairs of inequalities:

$$
\begin{aligned}
\max c^{T} x & \\
A x & \leq b \\
-A x & \leq-b \\
x & \geq 0
\end{aligned}
$$

Put into block-matrix form:

$$
\begin{aligned}
\max c^{T} x & \\
{\left[\begin{array}{r}
A \\
-A
\end{array}\right] x } & \leq\left[\begin{array}{r}
b \\
-b
\end{array}\right] \\
x & \geq 0
\end{aligned}
$$

Dual is:

$$
\begin{aligned}
\min \left[\begin{array}{r}
b \\
-b
\end{array}\right]^{T}\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \\
{\left.\left[\begin{array}{ll}
\left.A^{T}-A^{T}\right]
\end{array}\right] \begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \geq c } \\
y^{+}, y^{-} \geq 0
\end{aligned}
$$

Which is equivalent to:

$$
\begin{aligned}
\min b^{T}\left(y^{+}-y^{-}\right) & \\
A^{T}\left(y^{+}-y^{-}\right) & \geq c \\
y^{+}, y^{-} & \geq 0
\end{aligned}
$$

Finally, letting $y=y^{+}-y^{-}$, we get

$$
\begin{aligned}
& \min b^{T} y \\
& A^{T} y \geq c \\
& y \text { free. }
\end{aligned}
$$

## Moral:

- Equality constraints $\Longrightarrow$ free variables in dual.
- Inequality constraints $\Longrightarrow$ nonnegative variables in dual.


## Corollary:

- Free variables $\Longrightarrow$ equality constraints in dual.
- Nonnegative variables $\Longrightarrow$ inequality constraints in dual.


## A Real-World Example

## The Ultra-Conservative Investor

|  | Year | $\begin{array}{r} \text { US } \\ \text { 3-Month } \\ \text { T-Bills } \end{array}$ | $\begin{array}{r} \text { US } \\ \text { Gov. } \\ \text { Long } \\ \text { Bonds } \end{array}$ | $\begin{array}{r} \hline \text { S\&P } \\ 500 \end{array}$ | Wilshire $5000$ | NASDAQ <br> Composite | Lehman Bros. Corp. Bonds | EAFE | Gold |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1973 | 1.075 | 0.942 | 0.852 | 0.815 | 0.698 | 1.023 | 0.851 | 1.677 |
|  | 1974 | 1.084 | 1.020 | 0.735 | 0.716 | 0.662 | 1.002 | 0.768 | 1.722 |
|  | 1975 | 1.061 | 1.056 | 1.371 | 1.385 | 1.318 | 1.123 | 1.354 | 0.760 |
| Consider again the | 1976 | 1.052 | 1.175 | 1.236 | 1.266 | 1.280 | 1.156 | 1.025 | 0.960 |
| historical return on | 1977 | 1.055 | 1.002 | 0.926 | 0.974 | 1.093 | 1.030 | 1.181 | 1.200 |
| historical return on | 1978 | 1.077 | 0.982 | 1.064 | 1.093 | 1.146 | 1.012 | 1.326 | 1.295 |
| investment data. | 1979 | 1.109 | 0.978 | 1.184 | 1.256 | 1.307 | 1.023 | 1.048 | 2.212 |
| investment data: | 1980 | 1.127 | 0.947 | 1.323 | 1.337 | 1.367 | 1.031 | 1.226 | 1.296 |
| We can view thi | 1981 | 1.156 | 1.003 | 0.949 | 0.963 | 0.990 | 1.073 | 0.977 | 0.688 |
|  | 1982 | 1.117 | 1.465 | 1.215 | 1.187 | 1.213 | 1.311 | 0.981 | 1.084 |
| a payoff matrix in a | 1983 | 1.092 | 0.985 | 1.224 | 1.235 | 1.217 | 1.080 | 1.237 | 0.872 |
| a payoff matrix in a | 1984 | 1.103 | 1.159 | 1.061 | 1.030 | 0.903 | 1.150 | 1.074 | 0.825 |
| game between Fate | 1985 | 1.080 | 1.366 | 1.316 | 1.326 | 1.333 | 1.213 | 1.562 | 1.006 |
| game between Fate | 1986 | 1.063 | 1.309 | 1.186 | 1.161 | 1.086 | 1.156 | 1.694 | 1.216 |
| and the Investor. | 1987 | 1.061 | 0.925 | 1.052 | 1.023 | 0.959 | 1.023 | 1.246 | 1.244 |
|  | 1988 | 1.071 | 1.086 | 1.165 | 1.179 | 1.165 | 1.076 | 1.283 | 0.861 |
|  | 1989 | 1.087 | 1.212 | 1.316 | 1.292 | 1.204 | 1.142 | 1.105 | 0.977 |
|  | 1990 | 1.080 | 1.054 | 0.968 | 0.938 | 0.830 | 1.083 | 0.766 | 0.922 |
|  | 1991 | 1.057 | 1.193 | 1.304 | 1.342 | 1.594 | 1.161 | 1.121 | 0.958 |
|  | 1992 | 1.036 | 1.079 | 1.076 | 1.090 | 1.174 | 1.076 | 0.878 | 0.926 |
|  | 1993 | 1.031 | 1.217 | 1.100 | 1.113 | 1.162 | 1.110 | 1.326 | 1.146 |
|  | 1994 | 1.045 | 0.889 | 1.012 | 0.999 | 0.968 | 0.965 | 1.078 | 0.990 |

## Fate's Conspiracy

The columns represent pure strategies for our conservative investor.
The rows represent how history might repeat itself.
Of course, for next year (1995), Fate won't just repeat a previous year but, rather, will present some mixture of these previous years.
Likewise, the investor won't put all of her money into one asset. Instead she will put a certain fraction into each.
Using this data in the game-theory AMPL model, we get the following mixedstrategy percentages for Fate and for the investor.

| Investor's Optimal Asset Mix: | Mean, old Fate's Mix: |  |  |
| :--- | ---: | ---: | ---: |
| US 3-MONTH T-BILLS | 93.9 | 1992 | 28.1 |
| NASDAQ COMPOSITE | 5.0 | 1993 | 7.8 |
| EAFE | 1.1 | 1994 | 64.1 |

The value of the game is the investor's expected return: 4.10\%.

