HW1

Part A:

1. Diagram is not posted here since you use some IDE tools to generate the UML automatically!

2. This code will execute function Main.main which creates a Molecule-object from file program.input using a parser whose functioning will not be explained here. The parser is automatically generated by a parser generator called JavaCC. DemeterJ generates the method print() to traverse the molecule object . Method print() will call necessary traversal methods that DemeterJ generated and inserted into each class that will be traversed according to a strategy. During the traversal a special object called Visitor will be passed through all the objects traversed doing corresponding jobs specified by the user in advance.

Part B:

1. Same with Part A.1.

2. The program here basically does the same traversal as in Part A. 2. The differences are as follows:

First, here the target language is no longer Jjava but AspectJ. The advantage of using AspectJ is that all the traversal methods can now be kept in a separated file, and AspectJ will do the weaving.

Second, the parser generator here is not JavaCC but Antlr, an open source project.

Part C:

UNKNOWN1 = PersonalInfo

UNKNOWN2 = Address

UNKNOWN3 = City

UNKNOWN4 = Date

UNKNOWN5 = bad way

UNKNOWN6 = personalInfo

UNKNOWN7 = address

UNKNOWN8 = name

UNKNOWN9 = buildClassGraph

UNKNOWN10 = DJ

UNKNOWN11 = The class graph is

UNKNOWN12 = Employee

UNKNOWN13 = Employee

UNKNOWN14 = personalInfo_

UNKNOWN15 = d

UNKNOWN16 = a

UNKNOWN17 = fetch

UNKNOWN18 = Boston

UNKNOWN19 = Boston

Part D:

Atoms -> Atom Atoms | e.

Atom -> "<atom id=" AtomName "elementType=" AtomType "hydrogenCount=" AtomCount "> </atom>".

AtomName -> String.

AtomType -> String.

AtomCount -> String.

Part E:

Adaptive Programming.

HW2

Question 1:

UNKNOWN1 = util

UNKNOWN2 = Zurich

UNKNOWN3 = add

UNKNOWN4 = Chur

UNKNOWN5 = add

UNKNOWN6 = St. Morit

UNKNOWN7 = add

UNKNOWN8 = Pontresina

UNKNOWN9 = add

UNKNOWN10 = v1

UNKNOWN11 = 9

UNKNOWN12 = 17

UNKNOWN13 = ClassGraph

UNKNOWN14 = buildClassGraph

UNKNOWN15 = TraversalGraph

UNKNOWN16 = TraversalGraph

UNKNOWN17 = “from Trip to Location”

UNKNOWN18 = UNKNOWN35

UNKNOWN19 = printItinerary

UNKNOWN20 = allLocations

UNKNOWN21 = util

UNKNOWN22 = TraversalGraph

UNKNOWN23 = Visitor

UNKNOWN24 = Trip

UNKNOWN25 = Location

UNKNOWN26 = Trip

UNKNOWN27 = String

UNKNOWN28 = Vector

UNKNOWN29 = arrival

UNKNOWN30 = int

UNKNOWN31 = Trip

UNKNOWN32 = Trip

UNKNOWN33 = Vector

UNKNOWN34 = Location

UNKNOWN35 = Anything

UNKNOWN36 = Done

Question 2:

Part 1

You are supposed to write some regular Java program that doesn’t use any DJ/DemeterJ’s traversal facility and does the same thing as DJ’s gather(..) method and follows the Law of Demeter.

In class A, add a method:

 List gatherF()

 {

 return b.gatherF();

 }

In class B, add a method:

List gatherF()

 {

 return d.gatherF();

 }

In class D, add a method:

 List gatherF()

 {

List aList=new ArrayList();

aList.addAll(e.gatherF());

aList.addAll(x.gatherF());

 return aList;

 }

In class E and X, add a method respectively:

 List gatherF()

 {

List aList = new ArrayList();

aList.add(f);

 return aList;

 }

You can call gatherF() on an A object, then you have the same functionality as a.gather(tg) does, where tg is a traversal graph constructed from strategy “from A to F”.
Part 2

UNKNOWN1 = util

UNKNOWN2 = F

UNKNOWN3 = F

UNKNOWN4 = util

UNKNOWN5 = D

UNKNOWN6 = X

UNKNOWN7 = MyVisitor

UNKNOWN8 = from A to F

UNKNWON9 = A

UNKNOWN10 = B

UNKNOWN11 = D

UNKNOWN12 = X

UNKNOWN13 = F

UNKNOWN14 = F

UNKNOWN15 = X

UNKNOWN16 = D

UNKNOWN17 = B

UNKNOWN18 = A

UNKNOWN19 = D

UNKNOWN20 = x

UNKNOWN21 = X

UNKNOWN22 = A

UNKNOWN23 = b

UNKNOWN24 = B

UNKNOWN25 = B

UNKNOWN26 = d

UNKNOWN27 = D

UNKNOWN28 = D

UNKNOWN29 = e

UNKNOWN30 = E

UNKNOWN31 = E

UNKNOWN32 = f

UNKNOWN33 = F

UNKNOWN34 = 1

UNKNOWN35 = empty string

UNKNOWN36 = from A through X to F

Question 3:

· By using the optional marker “[]”

Main = .

Strategy = "whereToGo" "=" ArrowStrategy ";".

ArrowStrategy = "{" List(PathItem) "}".

PathItem = [SourceMarker] <source> CName "->" [TargetMarker] <target> CName [ByPassingPart].

ByPassingPart = "bypassing" "{" List(CName) "}".

CName = Ident.

SourceMarker = "source :".

TargetMarker = "target :".

List(S) ~ {S}.

· An alternative way without using the optional marker “[]”

Main = .

Strategy = "whereToGo" "=" ArrowStrategy ";".

ArrowStrategy = "{" List(PathItem) "}".

PathItem = SourceClass "->" TargetClass [ByPassingPart].

ByPassingPart = "bypassing" "{" List(ClassName) "}".

SourceClass : SourceWithMarker | SourceNoMarker.

TargetClass : TargetWithMarker | TargetNoMarker.

SourceWithMarker = "source :" ClassName.

SourceNoMarker = ClassName.

TargetWithMarker = "target :" ClassName.

TargetNoMarker = ClassName.

ClassName = Ident.

List(S) ~ {S}.

