Eclipse Plug-in for Visualization of Traversals

CSU 670 – Fall 2005 Course Project

Prof. Karl Lieberherr

Ankit Shah
Jingsong Feng
October 19, 2005
Version 1.1

Project Overview
· Develop an Eclipse plug-in which visualizes traversals. Traversals are specified using the traversal strategy language or a sublanguage of XPath (the XML navigation language). We call such specifications selectors.

· Use a class dictionary to visualize traversals specified by a selector. In other words, show the classes and relationships between classes in a class dictionary that are selected by the current selector.

Project Description

· The project forms the first step towards developing a full-fledged plug-in for XAspects. XAspects is a multi-pass compiler to compile multiple Domain Specific Aspect Languages (DSALs) (eg., ClassDictionary, Traversals, Strategy, etc.).
· You must implement an editor for class dictionaries, traversal strategies and a subset of XPath. This editor must highlight all the correct keywords when entered and must be able to check the code for syntactic and semantic correctness.

· In the editor itself, when the cursor is within the text of a strategy or XPath expression, the class dictionary should be shown in the viewer window with the appropriate classes and edges highlighted [described in detail in the following section].

Plug-in Overview

· Provide an XAspects Language Editor, which is simply an extension to the Eclipse text editor but has the capability of highlighting the XAspects keywords.

· A Sample XAspects input file is shown below with its keywords highlighted:

aspect (ClassDictionary) MyClassDictionary

// a Text object

{{

PaperBoy = .

Customer = <bedroom> Bedroom <kitchen> Kitchen

 <bathroom>Bathroom.

Bedroom = <underbed>TotalMoney.

Kitchen = <inCabinet>TotalMoney.

Bathroom = .

TotalMoney = .
}}

aspect (Traversal) MyTraversals {

declare strategy: s1:

from A via B bypassing GJ to C;

declare strategy: s2:

from Customer to TotalMoney;

declare strategy: s3:

Customer -> Bedroom Bedroom -> TotalMoney;

declare XPath: xs1:

Customer // TotalMoney;

declare XPath: xs2:

// B // C // D | // B // X // Y;

declare XPath: xs3:

// B / C;

declare XPath: xs4:

union(except (xs2), intersect (xs1, xs3));

intersect
(intersection

except
(complement

· Contribute a button to the tool bar which upon clicking will
· save files and parse the contents of your XAspects Language Editor.
· Check the input for any semantic incorrectness (e.g., are all used variables defined?).
· Display error messages if you find any syntactic or semantic errors.
· In the input, the user has specified several selectors (strategies and XPath expressions). The current cursor position tells which one he/she actually wishes to see visually. The active selector is the selector such that the text editor cursor is at or after the letter ‘d’ in the declare strategy or declare XPath expressions AND at or before the 1st semi-colon (;) encountered after such an expression.
For the input above, consider that the position of the cursor selects strategy s3 as current. In a viewer window (that will be displayed in the “View” Window below the editor) the following information will be shown:
aspect (ClassDictionary) MyClassDictionary {

PaperBoy = .

Customer = <bedroom>Bedroom <kitchen>Kitchen <bathroom>Bathroom.

Bedroom = <underbed> TotalMoney.

Kitchen = <inCabinet> TotalMoney.

Bathroom = .

TotalMoney = .

}

If the cursor selects the XPath expression xs1, then the visualization should be as follows:

aspect (ClassDictionary) MyClassDictionary {

PaperBoy = .

Customer = <bedroom>Bedroom <kitchen>Kitchen <bathroom>Bathroom.

Bedroom = <underbed> TotalMoney.

Kitchen = <inCabinet> TotalMoney.

Bathroom = .

TotalMoney = .

}
Note that this above step can be (and should be) done only when cursor movements are done after your toolbar button is clicked but no changes have been made to your file!

· Display the given class dictionary to the “View” window and highlight the classes and parts selected during the traversal.
Project Milestones

As you take off with the project, target to attain the following milestones:

[Note: All documents to be referred to are listed in the References Section]

· Setup Environment as follows:

· Development IDE: Eclipse 3.1.x

· Have DemeterJ 0.8.6 installed

Estimated Deadline: Start Date = date of midterm.

· Get up to speed with plug-in development. The recommended approach is to refer to the document “Using Plug-in Development Environment” in the references section first and other documents after that until you feel completely comfortable with plug-in development. You can download sample plugin code from the link in the references section. You can use Eclipse help in the section “Platform Plug-in Developer Guide” to find out how to use the code. In references section, there is also a link of an article about how to implement a text-based editor Eclipse plugin, the editor plugin can add syntax coloring and content assistance.
Estimated Deadline: Start Date + 7 days

· Document your roadmap to the final stage. This is a 1-2 page document, listing requirements, clarifying issues left open or left contradictory in this document and enumerating the steps you intend to follow. Explicitly list what components will be developed, their use and where they fit in the whole scheme of things. Also include high-level algorithms for semantic checking and for highlighting.

Deadline: Start Date + 8 days

Deliverable: RoadMap Paper [electronic submission only]

· Define the class dictionary for XAspects language’s ClassDictionary and Traversal aspects (both for the strategy notation and the XPath notation). Create an editor for inputting this language. Your editor must show syntax highlighting as above and perform syntax and semantic checking. Write your semantic checker in a structure-shy way.

Deadline: Start Date + 21 days

Deliverable: Class Dictionary for the language and Snapshots of your editor. You must have 2 snapshots; one showing a correct input with correct syntax highlighting and another showing semantically incorrect input and corresponding error messages [electronic and paper]

· At this stage, you will be provided a Class Dictionary for XAspects language that will replace the Class Dictionary you wrote. This strips out any errors you may have had. You must now implement the functionality required by the plug-in. You should ideally be following the steps laid out in your respective roadmaps but you may find it necessary to detour from it. Complete implementation and testing.

Deadline: To be announced.

Deliverable: Exported Plug-in, instructions to install it and 2 test cases (1 successful and 1 having errors to demonstrate error detecting capabilities of your plug-in. For the erroneous test cases, include instructions to correct errors and eventually get to the correct state)[plug-in jar & sources: Electronic only. Plug-in docs: Electronic and paper]

· Prepare final report

Deadline: Before Final’s week.

Deliverable: Final Report. Include original roadmap, how you changed it and all documents submitted with final plug-in. Also reflect on your project experience: what could you have done better? [Electronic and paper]

Help & FAQ

We will use csu670@lists.ccs.neu.edu for posting answers to general Eclipse questions. General project issues will be discussed in class where you will also review each others programs. The labs will be reactivated where Jingsong Feng will offer help with Eclipse.
Requirements for class dictionary and selector language

The class dictionaries must satisfy the syntax rules of the class dictionary for class dictionaries defined in the AP Library. See file cd/cd.cd.

The selector language, strategy part, must satisfy the syntax rules of the class dictionary for strategies defined in the AP Library. See file sg/sg.cd.

The selector language, XPath part, must satisfy the syntax rules that you design based on the examples given.

We use the syntax rules of the AP Library because we want to use the AP Library to visualize strategies in class dictionaries.

The purpose of the XPath language is to define traversals in an XPath-like syntax. We use the standard set operations: union, intersection and complement and your class dictionary should support such set expressions with arbitrary nesting level.

AP Library and DJ Library

You have indirectly used the AP Library when you used the DJ Library. The AP Library implements the core algorithms behind strategies and class graphs and it can and has been used independently of the DJ Library. This project is another use of the AP Library. Make sure that you think at the level of the AP Library and keep it separate from the DJ Library.

You will use the AP Library that is a part of the DJ package. Enclosed is a program fragment that shows how to use the AP Library API. aplib.sg and aplib.cd don’t have Java documentation (javadoc). However, it is on the web:

 http://www.ccs.neu.edu/research/demeter/AP-Library/
See “Using the AP Library” and the link: “DJ and AP Library Documentation for Implementors”.

import edu.neu.ccs.demeter.aplib.Traversal;

import edu.neu.ccs.demeter.aplib.Traversal.EdgeSet;

import edu.neu.ccs.demeter.aplib.EdgeI;

import edu.neu.ccs.demeter.aplib.cd.ClassGraph;

import edu.neu.ccs.demeter.aplib.sg.Strategy;

import java.util.Iterator;

class Subgraph {

 public static void main(String[] args) throws Exception {

 ClassGraph cg = ClassGraph.fromString(

 "A = B. B = [X] C. X = B. C = .");

 Strategy s = Strategy.fromString("from A via X to C");

 Traversal t = Traversal.compute(s, cg);

 ClassGraph newCG = new ClassGraph();

 for (Iterator it = t.getEdgeSets().iterator(); it.hasNext();)

 newCG.addEdge(((EdgeSet) it.next()).getEdge());

 System.out.println(newCG);

 }

}

% javac Subgraph.java && java Subgraph

A = B.

B = <x> X <c> C.

X = B.

You are encouraged to write your semantic checker in Java using the DJ library. You should not attempt to learn the DemeterJ programming language beyond what you used in the Operating System Simulation homework (open classes, using the DemeterJ generated visitors for printing etc.). But using DemeterJ to express the traversals will make your programs run faster at the price of becoming familiar with the DemeterJ language.
References

· Eclipse Plug-in Tutorials:

· “Using the Plug-in Development Environment” by IBM. (http://www.eclipse.org/documentation/pdf/org.eclipse.pde.doc.user_3.0.1.pdf)

· Eclipse Plug-in examples:

 http://download.eclipse.org/eclipse/downloads/drops/R-3.1-200506271435/download.php?dropFile=eclipse-examples-3.1-win32.zip
· Creating a text-based editor for Eclipse:

 http://devresource.hp.com/drc/technical_white_papers/eclipeditor/index.jsp
· AP Library: http://www.ccs.neu.edu/research/demeter/software/docs/src/aplib/

· XAspects

http://www.ccs.neu.edu/research/demeter/xaspects
